2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)
2018年全国高考新课标2卷理科数学考试(解析版)

3 6 的直
2 A.
3
1 B.
2
1 C.
3
1 D.
4
第 4页共9页
高考真题
高三数学
3
解析:选
D AP 的方程为
y= (x+a), 6
∵Δ P F 1F2 为等腰三角形
∴ |F 2P|=| F 1F2|=2c,
过 P 作 PH⊥ x 轴,则∠ PF2H=600, ∴ |F 2H|=c,|PH|= 3c, ∴ P(2c, 3c), 代入 AP 方程得 4c=a
55
34 C. - - i55源自34 D. - + i
55
解析:选 D 2.已知集合 A={(x,y)|x 2+y 2≤ 3,x ∈Z,y ∈ Z } ,则 A 中元素的个数为 ( )
A. 9
B. 8
解析:选 A 问题为确定圆面内整点个数
ex-e -x
3.函数 f(x)=
x 2 的图像大致为 ( )
C. 5
开始
N 0,T 0
i1
是
否
i 100
1 NN
i 1 TT i1
SNT 输出 S 结束
高三数学
()
A. i=i+1 B 解析:选 B
. i=i+2 C
. i=i+3 D . i=i+4
8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.
哥德巴赫猜想是“每个大于 2 的偶数
可以表示为两个素数的和”,如 30=7+23.在不超过 30 的素数中,随机选取两个不同的数,其和等于
解析: 9 15.已知 sin α+cos β =1,cos α +sin β =0,则 sin( α +β )=__________ .
2018年全国高考新课标2卷理科数学试题(解析版)

1.1+2i=()5555555542D.y=±3C.y=±2x6.在ΔABC中,cos=,BC=1,AC=5,则AB=()252018年普通高等学校招生全国统一考试新课标2卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1-2i43A.--i43B.-+i34C.--i34D.-+i解析:选D2.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.4解析:选A问题为确定圆面内整点个数3.函数f(x)=e x-e-xx2的图像大致为()e2-e-2解析:选B f(x)为奇函数,排除A,x>0,f(x)>0,排除D,取x=2,f(2)=>1,故选B4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=()A.4B.3C.2D.0解析:选B a·(2a-b)=2a2-a·b=2+1=3x2y25.双曲线a2-b2=1(a>0,b>0)的离心率为3,则其渐近线方程为()A.y=±2x B.y=±3x2x解析:选A e=3c2=3a2b=2aC525A.42B.30C.29D.25C3解析:选A cosC=2cos2-1=-AB2=AC2+BC2-2AB·BC·cosC=32AB=422 3 4 99 100 12 B . 1 14 C . 1 15 D . 1A . 1 C 102 155 6 5 24 B .π2 C .3πA .π解析:选 A f(x)= 2cos(x+ π 4 4 4 + 2=1(a>b>0)的左,右焦点,A 是 C 的左顶点,点 P 在过 A 且斜率为b 61 1 1 1 17.为计算 S=1- + - +……+ - ,设计了右侧的程序框图,则在空白框中应填入()开始N = 0, T = 0i = 1是i < 100否N = N +1iS = N - TT = T +1i + 1输出 S结束A .i=i+1B .i=i+2C .i=i+3D .i=i+4 解析:选 B8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数 可以表示为两个素数的和”,如 30=7+23.在不超过 30 的素数中,随机选取两个不同的数,其和等于 30 的 概率是( )18解析:选 C 不超过 30 的素数有 2,3,5,7,11,13,17,19,23,29 共 10 个,从中选 2 个其和为 30 的3 1为 7+23,11+19,13+17,共 3 种情形,所求概率为 P= =9.在长方体 ABCD-A 1B 1C 1D 1 中,AB=BC=1,AA 1= 3,则异面直线 AD 1 与 DB 1 所成角的余弦值为( )1 5 52A .B .C .D .解析:选 C 建立空间坐标系,利用向量夹角公式可得。
2018年全国统一高考数学试卷(理科)(新课标Ⅱ)(含答案)

绝密★启用前2018年全国统一高考数学试卷(理科)(新课标Ⅱ)考试时间:120分钟;试卷整理:微信公众号--浙江数学学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一.选择题(共12小题,满分60分,每小题5分)1.(5分)(2018•新课标Ⅱ)=()A.iB.C.D.2.(5分)(2018•新课标Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A 中元素的个数为()A.9B.8C.5D.43.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A.B.C.D.4.(5分)(2018•新课标Ⅱ)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)(2018•新课标Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.(5分)(2018•新课标Ⅱ)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+48.