吸收塔设计(附图)

合集下载

硫酸吸收塔设备初步设计

硫酸吸收塔设备初步设计

毕业设计硫酸吸收塔设备初步设计(重点设计:吸收塔)系部生物与化工工程系专业名称班级姓名学号指导教师摘要硫酸是一种工农业生产必需的大宗化工基础原料,用途十分广泛。

在冶金工业中可用于钢材酸洗、纺织工业中可用于棉纱漂染,染料行业用于染料中间体生产,化肥行业用于磷铵、过磷酸钙的生产,有机合成工业用于脱水剂与高分子组合物,无机工业用于制取金属硫酸盐,民用用于净水剂硫酸铝等。

此外,还用于制药、农药、石油精炼、制革、人造纤维、国防军工等工业部门。

硫酸生产方法有硫铁矿法、硫磺法、冶炼尾气法、石膏法等。

由于硫酸是主要的基础化工原料,其发展程度是一个国家的工业、国民经济发达程度上的标志之一,各国对硫酸生产都比较重视。

此次毕业设计的主要研究对象为硫酸整个生产的基本原理和流程以及着重研究吸收工序中吸收塔的设计和材料的选择对于每一个生产方法的选择的原因和目的进行详细的剖析(如转化装置选用“3+2”五段转化工艺.选用浓度为98%的硫酸来做干燥剂和吸收剂,动力波进化工艺、等技术),从而加深对细节的把握和全局的整合.关键词: 硫酸、吸收塔、改造Process Design of a 300㎏/a Sulfuric Acidabsorption towerabstractSulfuric acid is a kind of industrial and agricultural production must base material, the commodity chemicals widely used. Can be used in metallurgyindustry, textile industry in steel pickling yarn dyeing can be used for dye intermediates, dye industry production, chemical fertilizer industry for the production of ammonium phosphate, calcium superphosphate, organic synthesis industry for dehydrating agents.it and polymer composition, inorganic industrial used in producing metal sulphate, civil for DTC vitriolic etc. In addition, also used in pharmaceutical, pesticide, oil refining, leather, synthetic fiber, national defense industry, etc. Sulfuric acid production methods have pyrite, sulfur, smelting exhaust, gypsum etc. The foundation is mainly because of sulfuric acid, the development degree of chemical raw materials of industry, is a national economic development level in one of the marks of sulfuric acid production, countries are seriously.The main research object of graduation design for the production of sulfuric acid and basic principle and process of research on absorption process design and materials absorption tower of choice for each production method of choice for the purpose and detailed analysis (such as the transformation of "devices" 3 + 2 conversion processes. Choose consists of sulphuric acid concentration of 98% for desiccant and absorbing wave evolution process, such as motivation, thus deepening) for technical details and global integration.Keywords: Sulfuric acid, the absorption tower, transformation,第一章总论1.1设计对象1.1.1 设计规模设计规模:15万吨/年1.1.2 产品及规格:原料: 硫铁矿产品:98.3%的浓硫酸(98酸)1.1.3 硫酸的性质及用途硫酸纯品为无色油状透明油状液体,相对密度为 1.83 g/cm3, 凝固点10.36。

吸收塔吊装方案

吸收塔吊装方案

唐山中润煤化工有限公司20万吨/年粗苯加氢精制项目一期10万吨/年工程塔吊装方案编制:审核:批准:HEBEI INSTALLATION ENGINEERING CO目录一、编制说明: ----------------------------------------------------------------------------------------------------------------- 2二、吊装工程量统计: -------------------------------------------------------------------------------------------------------- 2三、场地铺设 -------------------------------------------------------------------------------------------------------------------- 2四、各塔吊装 -------------------------------------------------------------------------------------------------------------------- 41、萃取精馏塔------------------------------------------------------------------------------------------------------------------- 41)现场情况-------------------------------------------------------------------------------------------------------------------- 4 2)吊车选用-------------------------------------------------------------------------------------------------------------------- 4 3)吊具选用-------------------------------------------------------------------------------------------------------------------- 5 4)吊装方法-------------------------------------------------------------------------------------------------------------------- 7 5)垫铁选用-------------------------------------------------------------------------------------------------------------------- 9 2、苯塔、甲苯塔、二甲苯塔 ---------------------------------------------------------------------- 错误!未定义书签。

