芳香烃和芳香化合物
合集下载
有机化学第六章芳香烃

Y
可见,凯库勒式并不能确切地反映苯的真实情况
现代物理方法(射线法、光谱法、偶极距的测定)表明,苯分子是 一个平面正六边形构型,键角都是120°,碳碳键长都是0.1397nm。图 示如下:
杂化轨道理论解释
苯分子中的碳原子都是以sp2杂化轨道互相沿对称轴方向重叠形成6个C-Cσ键组成一个 正六边形,每个C各以一个sp2杂化轨道分别与H的1s轨道沿对称的方向重叠,形成六 个C-Hσ键,由于是sp2杂化,所以键角都是120。所有原子均在同一平面上。 每个C还有一个未参与杂化的垂直于与碳环平面σ键的P轨道,彼此侧面重叠,形成一 个封闭的共轭体系,每个P轨道上有一个P电子,组成了π66大π键。由于共轭效应使π 电子高度离域,电子云完全平均化,故无单双键之分。 因此,苯的电子云是一个整体,分布在环的上、下方,并且是完全平均的,所以苯分 子中每个C-C键都有π键的性质,并且是完全相同的,故邻位二元取代物也应当只有一 种。 应当注意且要牢记,苯环中并没有一般的C-C单键和C=C双键。
( 2 )体系能量降低,氢化热(208.5 kJ·mol-1)比环己烯氢 化热的三倍低得多( 3×119.3-208.5 = 149.4 kj·mol-1 ),这 149.4 kj·mol-1即为苯的共轭能。
苯现在的表达方式
价键式
分子轨道离域式
共振式
自旋偶合价键理论 (1986年Copper等提出)
+ Cl2 + Br2
Fe 或 FeCl3 55~60℃
Fe 或 FeBr3 55~60℃
+ 2Cl2 Fe 或 FeCl3
反应历程:
Cl
+ HCl
Br
+ HBr
Cl
+
第4章 芳香烃

间硝基甲苯
14
单环芳烃---命名
当两个取代基相同时,则作为苯的衍生物来命名。
西 南大学化学化工 学院西 南大学化学化工学 院
不叫乙烯 基苯乙烯
15
单环芳烃---命名
当苯环上有三个或更多的取代基时,以最优先的官能团和
西 南大学化学化工 学院西 南大学化学化工学 院
苯环一起作为母体,其所在的位置编号为1,按最低系列 规则标明其它取代基的位次。
化学化工 学化学化工学
(a) 苯的一取代物只有一种 (b) 苯可以加氢还原为环己烷
Br
院院
(c) 在光照条件下,苯可以
和3分子氯气加成
22
Br
Br
催化剂
+ H2
Cl
3Cl2 Cl
Cl
hv Cl
Cl
Cl
苯的结构
Kekulé苯结构式不能解释的现象:
西 南大学化学化工 学院西 南大学化学化工学 院
苯容易发生取代反应,却难于发生加成和氧化反应 按照Kekulé结构式,邻位二取代苯应该有两个异构体,但 实际上只有一个
7
二苯甲烷
二苯乙烯
单环芳烃---异构和命名
西 西 当苯环上的氢原子被各种烃基取代后,形成了苯的同系
南大学化学化工 学院南大学化学化工学 院
物。它们的通式为CnH2n-6。苯的同系物因苯环上侧链骨 架不同或取代基位置不同产生同分异构体。苯环上的氢 被一个或多个取代基取代,得到一元、二元或多元取代 的苯衍生物。
西 南大学化学化工 学院西 南大学化学化工学 院
第一阶段:从植物胶中取得的具有芳香气味的物质称为芳 香化合物。
第二阶段:将苯和含有苯环的化合物称为芳香化合物。
芳香族烃类化合物

H
H
0.108nm
H
2.苯结构的解释: 价键法(VB) 6中心6电子的环状共轭大π键
2.1.3 单环芳烃的性质
1.物理性质 苯及同系物:无色液体,不溶于水 (非极性溶剂) 单环芳烃:比重<1,具有特殊芳香气味 单环芳烃有毒:损坏造血器官与神经系统 碳氢比较高,1:1,燃烧有黑烟。
CH3 CH3 2 , 3 _ 二甲基 _ 1 _ 苯基 _ 1 _ 己烯
苯乙烯
苯乙炔
2.多环芳烃
联苯类: 多苯代脂肪烃类:
2 CH3
1 1'
4' CH3
2 , 4' _ 二甲基联苯
(
)
3
CH
三苯甲烷
CH4 甲烷
CH=CH 1,2-二苯乙烯
3.稠环类:
α
891
7
2β
6
3
10
5
4
萘
CH3
1
5
CH3
+ 3 H2
N。i 180 ~ 210 C, 18MPa
2. 加氯反应:
+ 3 Cl2
紫外光
Cl
Cl
Cl
Cl
Cl
Cl
六氯化苯
三、 亲电取代反应: (Electrophilic Substitutional RXn)
卤代(-Cl,-Br)、 硝化(-NO2) 磺化(-SO3H) 付氏反应(烷基化或酰基化) 氯甲基化(-CH2Cl)
CH+ CH3
+ CH3CH2CH2Cl AlCl3
AlCl3
+
CH3CH2CH2
10
重排
+
芳香烃类有机化合物