(5分)(2018•新课标Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)(2018•新课标Ⅱ)在长方体ABCD﹣A 1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5分)(2018•新课标Ⅱ)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.5012.(5分)(2018•新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共4小题,满分20分,每小题5分)13.(5分)(2018•新课标Ⅱ)曲线y=2ln(x+1)在点(0,0)处的切线方程为.14.(5分)(2018•新课标Ⅱ)若x,y满足约束条件,则z=x+y的最大值为.15.(5分)(2018•新课标Ⅱ)已知sinα+cosβ=l,cosα+sinβ=0,则sin(α+β)=.16.(5分)(2018•新课标Ⅱ)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为.评卷人得分三.解答题(共7小题,满分80分)17.(12分)(2018•新课标Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.18.(12分)(2018•新课标Ⅱ)如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:=﹣30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.19.(12分)(2018•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k (k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.20.(12分)(2018•新课标Ⅱ)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M﹣PA﹣C为30°,求PC与平面PAM所成角的正弦值.21.(12分)(2018•新课标Ⅱ)已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.22.(10分)(2018•新课标Ⅱ)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.23.(10分)(2018•新课标Ⅱ)设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.2018年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(5分)(2018•新课标Ⅱ)=()A.iB.C.D.【考点】A5:复数的运算.【分析】利用复数的除法的运算法则化简求解即可.【解答】解:==+.故选:D.【点评】本题考查复数的代数形式的乘除运算,是基本知识的考查.2.(5分)(2018•新课标Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A 中元素的个数为()A.9B.8C.5D.4【考点】1A:集合中元素个数的最值.【分析】分别令x=﹣1,0,1,进行求解即可.【解答】解:当x=﹣1时,y2≤2,得y=﹣1,0,1,当x=0时,y2≤3,得y=﹣1,0,1,当x=1时,y2≤2,得y=﹣1,0,1,即集合A中元素有9个,故选:A.【点评】本题主要考查集合元素个数的判断,利用分类讨论的思想是解决本题的关键.3.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A.B.C.D.【考点】6B:利用导数研究函数的单调性;3A:函数的图象与图象的变换.【分析】判断函数的奇偶性,利用函数的定点的符号的特点分别进行判断即可.【解答】解:函数f(﹣x)==﹣=﹣f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e﹣>0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.【点评】本题主要考查函数的图象的识别和判断,利用函数图象的特点分别进行排除是解决本题的关键.4.(5分)(2018•新课标Ⅱ)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.0【考点】9O:平面向量数量积的性质及其运算;91:向量的概念与向量的模.【分析】根据向量的数量积公式计算即可.【解答】解:向量,满足||=1,=﹣1,则•(2)=2﹣=2+1=3,故选:B.【点评】本题考查了向量的数量积公式,属于基础题5.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【考点】KC:双曲线的性质.【分析】根据双曲线离心率的定义求出a,c的关系,结合双曲线a,b,c的关系进行求解即可.【解答】解:∵双曲线的离心率为e==,则=====,即双曲线的渐近线方程为y=±x=±x,故选:A.【点评】本题主要考查双曲线渐近线的求解,结合双曲线离心率的定义以及渐近线的方程是解决本题的关键.6.(5分)(2018•新课标Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.2【考点】HR:余弦定理.【分析】利用二倍角公式求出C的余弦函数值,利用余弦定理转化求解即可.【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.【点评】本题考查余弦定理的应用,考查三角形的解法以及计算能力.7.(5分)(2018•新课标Ⅱ)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+4【考点】EH:绘制程序框图解决问题;E7:循环结构.【分析】模拟程序框图的运行过程知该程序运行后输出的S=N﹣T,由此知空白处应填入的条件.