化工原理课程设计甲醇填料吸收塔设计

化工原理课程设计甲醇填料吸收塔设计
经济评价与环保考虑
投资估算及经济效益分析
投资估算
根据甲醇填料吸收塔的设计方案,对设备、材料、安装、调试等各方面的费用进行详细估算,以确保投资预算的 准确性。
经济效益分析
通过对比不同设计方案的经济效益,包括投资回报率、净现值、内部收益率等指标,评估甲醇填料吸收塔的经济 效益,为决策提供依据。
环保法规遵守情况说明
在甲醇吸收塔周围设置防火墙或 防火带,防止火灾蔓延。同时, 塔体上应设置明显的安全警示标 志和灭火器材。
防爆措施
对于可能存在爆炸危险的区域, 应采取相应的防爆措施,如设置 防爆门、防爆窗等。此外,还应 对塔体进行定期检查和维修,确 保设备完好无损。
防毒措施
甲醇具有一定的毒性,因此在设 计过程中应采取相应的防毒措施 。例如,在塔体上设置排风口和 通风设备,确保空气流通;工作 人员在操作时应佩戴防毒面具和 防护服等个人防护用品。
化工原理课程设计甲 醇填料吸收塔设计
目录
• 课程设计背景与目的 • 甲醇填料吸收塔基本原理 • 设计方案制定与参数选择
目录
• 工艺流程设计与优化 • 设备布置与管道设计 • 控制系统设计与实现 • 经济评价与环保考虑
01
课程设计背景与目的
化工原理课程设计意义
01 02
理论与实践结合
化工原理课程设计是连接化工理论学习与工程实践的重要桥梁,通过课 程设计,学生可以将所学的化工原理知识应用于实际工程问题中,加深 对理论知识的理解和掌握。
塔内件设计与优化
通过对塔内件(如分布器、收集器、再分布器等)的设计和优化,实现气液均匀分布、减少返混和降低压降等目标, 从而提高吸收效率和降低能耗。
操作条件优化
通过对操作条件(如温度、压力、流量等)的优化,使吸收塔在最佳工况下运行,提高吸收效率和产品 质量,降低能耗和废弃物排放。

水吸收二氧化硫填料吸收塔_课程设计完整版

水吸收二氧化硫填料吸收塔_课程设计完整版

吉林化工学院化工原理课程设计题目处理量为2500m3/h水吸收二氧化硫过程填料吸收塔的设计教学院化工与材料工程学院专业班级化学工程与工艺0804班学生姓名学生学号 08110430指导教师徐洪军2010 年 12 月 15 日化工原理课程设计任务书专业化学工程与工艺班级化工0804 设计人郑大朋一.设计题目处理量为2500m3/h水吸收二氧化硫过程填料吸收塔的设计二.原始数据及条件生产能力:年处理空气—二氧化硫混合气2.3万吨(开工率300天/年)。

原料:二氧化硫含量为5%(摩尔分率,下同)的常温气体。

分离要求:塔顶二氧化硫含量不高于0.26% 。

塔底二氧化硫含量不低于0.1% 。

建厂地址:河南省永城市。

三.设计要求(一)编制一份设计说明书,主要内容包括:1. 摘要;2. 流程的确定和说明(附流程简图);3. 生产条件的确定和说明;4. 吸收塔的设计计算;5. 附属设备的选型和计算;6. 设计结果列表;7. 设计结果的讨论和说明;8. 主要符号说明;9. 注明参考和使用过的文献资料;10. 结束语(二) 绘制一个带控制点的工艺流程图。