CH3 CH3 CH3
CH3 CH3 CH3
CH3
H3C
CH3
连三甲苯 1,2,3-三甲基苯
偏三甲苯
均三甲苯
1,2,4-三甲基苯
1,3,5-三甲基苯
9
第二节 苯的同系物、构造异构和命名
当苯环上连有不饱和基团或虽为饱和基团但体积较大
时,可将苯作为取代基。例:
CH CH2 C CH
苯(基)乙烯
CH3 CH CH CH2 CH3 CH CH2 CH3
两个取代基定位效应一致时,则第3个取代基 CH3 进入定位效应相互加强的位置。
OCH3
CH3 HNO3/H2SO4 OCH3 O2N + OCH3 NO2 OCH3 CH3 CH3
29
二元取代苯再次取代时的定位效应:
两个取代基定位效应不一致时,则:
CH3
1. 当取代基为活化基团与钝化基团 时,由活化基团决定第三个取代基的 位置。
AlCl3 150℃
HCl
COCH3 200℃
43
第二节 稠环芳烃和非苯芳烃
2. 氧化反应
O CrO 3 CH3COOH O
1,4-萘醌
O
O2 , V2O5
O O
邻苯二甲酸酐
44
第二节 稠环芳烃和非苯芳烃
3. 还原反应
H2 , cat. H2 , cat.
1,2,3,4-四氢萘
十氢萘
Na/C2H5OH
22
第四节
苯环上亲电取代反应的定位规律
一、单取代苯亲电取代反应活性
CH3 HNO3/H2SO4 CH3 NO2
+
CH3
NO2
COOH HNO3/H2SO4
CH3 CH3 CH3
CH3
H3C
CH3
连三甲苯 1,2,3-三甲基苯
偏三甲苯
均三甲苯
1,2,4-三甲基苯
1,3,5-三甲基苯
9
第二节 苯的同系物、构造异构和命名
当苯环上连有不饱和基团或虽为饱和基团但体积较大
时,可将苯作为取代基。例:
CH CH2 C CH
苯(基)乙烯
CH3 CH CH CH2 CH3 CH CH2 CH3
两个取代基定位效应一致时,则第3个取代基 CH3 进入定位效应相互加强的位置。
OCH3
CH3 HNO3/H2SO4 OCH3 O2N + OCH3 NO2 OCH3 CH3 CH3
29
二元取代苯再次取代时的定位效应:
两个取代基定位效应不一致时,则:
CH3
1. 当取代基为活化基团与钝化基团 时,由活化基团决定第三个取代基的 位置。
AlCl3 150℃
HCl
COCH3 200℃
43
第二节 稠环芳烃和非苯芳烃
2. 氧化反应
O CrO 3 CH3COOH O
1,4-萘醌
O
O2 , V2O5
O O
邻苯二甲酸酐
44
第二节 稠环芳烃和非苯芳烃
3. 还原反应
H2 , cat. H2 , cat.
1,2,3,4-四氢萘
十氢萘
Na/C2H5OH
22
第四节
苯环上亲电取代反应的定位规律
一、单取代苯亲电取代反应活性
CH3 HNO3/H2SO4 CH3 NO2
+
CH3
NO2
COOH HNO3/H2SO4
有机化学-芳香烃

法国化学家
回美国,于1868年和1871年先后在康奈尔大学和马萨诸塞
理工学院任教授职。
1874-1891 年两人合作,1877年他们一起研究金属铝对某
克拉夫茨
些含氯有机化合物的作用时注意到,只是经过一段钝化作 James Mason Crafts
用之后反应才发生,然后生成氯化氢气体。他们发现钝化 期间生成氯化铝,而且正是氯化铝才激发了这个反应。原
H
H 1 4 0 p m 正六边形。
.H
120o
120o
H
108pm
. C-C键长: 140pm ; C-H键长: 108pm ;
H
H
.
键角120o
14
二. 苯的结构
2. 苯分子结构的近代观点
(1) 杂化轨道理论
共轭效应的结果: ①键长完全平均化 六个 C—C 键等长(0.140nm),比正常 C—C单键(0.154nm) 短,比正常C=C双键(0.134nm)长 ②体系能量降低 其氢化热(208.5 kj·mol-1)比环己烯氢化热的三倍小
H3O+ + NO2+ + 2 HSO4-
H
+ NO2
NO 2
+ H2SO4
27
亲电取代反应机理
非芳香性
第一步:
亲电进攻
E+Nu- fast
HE E+ slow
HE
E 络合物 σ -络合物
第二步:
fast + H+ 失去质子
芳香性
28
(一) 亲电取代反应 (Electrophilic Substitution) 3. 磺化
0o C 100o C
回美国,于1868年和1871年先后在康奈尔大学和马萨诸塞
理工学院任教授职。
1874-1891 年两人合作,1877年他们一起研究金属铝对某
克拉夫茨
些含氯有机化合物的作用时注意到,只是经过一段钝化作 James Mason Crafts
用之后反应才发生,然后生成氯化氢气体。他们发现钝化 期间生成氯化铝,而且正是氯化铝才激发了这个反应。原
H
H 1 4 0 p m 正六边形。
.H
120o
120o
H
108pm
. C-C键长: 140pm ; C-H键长: 108pm ;
H
H
.
键角120o
14
二. 苯的结构
2. 苯分子结构的近代观点
(1) 杂化轨道理论
共轭效应的结果: ①键长完全平均化 六个 C—C 键等长(0.140nm),比正常 C—C单键(0.154nm) 短,比正常C=C双键(0.134nm)长 ②体系能量降低 其氢化热(208.5 kj·mol-1)比环己烯氢化热的三倍小
H3O+ + NO2+ + 2 HSO4-
H
+ NO2
NO 2
+ H2SO4
27
亲电取代反应机理
非芳香性
第一步:
亲电进攻
E+Nu- fast
HE E+ slow
HE
E 络合物 σ -络合物
第二步:
fast + H+ 失去质子
芳香性
28
(一) 亲电取代反应 (Electrophilic Substitution) 3. 磺化
0o C 100o C
10第十章 芳香族化合物