【解答】解:模拟程序框图的运行过程知,该程序运行后输出的是S=N﹣T=(1﹣)+(﹣)+…+(﹣);累加步长是2,则在空白处应填入i=i+2.故选:B.【点评】本题考查了循环程序的应用问题,是基础题.8.(5分)(2018•新课标Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【分析】利用列举法先求出不超过30的所有素数,利用古典概型的概率公式进行计算即可.【解答】解:在不超过30的素数中有,2,3,5,7,11,13,17,19,23,29共10个,从中选2个不同的数有=45种,和等于30的有(7,23),(11,19),(13,17),共3种,则对应的概率P==,故选:C.【点评】本题主要考查古典概型的概率的计算,求出不超过30的素数是解决本题的关键.9.(5分)(2018•新课标Ⅱ)在长方体ABCD﹣A 1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AD1与DB1所成角的余弦值.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA 1=,∴A(1,0,0),D 1(0,0,),D(0,0,0),B 1(1,1,),=(﹣1,0,),=(1,1,),设异面直线AD1与DB1所成角为θ,则cosθ===,∴异面直线AD1与DB1所成角的余弦值为.故选:C.【点评】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.10.(5分)(2018•新课标Ⅱ)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π【考点】GP:两角和与差的三角函数;H5:正弦函数的单调性.【分析】利用两角和差的正弦公式化简f(x),由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[,],结合已知条件即可求出a的最大值.【解答】解:f(x)=cosx﹣sinx=﹣(sinx﹣cosx)=,由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[,],由f(x)在[﹣a,a]是减函数,得,∴.则a的最大值是.故选:A.【点评】本题考查了两角和与差的正弦函数公式的应用,三角函数的求值,属于基本知识的考查,是基础题.11.(5分)(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.50【考点】3K:函数奇偶性的性质与判断.【分析】根据函数奇偶性和对称性的关系求出函数的周期是4,结合函数的周期性和奇偶性进行转化求解即可.【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.【点评】本题主要考查函数值的计算,根据函数奇偶性和对称性的关系求出函数的周期性是解决本题的关键.12.(5分)(2018•新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【分析】求得直线AP的方程:根据题意求得P点坐标,代入直线方程,即可求得椭圆的离心率.【解答】解:由题意可知:A(﹣a,0),F1(﹣c,0),F2(c,0),直线AP的方程为:y=(x+a),由∠F 1F2P=120°,|PF2|=|F1F2|=2c,则P(2c,c),代入直线AP:c=(2c+a),整理得:a=4c,∴题意的离心率e==.故选:D.【点评】本题考查椭圆的性质,直线方程的应用,考查转化思想,属于中档题.二.填空题(共4小题,满分20分,每小题5分)13.(5分)(2018•新课标Ⅱ)曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.【考点】6H:利用导数研究曲线上某点切线方程.【分析】欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=2ln(x+1),∴y′=,当x=0时,y′=2,∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.故答案为:y=2x.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.14.(5分)(2018•新课标Ⅱ)若x,y满足约束条件,则z=x+y的最大值为9.【考点】7C:简单线性规划.【分析】由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.【解答】解:由x,y满足约束条件作出可行域如图,化目标函数z=x+y为y=﹣x+z,由图可知,当直线y=﹣x+z过A时,z取得最大值,由,解得A(5,4),目标函数有最大值,为z=9.故答案为:9.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)(2018•新课标Ⅱ)已知sinα+cosβ=l,cosα+sinβ=0,则sin(α+β)=.【考点】GP:两角和与差的三角函数.【分析】把已知等式两边平方化简可得2+2(sinαcosβ+cosαsinβ)=1,再利用两角和差的正弦公式化简为2sin(α+β)=﹣1,可得结果.【解答】解:sinα+cosβ=l,两边平方可得:sin2α+2sinαcosβ+cos2β=1,①,cosα+sinβ=0,两边平方可得:cos2α+2cosαsinβ+sin2β=0,②,由①+②得:2+2(sinαcosβ+cosαsinβ)=1,即2+2sin(α+β)=1,∴2sin(α+β)=﹣1.∴sin(α+β)=.故答案为:.【点评】本题考查了两角和与差的正弦函数公式的应用,三角函数的求值,属于基本知识的考查,是基础题.16.(5分)(2018•新课标Ⅱ)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为5,则该圆锥的侧面积为40π.【考点】MI:直线与平面所成的角.