(三)绘制吸收塔的工艺条件图]1[。

四.设计日期: 2010 年 11 月 22 日至 2010 年 12 月 15 日目录摘要 (IV)第一章绪论 (1)1.1 吸收技术概况 (1)1.2 吸收设备发展 (1)1.3 吸收在工业生产中的应用 (3)第二章吸收塔的设计方案 (4)2.1 吸收剂的选择 (4)2.2 吸收流程选择 (5)2.2.1 吸收工艺流程的确定 (5)2.2.2 吸收工艺流程图及工艺过程说明 (6)2.3 吸收塔设备及填料的选择 (7)2.3.1 吸收塔设备的选择 (7)2.3.2 填料的选择 (8)2.4 吸收剂再生方法的选择 (10)2.5 操作参数的选择 (11)2.5.1 操作温度的确定 (11)2.5.2 操作压强的确定 (11)第三章吸收塔工艺条件的计算 (12)3.1 基础物性数据 (12)3.1.1 液相物性数据 (12)3.1.2 气相物性数据 (12)3.1.3 气液两相平衡时的数据 (12)3.2 物料衡算 (12)3.3 填料塔的工艺尺寸计算 (13)3.3.1 塔径的计算 (13)3.3.2 泛点率校核和填料规格 (14)3.3.3 液体喷淋密度校核 (15)3.4 填料层高度计算 (15)3.4.1 传质单元数的计算 (15)3.4.2 传质单元高度的计算 (16)3.4.3 填料层高度的计算 (17)3.5 填料塔附属高度的计算 (18)3.6 液体分布器的简要设计 (18)3.6.1 液体分布器的选型 (18)3.6.2 分布点密度及布液孔数的计算 (19)3.6.3 塔底液体保持管高度的计算 (20)3.7 其他附属塔内件的选择 (21)3.7.1 填料支撑板 (21)3.7.2 填料压紧装置与床层限制板 (21)3.7.3 气体进出口装置与排液装置 (21)3.8 流体力学参数计算 (22)3.8.1 填料层压力降的计算 (22)3.8.2 泛点率 (23)3.8.3 气体动能因子 (23)3.9 附属设备的计算与选择 (23)3.9.1 吸收塔主要接管的尺寸计算 (23)3.9.2 离心泵的计算与选择 (24)工艺设计计算结果汇总与主要符号说明 (26)设计方案讨论 (31)附录(计算程序及有关图表) (32)参考文献 (34)结束语 (35)带控制点的工艺流程图 (36)设备条件图 (37)化工原理课程设计教师评分表 (38)摘要吸收是利用混合气体中各组分在液体中的溶解度的差异来分离气态均相混合物的一种单元操作。

吸收塔顶升方案

吸收塔顶升方案

宁夏灵武2×1000MW机组烟气脱硫工程吸收塔制造安装作业指导书批准:审核:编制:编制单位:湖南省工业设备安装有限公司二OO九年九月一十三日目录1、工程概况 (1)2、编制依据 (1)3、施工工艺程序与施工方法、技术措施 (2)4、焊接 (18)5、检验和试验计划 (24)6、工程质量保证措施与质量标准、检查方法 (26)7、现场文明施工、安全与环境管理 (30)8、吸收塔施工计量器具配备表 (32)9、吸收塔施工机具计划表 (34)10、吸收塔施工措施用料计划 (35)11、吸收塔安装施工人员计划 (35)12、吸收塔制造施工进度计划 (35)1、工程概况1.1 华电宁夏灵武发电厂位于宁夏回族自治区灵武市东塔镇,由中国华电集团有限公司投资兴建的全球首台空冷1000MW机组,我单位承接本项工程的2台1000MW发电机组烟气脱硫系统吸收塔的制装,吸收塔是整个烟气脱硫系统工艺中最大、最重要的非标准设备。

该工程工期短,工序交叉多,设备制装要求高,现场安装环境差,给工程施工带来了一定的难度。

1.2 吸收塔主要技术参数2、编制依据2.1 吸收塔设计图纸2.2 GB50205-95《钢结构工程施工及验收规范》2.3 GB150-98《钢制压力容器》2.4 DL/T869-2004《火力发电厂焊接技术规程》2.5 DL/T5047-95《电力建设施工及验收技术规范》(锅炉机组篇)2.6 GBJ128-90《立式圆筒型钢制焊接油罐施工及验收规范》2.7 SH3530-93《石油化工立式圆筒型钢制储罐施工工艺标准》2.8 JB4708-2000《钢制压力容器焊接工艺评定》2.9 JB/T4709-2000《钢制压力容器焊接规程》2.10 JB4735-97《压力容器无损检测》2.11 吸收塔设备技术协议及规范书3、施工工艺程序与施工方法、技术措施3.1 施工方法3.1.1 本工程塔体部分采用液压千斤顶提升倒装法进行安装,即将塔底环板铺设在基础上并与底板焊接完毕,随后在底板上放出塔壁基准线,依据塔壁基准线组装塔体最上部倒数第三带壁板并焊接,随后正装倒数第二带和最上一层带板、壁板加强筋及其附属构件、出口收缩段锥体和出口法兰并完成焊接检验工作。