【分析】利用已知条件求出圆锥的母线长,利用直线与平面所成角求解底面半径,然后求解圆锥的侧面积.【解答】解:圆锥的顶点为S,母线SA,SB所成角的余弦值为,可得sin∠AMB==.△SAB的面积为5,可得sin∠AMB=5,即×=5,即SA=4.SA与圆锥底面所成角为45°,可得圆锥的底面半径为:=2.则该圆锥的侧面积:π=40π.故答案为:40π.【点评】本题考查圆锥的结构特征,母线与底面所成角,圆锥的截面面积的求法,考查空间想象能力以及计算能力.三.解答题(共7小题,满分80分)17.(12分)(2018•新课标Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【考点】85:等差数列的前n项和;84:等差数列的通项公式.【分析】(1)根据a1=﹣7,S3=﹣15,可得a1=﹣7,3a1+3d=﹣15,求出等差数列{a n}的公差,然后求出a n即可;(2)由a1=﹣7,d=2,a n=2n﹣9,得S n===n2﹣8n=(n﹣4)2﹣16,由此可求出S n以及S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.【点评】本题主要考查了等差数列的通项公式,考查了等差数列的前n项的和公式,属于中档题.18.(12分)(2018•新课标Ⅱ)如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:=﹣30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【考点】BK:线性回归方程.【分析】(1)根据模型①计算t=19时的值,根据模型②计算t=9时的值即可;(2)从总体数据和2000年到2009年间递增幅度以及2010年到2016年间递增的幅度比较,即可得出模型②的预测值更可靠些.【解答】解:(1)根据模型①:=﹣30.4+13.5t,计算t=19时,=﹣30.4+13.5×19=226.1;利用这个模型,求出该地区2018年的环境基础设施投资额的预测值是226.1亿元;根据模型②:=99+17.5t,计算t=9时,=99+17.5×9=256.5;.利用这个模型,求该地区2018年的环境基础设施投资额的预测值是256.5亿元;(2)模型②得到的预测值更可靠;因为从总体数据看,该地区从2000年到2016年的环境基础设施投资额是逐年上升的,而从2000年到2009年间递增的幅度较小些,从2010年到2016年间递增的幅度较大些,所以,利用模型②的预测值更可靠些.【点评】本题考查了线性回归方程的应用问题,是基础题.19.(12分)(2018•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k (k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.【考点】KN:直线与抛物线的位置关系.【分析】(1)方法一:设直线AB的方程,代入抛物线方程,根据抛物线的焦点弦公式即可求得k的值,即可求得直线l的方程;方法二:根据抛物线的焦点弦公式|AB|=,求得直线AB的倾斜角,即可求得直线l的斜率,求得直线l的方程;(2)根据过A,B分别向准线l作垂线,根据抛物线的定义即可求得半径,根据中点坐标公式,即可求得圆心,求得圆的方程.【解答】解:(1)方法一:抛物线C:y2=4x的焦点为F(1,0),当直线的斜率不存在时,|AB|=4,不满足;设直线AB的方程为:y=k(x﹣1),设A(x1,y1),B(x2,y2),则,整理得:k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,由|AB|=x1+x2+p=+2=8,解得:k2=1,则k=1,∴直线l的方程y=x﹣1;方法二:抛物线C:y2=4x的焦点为F(1,0),设直线AB的倾斜角为θ,由抛物线的弦长公式|AB|===8,解得:sin2θ=,∴θ=,则直线的斜率k=1,∴直线l的方程y=x﹣1;(2)过A,B分别向准线x=﹣1作垂线,垂足分别为A1,B1,设AB的中点为D,过D作DD1⊥准线l,垂足为D,则|DD1|=(|AA1|+|BB1|)由抛物线的定义可知:|AA1|=|AF|,|BB1|=|BF|,则r=|DD1|=4,以AB为直径的圆与x=﹣1相切,且该圆的圆心为AB的中点D,由(1)可知:x1+x2=6,y1+y2=x1+x2﹣2=4,则D(3,2),过点A,B且与C的准线相切的圆的方程(x﹣3)2+(y﹣2)2=16..【点评】本题考查抛物线的性质,直线与抛物线的位置关系,抛物线的焦点弦公式,考查圆的标准方程,考查转换思想思想,属于中档题.20.(12分)(2018•新课标Ⅱ)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M﹣PA﹣C为30°,求PC与平面PAM所成角的正弦值.【考点】MJ:二面角的平面角及求法;LW:直线与平面垂直;MI:直线与平面所成的角.【分析】(1)利用线面垂直的判定定理证明PO⊥AC,PO⊥OB即可;(2)根据二面角的大小求出平面PAM的法向量,利用向量法即可得到结论.【解答】解:(1)证明:∵AB=BC=2,O是AC的中点,∴BO⊥AC,且BO=2,又PA=PC=PB=AC=2,∴PO⊥AC,PO=2,则PB2=PO2+BO2,则PO⊥OB,∵OB∩AC=O,∴PO⊥平面ABC;(2)建立以O坐标原点,OB,OC,OP分别为x,y,z轴的空间直角坐标系如图:A(0,﹣2,0),P(0,0,2),C(0,2,0),B(2,0,0),=(﹣2,2,0),设=λ=(﹣2λ,2λ,0),0<λ<1则=﹣=(﹣2λ,2λ,0)﹣(﹣2,﹣2,0)=(2﹣2λ,2λ+2,0),则平面PAC的法向量为=(1,0,0),设平面MPA的法向量为=(x,y,z),则=(0,﹣2,﹣2),则•=﹣2y﹣2z=0,•=(2﹣2λ)x+(2λ+2)y=0令z=1,则y=﹣,x=,即=(,﹣,1),∵二面角M﹣PA﹣C为30°,∴cos30°=|=,即=,解得λ=或λ=3(舍),则平面MPA的法向量=(2,﹣,1),=(0,2,﹣2),PC与平面PAM所成角的正弦值sinθ=|cos<,>|=||==.