CO2吸收塔设计

CO2吸收塔设计

CO2吸收塔设计摘要塔设备是化⼯、炼油⽣产中最重要的设备之⼀,是⼀种重要的单元操作设备。

它可使⽓(或汽)液或液液两相之间进⾏充分接触,达到相际传质及传热的⽬的。

常见的、可在塔设备中完成的单元操作有:蒸馏、吸收、解收、萃取、⽓体的洗涤等。

此外,⼯业⽓体的冷却与回收、⽓体的湿法制作和⼲燥,以及兼有⽓液两相传质和传热的增湿和减湿等也可在塔设备中完成。

塔设备按其结构特点可以分为板式塔、填料塔和复合塔3类。

本次设计选⽤填料塔作为吸收塔,主要考虑填料塔的以下优点:填料塔结构简单、压⼒降⼩,传热效率⾼,便于采⽤耐腐蚀的材料制造等,对于热敏性及容易起泡的物料更显出优越性。

本次设计内容包括:发展概况及应⽤的了解,塔体的选型,填料的选择,⼯艺计算(包括物料衡算,模拟计算,⼯艺尺⼨计算,⾼度计算,压降计算,分布装置设计,⽀撑装置设计);机械计算(包括塔釜设计,上部筒体机械设计,开孔与开孔补强计算,强度设计和稳定设计,⽀座的选型和设计,接管的选⽤,法兰的选取),设备的制造及安装等,最后利⽤CAD将其装配图和部分零件图分别绘制出。