【点评】本题主要考查空间直线和平面的位置关系的应用以及二面角,线面角的求解,建立坐标系求出点的坐标,利用向量法是解决本题的关键.21.(12分)(2018•新课标Ⅱ)已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【考点】6D:利用导数研究函数的极值.【分析】(1)通过两次求导,利用导数研究函数的单调性极值与最值即可证明,(2)分离参数可得a=在(0,+∞)只有一个根,即函数y=a与G(x)=的图象在(0,+∞)只有一个交点.结合图象即可求得a.【解答】证明:(1)当a=1时,函数f(x)=e x﹣x2.则f′(x)=e x﹣2x,令g(x)=e x﹣2x,则g′(x)=e x﹣2,令g′(x)=0,得x=ln2.当∈(0,ln2)时,h′(x)<0,当∈(ln2,+∞)时,h′(x)>0,∴h(x)≥h(ln2)=e ln2﹣2•ln2=2﹣2ln2>0,∴f(x)在[0,+∞)单调递增,∴f(x)≥f(0)=1,解:(2),f(x)在(0,+∞)只有一个零点⇔方程e x﹣ax2=0在(0,+∞)只有一个根,⇔a=在(0,+∞)只有一个根,即函数y=a与G(x)=的图象在(0,+∞)只有一个交点.G,当x∈(0,2)时,G′(x)<0,当∈(2,+∞)时,G′(x)>0,∴G(x)在(0,2)递减,在(2,+∞)递增,当→0时,G(x)→+∞,当→+∞时,G(x)→+∞,∴f(x)在(0,+∞)只有一个零点时,a=G(2)=.【点评】本题考查了利用导数探究函数单调性,以及函数零点问题,考查了转化思想、数形结合思想,属于中档题.22.(10分)(2018•新课标Ⅱ)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.【考点】QH:参数方程化成普通方程.【分析】(1)直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.(2)利用直线和曲线的位置关系,在利用中点坐标求出结果.【解答】解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,所以:,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.【点评】本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,直线和曲线的位置关系的应用,中点坐标的应用.23.(10分)(2018•新课标Ⅱ)设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.【考点】R5:绝对值不等式的解法.【分析】(1)去绝对值,化为分段函数,求出不等式的解集即可,(2)由题意可得|x+a|+|x﹣2|≥4,根据据绝对值的几何意义即可求出【解答】解:(1)当a=1时,f(x)=5﹣|x+1|﹣|x﹣2|=.当x≤﹣1时,f(x)=2x+4≥0,解得﹣2≤x≤1,当﹣1<x<2时,f(x)=2≥0恒成立,即﹣1<x<2,当x≥2时,f(x)=﹣2x+6≥0,解得2≤x≤3,综上所述不等式f(x)≥0的解集为[﹣2,3],(2)∵f(x)≤1,∴5﹣|x+a|﹣|x﹣2|≤1,∴|x+a|+|x﹣2|≥4,∴|x+a|+|x﹣2|=|x+a|+|2﹣x|≥|x+a+2﹣x|=|a+2|,∴|a+2|≥4,解得a≤﹣6或a≥2,故a的取值范围(﹣∞,﹣6]∪[2,+∞).【点评】本题考查了绝对值的不等式和绝对值的几何意义,属于中档题。
2018全国统一高考数学试卷(理科)(新课标ⅱ)【史上最全解析】

2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()A.i B.C.D.2.(5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A中元素的个数为()A.9 B.8 C.5 D.43.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.05.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+48.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A. B. C. D.9.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5分)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A. B. C.D.π11.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f (1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.5012.(5分)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)