关键词:填料塔;⼆氧化碳;⽓液传质;逆相混合AbstractTower is one of the most important equipment in chemical industry and oil production, it is also an important handling equipment. It will enable gas(or steam) liquid or liquid-liquid connnecting fully and reaching the purposes of transfering media and heat . Commonly, operation can be completed in tower are: distillation, absorption, of the admission, extraction, washing of the gases. In addition, recycling and cooling of gas in industrial , the gas production of wet and dry, and both two-phase of gas-liquid mass transfering and heat transfering by the humidification and wet,could also be done in the tower. The struction of tower can be divided into plate tower, packed tower and the tower due to its characteristics . The packed tower is choosen as the absorber in the design, Given to the following advantages of the tower: the structure of the tower is simple, the pressure is small , the efficiency of heat conveying is high , and it could be made by corrosion-resistant materials easily, such as manufacturing, thermosensitive and sparkling materials more easily Demonstrate superiority.The design includes: Development and application of knowledge of the tower, and the selection of the structer about the tower, the choice of packing terms and caculating(including the caculating about material balance, simulation caculating, process size, height, the pressure drop, the distribution of design, Design Support Unit); mechanical calculations (including the reactor design of the tower, the design of the upper shell, the opening and the opening reinforcement, the strength of the design and stability of the design, the selection and design of the bearing ,the choice to take over, the selection of flange ), The manufacture the map of assemble and parts with the help of CAD.Key words:Packed tower;Carbon dioxide;Gas-liquid mass transfer;Reverse mixed⽬录第1章填料塔技术的现状与发展趋势 (1)1.1填料塔技术 (1)1.1.1 塔填料的现状和发展趋势 (1)1.1.2 塔内件的现状和发展趋势 (2)1.1.3 ⼯艺流程的现状和发展趋势 (3)1.2 塔板-填料复合塔板 (3)1.3 填料塔发展趋势 (4)第2章原理及⽅案的确定 (5)2.1 CO2吸收塔⼯作原理及⼯艺流程简介 (5)2.2 设计⽅案及论证 (5)第3章⼯艺计算 (7)3.1 主要⼯艺参数的确定 (7)3.1.1 吸收温度 (7)3.1.2 吸收压⼒ (7)3.2 物料衡算 (7)3.2.1 进塔物料 (7)3.2.2 吸收液量计算 (8)3.2.3 原料液的平均分⼦量 (10)3.2.4 出⽓量 (10)3.3 吸收塔直径的确定 (11)3.3.1 塔径 (11)3.3.2 每⽶填料层的压降 (15)3.4 填料选择 (16)3.4.1 填料结构选择 (16)3.4.2 填料特性数据 (16)3.5 填料层⾼度确定 (17)3.5.1 吸收模型分析 (17)3.5.2 吸收系数 (17)3.5.3 填料层⾼度计算 (19)3.5.4 填料分层⾼度 (21)3.6 填料层⾼度确定 (21)3.7 顶盖死区 (22)3.8 塔底容积计算 (22)3.9 吸收塔总体结构尺⼨ (23)第4章塔内零部件结构设计 (24)4.1 丝⽹除沫器 (24)4.1.1 操作⽓速 (24)4.1.2 丝⽹的使⽤⾯积 (25)4.1.3 丝⽹除沫器的效率 (25)4.1.4 丝⽹除沫器的结构 (25)4.2 直管排列式喷淋器 (26)4.3 液体分布器 (27)4.4 直管排列式⽓体分布器 (28)4.5 填料保持栅板 (29)4.6 ⽓体喷射—填料⽀承板—液体再分配器 (29)第5章塔外零部件结构设计 (32)5.1 吊⽿ (32)5.2 裙座 (32)5.2.1 裙座的材料 (32)5.2.2 裙座的结构 (32)5.3 ⼈孔 (33)5.4 吊柱 (34)5.5 操作平台与梯⼦ (35)5.5.1 操作平台的设置及尺⼨ (35) 5.5.2 梯⼦; (35)5.6 ⼯艺接管 (36)第6章塔外零部件结构设计 (37) 6.1 材料选择 (37)6.2 设计参数 (37)6.3 壳体壁厚计算 (37)6.3.1 筒体壁厚计算 (37)6.3.2 封头壁厚 (38)6.4 载荷计算 (39)6.4.1 不等直径塔的固有周期 (39) 6.4.2 临界风速 (43)6.4.3 风载荷和风弯矩的计算 (44) 6.4.4 地震载荷和地震弯矩计算 (47) 6.5 强度校核 (49)6.5.1 容器强度校核 (49)6.5.2 裙座的强度计算及校核 (53) 6.6 开孔补强计算 (58)6.6.1 不另⾏补强最⼤开孔直径 (58) 6.6.2 最⼤开孔直径的限制 (58) 6.6.3 开孔补强设计准则 (58)6.6.4 等⾯积补强计算 (59)第7章设备制造技术要求 (60)7.1 制造上的要求 (60)7.2 制造与安装 (60)7.3 焊接 (61)第8章结论 (62)参考⽂献 (63)致谢 (64)附录 (65)第1章填料塔技术的现状与发展趋势填料塔是化⼯类企业中最常⽤的⽓、液传质设备之⼀,在塔体内设置填料使⽓液两相能够达到良好传质所需的接触状况。

填料吸收塔过程实验

填料吸收塔过程实验

填料塔吸收过程实验一、实验目的:(1)了解填料吸收塔的基本结构,熟悉吸收实验装置的基本流程,搞清楚每一个附属设备的作用和设计意图。

(2)掌握产生液泛现象的原因和过程。

(3)明确吸收塔填料层压降Δp与空塔气速u在双对数坐标中的关系曲线及其意义,了解实际操作气速与泛点气速之间的关系。

(4)掌握测定含氨空气-水系统的体积吸收系数K Ya的方法。

(5)熟悉分析尾气浓度的方法。

(6)掌握气液体积转子流量计的使用方法和连接要求。

二、实验内容:⑴测定填料层压降与操作气速的关系,确定填料塔在某液体喷淋量下的液泛气速;⑵固定液相流量和入塔混合气氨的浓度,在液泛速度以下取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数);三、实验装置:填料吸收塔实验装置流程示意图1-鼓风机2-空气流量调节阀3-空气转子流量计、4-空气温度、5-液封管、6-吸收液取样口、7-填料吸收塔、8-氨瓶阀门、9-氨转子流量计、10-氨流量调节阀、11-水转子流量计、12-水流量调节阀、13-U 型管压差计、14-吸收瓶、15-量气管、16-水准瓶、17-氨气瓶、18-氨气温度、20-吸收液温度、21-空气进入流量计处压力实验流程示意图,空气由鼓风机1送入空气转子流量计3计量,空气通过流量计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,•经过氨瓶总阀8进入氨气转子流量计9计量,•氨气通过转子流量计处温度由实验时大气温度代替。

其流量由阀10调节5,然后进入空气管道与空气混合后进入吸收塔7的底部,水由自来水管经水转子流量计11,水的流量由阀12调节,然后进入塔顶。

分析塔顶尾气浓度时靠降低水准瓶16的位置,将塔顶尾气吸入吸收瓶14和量气管15。

•在吸入塔顶尾气之前,予先在吸收瓶14内放入5mL 已知浓度的硫酸作为吸收尾气中氨之用。

四、实验原理1.填料塔流体力学特性压强降决定了塔的动力消耗,是塔设计的重要参数。

化工原理课程设计吸收塔-终极版

化工原理课程设计吸收塔-终极版

目录引言 (1)1.流程的说明 (2)1.1吸收剂的选择 (2)1.2填料层 (2)1.2.1填料的作用 (2)1.2.2填料种类的选择 (3)1.2.3填料的选择 (3)1.2.4填料塔的选择 (3)1.3吸收流程 (4)1.4液体分布器 (4)1.5液体再分布器 (4)2.吸收塔工艺计算 (5)2.1基础物性数据 (5)2.1.1 液相物性数据 (5)2.1.2气相物性数据 (5)2.2物料衡算 (5)2.3填料塔的工艺尺寸计算 (6)2.3.1塔径计算 (6)2.3.2传质单元高度的计算 (8)2.3.3 传质单元数的计算 (8)2.3.4填料层高度的计算 (9)2.4塔附属高度的计算 (10)2.5填料层压降的计算 (10)2.6其他附属塔内件的选择 (11)2.6.1液体分布器的选择: (11)2.6.2布液计算 (12)2.7.3液体再分布器的选择 (13)2.6.4填料支承装置的选择 (13)2.6.5填料压紧装置 (14)2.6.6塔顶除雾器 (14)2.7吸收塔的流体力学参数计算 (14)2.7.1 吸收塔的压力降 (14)2.7.2 吸收塔的泛点率校核 (14)2.7.3 气体动能因子 (15)3.其他附属塔内件的选择 (15)3.1吸收塔主要接管的尺寸计算 (15)3.2离心泵的计算与选择 (16)3.3风机的选取 (17)4.总结 (18)附录一吸收塔设计计算用量符号总表 (19)参考文献 (21)引言吸收是分离气体混合物的单元操作,其分离原理是利用气体混合物中各组分在液体溶剂中溶解度的差异来实现不同气体的分离。

一个完整的吸收过程应包括吸收和解吸两部分。

气体吸收过程是利用气体混合物中,各组分在液体溶解度或化学反应活性的差异,在气液两相接触时发生传质,实现气液混合物的分离。

在化工生产过程中,原料气的净化,气体产品的精制,治理有害气体,保护环境等方面都广泛应用到气体吸收过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

填料吸收塔课程设计说明书专业应用化学班级0704班姓名李海涛班级序号 3目录一前言 (2)二设计任务 (2)三设计条件............................................................ (2)四设计方案 (2)1流程图及流程说明2填料塔的选择五工艺计算 (5)1物料衡算,确定塔顶,塔底的气、液流量和组成2泛点的计算3塔径的计算4 填料层高度的计算5 填料层压降的计算6 液体分布装置7分布点密度计算8 液体再分布装置9气体入塔分布六填料吸收塔的附属设备 (5)1填料支撑板2填料压板和床层限制版七设计一览表 (6)八课程设计总结 (6)九主要符号说明 (6)十参考文献 (9)十一附图.......................................................... . (13)前言塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。