2018 年一般高等学校招生全国一致考试( Ⅰ卷 )文科数学注意事项:1.答卷前,考生务势必自己的九名、考生号等填写在答题卡和试卷指定地点上.2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(此题共 12 小题,每题 5 分,共60 分.在每题给出的四个选项中,只有一项是切合题目要求的.)1.已知会合 A 0,2 ,B 2 , 1,0 ,1,2 ,则AIB ()A. 0,2 B. 1,2 C. 0 D. 2, 1,0 ,1,21 i,则 z ()2.设z 2i1 iA.0 B.1C. 1 D. 2 23.某地域经过一年的新乡村建设,乡村的经济收入增添了一倍.实现翻番.为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入组成比率.获得以下饼图:则下边结论中不正确的选项是()A.新乡村建设后,栽种收入减少B.新乡村建设后,其余收入增添了一倍以上C.新乡村建设后,养殖收入增添了一倍D.新乡村建设后,养殖收入与第三家产收入的总和超出了经济收入的一半4.记 S n为等差数列a n的前n项和.若 3S3 S2 S4, a1 2 ,则 a3 ()A.12 B.10 C.10 D. 125.设函数 f x x 3a 1 x 2ax .若 f x 为奇函数, 则曲线 yf x 在点 0 ,0 处的切线方程为()A . y2xB . y xC . y 2xD . y x6.在 △ ABC 中, AD 为 BC 边上的中线,uuurE 为 AD 的中点,则 EB ()A . 3 uuur1 uuurB . 1 uuur 3 uuur4 AB4 AC 4 AB AC4 C . 3 uuur 1 uuur D . 1 uuur 3 uuur 4 AB4 AC4 AB AC47.某圆柱的高为 2,底面周长为 16,其三视图以下图,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱 侧面上,从 M 到 N的路径中,最短路径的长度为( )A .2 17B .2 5C .3D .28.设抛物线 C :y24 x 的焦点为 F ,过点2 ,0 且斜率为2的直线与 C 交于 M , N 两点,3uuuur uuur ()则FM FNA .5B . 6C .7D . 89.已知函数 f xx, ≤0 , f xf x x a (),若 g x 存在 2 个零点, 则 a 的exln x ,x 0取值范围是A . 1,0B . ,C . 1,D . 1,10.下列图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆组成,三个半圆的直径分别为直角三角形ABC 的斜边 BC ,直角边 AB , AC , △ ABC 的三边所围成的地区记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1 , p 2 , p 3 ,则( )A . p 1 p 2B . p 1 p 3C . p 2 p 3D . p 1 p 2p 3211.已知双曲线 C :xy 2 1 , O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐 3近线的交点分别为 M , N .若 △ OMN 为直角三角形,则 MN () A .3B . 3C .2 3D . 4212.设函数 f x2 x, ≤ 0,则知足 f x 1f 2x 的 x 的取值范围是()x 01,yA .,1B . 0,C . 1,0D . ,0二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.已知函数 f xlog 2 x 2 a ,若 f 31 ,则 a________.x 2 y 2 ≤ 014.若 x ,y 知足拘束条件x ≥ 0 ,则 z3x 2 y 的最大值为 ________.y 1y ≤ 015.直线 y x 1 与圆 x 2y 2 2 y 3 0 交于 A ,B 两点,则 AB________ .16. △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 b sinC csin B4asin Bsin C ,b 2c 2 a 2 8 ,则 △ ABC 的面积为 ________.三、解答题(共70 分。
2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2018年全国统一高考数学试卷(文科)(全国新课标Ⅰ)一、选择题目:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{﹣2,﹣1,0,1,2}2.(5分)设z=+2i,则|z|=()A.0B.C.1D.3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.5.(5分)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π6.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x7.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+ 8.(5分)已知函数f(x)=2cos2x﹣sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为49.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.210.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C 所成的角为30°,则该长方体的体积为()A.8B.6C.8D.811.(5分)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a﹣b|=()A.B.C.D.112.(5分)设函数f(x)=,则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1]B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)二、填空题目:本题共4小题,每小题5分,共20分。
2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

关注公众号”一个高中僧“获取更多高中资料
第 3 页(共 28 页)
18.(12 分)如图,在平行四边形 ABCM 中,AB=AC=3,∠ACM=90°,以 AC 为 折痕将△ACM 折起,使点 M 到达点 D 的位置,且 AB⊥DA.
(1)证明:平面 ACD⊥平面 ABC; (2)Q 为线段 AD 上一点,P 为线段 BC 上一点,且 BP=DQ= DA,求三棱锥
A.12 π
B.12π
C.8 π
D.10π
【考点】LE:棱柱、棱锥、棱台的侧面积和表面积. 菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离.
【分析】利用圆柱的截面是面积为 8 的正方形,求出圆柱的底面直径与高,然后
求解圆柱的表面积.
【解答】解:设圆柱的底面直径为 2R,则高为 2R,
(2)估计该家庭使用节水龙头后,日用水量小于 0.35m3 的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 365 天计算,
同一组中的数据以这组数据所在区间中点的值作代表)
20.(12 分)设抛物线 C:y2=2x,点 A(2,0),B(﹣2,0),过点 A 的直线 l 与 C 交于 M,N 两点.
参考答案与试题解析
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选 项中,只有一项是符合题目要求的。
1.(5 分)已知集合 A={0,2},B={﹣2,﹣1,0,1,2},则 A∩B=( )
A.{0,2}
B.{1,2}
C.{0}
D.{﹣2,﹣1,0,1,2}
【考点】1E:交集及其运算. 菁优网版权所有
问题解决问题的能力.
2018高考全国1卷理科数学及答案解析详解[版本]
![2018高考全国1卷理科数学及答案解析详解[版本]](https://img.taocdn.com/s3/m/db77d85ea98271fe910ef9b1.png)
绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}AB x x =>D .AB =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n−2n>1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的学科网&最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)若x,y满足约束条件,则z=3x+2y的最大值为.14.(5分)记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.15.(5分)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)16.(5分)已知函数f(x)=2sinx+sin2x,则f(x)的最小值是.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.18.(12分)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF 为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.19.(12分)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.20.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f (p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?21.(12分)已知函数f(x)=﹣x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
[选修4-4:坐标系与参数方程](10分)22.(10分)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.[选修4-5:不等式选讲](10分)23.已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.2018年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=+2i,则|z|=()A.0B.C.1D.【考点】A8:复数的模.【专题】11:计算题;35:转化思想;49:综合法;5N:数系的扩充和复数.【分析】利用复数的代数形式的混合运算化简后,然后求解复数的模.【解答】解:z=+2i=+2i=﹣i+2i=i,则|z|=1.故选:C.【点评】本题考查复数的代数形式的混合运算,复数的模的求法,考查计算能力.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}【考点】1F:补集及其运算.【专题】11:计算题;35:转化思想;49:综合法;5J:集合;5T:不等式.【分析】通过求解不等式,得到集合A,然后求解补集即可.【解答】解:集合A={x|x2﹣x﹣2>0},可得A={x|x<﹣1或x>2},则:∁R A={x|﹣1≤x≤2}.故选:B.【点评】本题考查不等式的解法,补集的运算,是基本知识的考查.3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【考点】2K:命题的真假判断与应用;CS:概率的应用.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计;5L:简易逻辑.【分析】设建设前经济收入为a,建设后经济收入为2a.通过选项逐一分析新农村建设前后,经济收入情况,利用数据推出结果.【解答】解:设建设前经济收入为a,建设后经济收入为2a.A项,种植收入37%×2a﹣60%a=14%a>0,故建设后,种植收入增加,故A项错误.B项,建设后,其他收入为5%×2a=10%a,建设前,其他收入为4%a,故10%a÷4%a=2.5>2,故B项正确.C项,建设后,养殖收入为30%×2a=60%a,建设前,养殖收入为30%a,故60%a÷30%a=2,故C项正确.D项,建设后,养殖收入与第三产业收入总和为(30%+28%)×2a=58%×2a,经济收入为2a,故(58%×2a)÷2a=58%>50%,故D项正确.