根据塔内气液接触部件的形式,可以分为填料塔和板式塔。

板式塔属于逐级接触逆流操作,填料塔属于微分接触操作。

工业上对塔设备的主要要求:(1)生产能力大(2)分离效率高(3)操作弹性大(4)气体阻力小结构简单、设备取材面广等。

塔型的合理选择是做好塔设备设计的首要环节,选择时应考虑物料的性质、操作的条件、塔设备的性能以及塔设备的制造、安装、运转和维修等方面的因素。

板式塔的研究起步较早,具有结构简单、造价较低、适应性强、易于放大等特点。

填料塔由填料、塔内件及筒体构成。

填料分规整填料和散装填料两大类。

塔内件有不同形式的液体分布装置、填料固定装置或填料压紧装置、填料支承装置、液体收集再分布装置及气体分布装置等。

与板式塔相比,新型的填料塔性能具有如下特点:生产能力大、分离效率高、压力降小、操作弹性大、持液量小等优点。

水吸收NH3填料塔设计一设计任务1000m³∕h含NH3空气填料吸收塔的设计①1000m³∕h(标准状况下)含5%(体积比)氨气,其他组分视为惰性气体,气体进口温度为40℃,吸收后尾气中氨含量50μg/m³;②用清水吸收,清水进口温度为35℃;③操作压力为塔顶表压为0.2atm;④填料采用乱堆式拉西环二吸收工艺流程的确定采用常规逆流操作流程.流程如下。

三 物料计算(l). 进塔混合气中各组分的量近似取塔平均操作压强为101.3kPa ,故: 混合气量= 1249(27327335+)×122.4= 49.42kmol /h混合气中NH 3量=49.42×0.0213 =1.16 kmol /h = 1.16×49.42=67.28kg /h查附录,35℃饱和水蒸气压强为5623.4Pa ,则相对湿度为70%的混合 气中含水蒸气量=4.56237.0103.1017.04.56233⨯⨯⨯-=0.0404 kmol (水气)/ kmol (空气十丙酮)混合气中水蒸气含量=0404.010404.042.49+⨯=1.92kmol /h (《化工单元操作及设备》P18916-23)=1.92×18=34.56kg /h 混合气中空气量=49.42-1.16-1.92=46.34kmol /h=46.34×29=1344kg /h(2).混合气进出塔的(物质的量)成 1y =0.0234,则2y =)9.01(16.192.134.46)9.01(16.1-⨯++-⨯=0.0024(3).混合气进出塔(物质的量比)组成 若将空气与水蒸气视为惰气,则 惰气量=46.34十1.92=48.26kmol /h =1344+34.56=1378.56kg /hY 1=26.4816.1=0.024kmol(丙酮)/kmol(惰气) Y 2=26.48)9.01(16.1-=0.0024kmol(丙酮)/kmol(惰气)(4).出塔混合气量出塔混合气量=48.26+1.16×0.1=48.376kmol/h =1378.56+67.28×0.1=1385.3kg/h 四 热量衡算热量衡算为计算液相温度的变化以判明是否为等温吸收过程。

假设丙酮溶于水放出的热量全被水吸收,且忽略气相温度变化及塔的散热损失(塔的保温良好)。

查《化工工艺算图》第一册,常用物料物性数据,得丙酮的微分溶解热(丙酮蒸气冷凝热及对水的溶解热之和):d H 均=30230+10467.5=40697.5 kJ /kmol吸收液(依水计)平均比热容L C =75.366 kJ /kmo l ·℃,通过下式计算1d n n LH t t C -=+均n n-1(x -x )对低组分气体吸收,吸收液浓度很低时,依惰性组分及比摩尔浓度计算较方便,故上式可写为:40697.62575.366L t X =+∆依上式,可在x =0.000~0.009之间,设系列x 值,求出相应x 浓度下吸收液的温度L t ,计算结果列于表1第l ,2列中。

由表中数据可见,浓相浓度x 变化0.001时,温度升高0.54℃,依此求取平衡线。

表1 各液相浓度下的吸收液温度及相平衡数据注:(1)气相浓度1Y 相平衡的液相浓度X 1=0.0049,故取n X =0.009; (2)平衡关系符合亨利定律,与液相平衡的气相浓度可用y*=mX 表示; (3)吸收剂为清水,x =0,X =0; (4)近似计算中也可视为等温吸收。

五 气液平衡曲线当x <0.01,t =15~45℃时,氨气溶于水其亨利常数E 可用下式计算: 1gE =9.171-[2040/(t 十273)]由前设X 值求出液温L t ℃,依上式计算相应E 值,且m =EP,分别将相应E 值及相平衡常数m 值列于表1中第3、4列。

由y *=mX 求取对应m 及X 时的气相平衡浓度y *,结果列于表1第5列。

根据X —y *数据,绘制X —Y 平衡曲线OE 如附图所示。

六 吸收剂(水)的用量Ls由图1查出,当Y 1=0.024时,X 1*=0.0089,计算最小吸收剂用量,min S L12,min 12*S BY Y L V X X -=-=48.26×0.00890.0024-0.024=117.1 kmol /h (《化工单元操作及设备》P204 16-43a )取安全系数为1.8,则 Ls =1.8×117.1=210.8kmol /h =210.8×18=3794kg/h 七 塔底吸收液浓度X 1 依物料衡算式:B V (12Y Y -)=S L (12X X -) 1X =48.26×210.80.0024-0.024=0.0049八 操作线依操作线方程式22S S B BL L Y X Y X V V =+- =26.488.210X+0.0024 Y=4.368X+0.0024由上式求得操作线绘于附图中。

九 塔径计算塔底气液负荷大,依塔底条件(混合气35℃),101.325kPa ,查表1,吸收液27.16℃计图2 通用压降关联图算。

u(《化工单元操作及设备》P206F16-45)(1).采用Eckert通用关联图法(图2)计算泛点气速uF①有关数据计算=1344+67.28+34.56=1446kg/h塔底混合气流量V`S吸收液流量L`=3794+1.16×0.9×58=3855kg/h进塔混合气密度G ρ=4.2229×35273273+=1.15kg /3m (混合气浓度低,可近似视为空气的密度)吸收液密度L ρ=996.7kg/3m 吸收液黏度L μ=0.8543mP a ·s经比较,选DG50mm 塑料鲍尔环(米字筋)。

查《化工原理》教材附录可得,其填料因子φ=1201m -,比表面积A =106.423/m m ②关联图的横坐标值``V L (L G ρρ)1/2=14463855(7.99615.1)1/2=0.090 ③由图2查得纵坐标值为0.13即L L G2F g μρρμ)(Φ0.2=8543.07.99615.181.91202F ⨯⨯)(μ0.2=0.01372F u =0.13 故液泛气速F u =0137.013.0=3.08m/s(2).操作气速u =0.7F u =0.7×3.08 =2.16 m/s (3).塔径D =16.2785.036001249⨯⨯= 0.453 m=453mm取塔径为0.5m(=500mm) (4).核算操作气速U=25.0785.036001249⨯⨯=1.768m/s< F u(5).核算径比D/d =500/50=10,满足鲍尔环的径比要求。

(6).喷淋密度校核依Morris 等推专,d <75mm 约环形及其它填料的最小润湿速率(MWR)为0.083m /(m ·h),由式(4-12):最小喷淋密度min L =喷(MWR )A =0.08×106.4=8.512 3m /(m 2·h) 因L 喷=25.0785.07.9963855⨯⨯=19.73m /(m ·h)故满足最小喷淋密度要求。

十 填料层高度计算计算填料层高度,即Z =12*Y B OG OG Y Ya V dYH N K Y Y =Ω-⎰ (1).传质单元高度OG H 计算OG H =BYa V K Ω,其中Ya K =Ga K P | 111Ga Ga LaK k Hk =+(《化工单元操作及设备》 P209 16-7) 本设计采用(恩田式)计算填料润湿面积a w 作为传质面积a ,依改进的恩田式分别计算L k 及G k ,再合并为La k 和Ga k 。

①列出备关联式中的物性数据气体性质(以塔底35℃,101.325kPa 空气计):G ρ=1.15 kg/3m (前已算出);G μ=0.01885×310-.Pa s (查附录);G D =1.09×510-2/m s (依翻Gilliland 式估算);液体性质(以塔底27.16℃水为准):L ρ=996.7 kg/3m ;L μ=0.8543×310-Pa ·s ;L D =1.344×910-2/m s (以120.67.4*10L L AD V βμ-=0.5s (m )T式计算)(《化学工程手册》 10-89),式中A V 为溶质在常压沸点下的摩尔体积,s m 为溶剂的分子量,β为溶剂的缔合因子。

L σ=71.6×310-N /m(查化工原理附录)。

相关文档
最新文档