因为是选择不正确的一项,故选:A.【点评】本题主要考查事件与概率,概率的应用,命题的真假的判断,考查发现问题解决问题的能力.4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.12【考点】83:等差数列的性质.【专题】11:计算题;34:方程思想;4O:定义法;54:等差数列与等比数列.【分析】利用等差数列的通项公式和前n项和公式列出方程,能求出a5的值.【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.【点评】本题考查等差数列的第五项的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题;35:转化思想;49:综合法;53:导数的综合应用.【分析】利用函数的奇偶性求出a,求出函数的导数,求出切线的向量然后求解切线方程.【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.【点评】本题考查函数的奇偶性以及函数的切线方程的求法,考查计算能力.6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+【考点】9H:平面向量的基本定理.【专题】34:方程思想;41:向量法;5A:平面向量及应用.【分析】运用向量的加减运算和向量中点的表示,计算可得所求向量.【解答】解:在△ABC中,AD为BC边上的中线,E为AD的中点,=﹣=﹣=﹣×(+)=﹣,故选:A.【点评】本题考查向量的加减运算和向量中点表示,考查运算能力,属于基础题.7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.2【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;49:综合法;5F:空间位置关系与距离.【分析】判断三视图对应的几何体的形状,利用侧面展开图,转化求解即可.【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:=2.故选:B.【点评】本题考查三视图与几何体的直观图的关系,侧面展开图的应用,考查计算能力.8.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.8【考点】K8:抛物线的性质.【专题】11:计算题;35:转化思想;49:综合法;5A:平面向量及应用;5D:圆锥曲线的定义、性质与方程.【分析】求出抛物线的焦点坐标,直线方程,求出M、N的坐标,然后求解向量的数量积即可.【解答】解:抛物线C:y2=4x的焦点为F(1,0),过点(﹣2,0)且斜率为的直线为:3y=2x+4,联立直线与抛物线C:y2=4x,消去x可得:y2﹣6y+8=0,解得y1=2,y2=4,不妨M(1,2),N(4,4),,.则•=(0,2)•(3,4)=8.故选:D.【点评】本题考查抛物线的简单性质的应用,向量的数量积的应用,考查计算能力.9.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【考点】5B:分段函数的应用.【专题】31:数形结合;4R:转化法;51:函数的性质及应用.【分析】由g(x)=0得f(x)=﹣x﹣a,分别作出两个函数的图象,根据图象交点个数与函数零点之间的关系进行转化求解即可.【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.【点评】本题主要考查分段函数的应用,利用函数与零点之间的关系转化为两个函数的图象的交点问题是解决本题的关键.10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3【考点】CF:几何概型.【专题】11:计算题;38:对应思想;4O:定义法;5I:概率与统计.【分析】如图:设BC=2r1,AB=2r2,AC=2r3,分别求出Ⅰ,Ⅱ,Ⅲ所对应的面积,即可得到答案.【解答】解:如图:设BC=2r1,AB=2r2,AC=2r3,∴r12=r22+r32,∴SⅠ=×4r2r3=2r2r3,SⅢ=×πr12﹣2r2r3,SⅡ=×πr32+×πr22﹣SⅢ=×πr32+×πr22﹣×πr12+2r2r3=2r2r3,∴SⅠ=SⅡ,∴P1=P2,故选:A.【点评】本题考查了几何概型的概率问题,关键是求出对应的面积,属于基础题.11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.4【考点】KC:双曲线的性质.【专题】11:计算题;34:方程思想;4:解题方法;5D:圆锥曲线的定义、性质与方程.【分析】求出双曲线的渐近线方程,求出直线方程,求出MN的坐标,然后求解|MN|.【解答】解:双曲线C:﹣y2=1的渐近线方程为:y=,渐近线的夹角为:60°,不妨设过F(2,0)的直线为:y=,则:解得M(,),解得:N(),则|MN|==3.故选:B.【点评】本题考查双曲线的简单性质的应用,考查计算能力.12.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.【考点】MI:直线与平面所成的角.【专题】11:计算题;31:数形结合;49:综合法;5F:空间位置关系与距离;5G:空间角.【分析】利用正方体棱的关系,判断平面α所成的角都相等的位置,然后求解α截此正方体所得截面面积的最大值.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长,α截此正方体所得截面最大值为:6×=.故选:A.【点评】本题考查直线与平面所成角的大小关系,考查空间想象能力以及计算能力,有一定的难度.二、填空题:本题共4小题,每小题5分,共20分。