O
H3C
CH3 + 2 CHO
CHO
O
O
2 H3C
H+
O
CHO CHO
6
1865年 提出摆动双键学说
CH3
CH3
CH3
CH3
7
4、芳香性的解释
(1)杂化轨道理论的解释:
H
H
H
H
H
H
组成苯环的六个碳分别是SP2杂化,共平面,六个P轨道垂直于
六个碳组成的平面,形成π66,其离域能为152KJ/mol,体系稳
48
COOH
Na/NH3(l), C2H5OH
COOH
CH3
CH3
Na/NH3(l), C2H5OH
环上取代基对反应的影响
49
经伯奇还原,制备,不饱和酮
OCH3
Li, NH3(L), C2H5OH
OCH3
HCl, H2O
OH
O
50
5、苯环侧链烃基的反应
(1)卤代反应
活性:α-H > β-H β-H与普通烃基上的H相似
定,能量低,不易开环(即不易发生加成、氧化反应)
8
(2)分子轨道理论的解释 苯的芳香性是由于苯存在一个封闭的共
轭体系引起的。 P448-449
9
(3)共振论对苯分子结构的解释
共振论认为苯的结构是两个或多个经典结构 的共振杂化体:
贡贡贡贡
+ + -
-
10
(4)从氢化热数据解释
环己烯 环己二烯 环己三烯 苯
CH3
Br2/ Fe
C2H5
CH3
C2H5
+
CH3
CH3 Br
芳香烃

H || —C—C— || H
C
| —C—C
× |
C
思考:产物是什么?
CH3 | CH3—CH—
C| H3
CH3 |
—C—CH3 |
KMnO4/H+
| CH3
CH2—R
思考:产物是什么?
CH3 | CH3—CH—
C| H3
CH3 |
—C—CH3 |
HOOC
KMnO4/H+
|
| CH3 CH2—R
稠环芳烃:苯环之间通过共用苯环的若干环边
而形成
萘(C10H8)
蒽(C14H10)
三、芳香烃的来源及其应用 1、芳香烃主要来源:
煤高温干馏后得到焦炭、煤焦油、粗氨水、粗苯和焦炉气。将煤焦油 分馏,便可获得芳香烃。现代工业生产,芳香烃主要来源于石油化学工业 中的催化重整和裂化
2、芳香烃的应用:
在芳香烃中,作为基本有机原料应用最多的是苯、乙苯和对二甲苯等 苯是生产本分、硝基苯、苯胺、环己烷、二氯苯、氯苯、苯乙烯等重 要有机化合物的原料。通过这些有机化合物又可生产多种合成树脂、合成 纤维、染料、医药、洗涤剂、合成橡胶、炸药等
❖ 2、通式:CnH2n-6(n≥6)
❖ 3、特点:
❖ (1):苯环上的取代基必须是烷基(CnH2n+1 )。(2):分子中只含 有一个苯环,
❖ (3):分子组成相差n个CH2
二、苯的同系物
苯的几种同系物的结构简式
C| H3
甲苯(C7H8)
C| H2CH3
C| H3
H3C C| H3 CH3
乙苯( C8H10)
第二课时
❖苯的同系物
芳香族化合物
历史含义:具有香味的物质
第七章 芳香烃(2)

定位效应包括两方面:(1)基团所进入的位置; (2)反应的速度快慢。
42
CH3
H2SO4+ HNO3
30 ℃
CH3 NO2
( O + P = 96.5 %)
56.5 %
CH3
NO2
40 %
NO2
H2SO4+ HNO3
90~100 ℃
(O + P = 6.7%)
NO2
NO2
93.2%
NO2 NO2
6.4%
结构特点:与苯环直接相连的原子多数含有未共用 电子对。
44
2. 间位定位基—第二类定位基(钝化 苯环)
强致钝基:-N+R3, -NO2, -CX3 中等致钝基: -CN, -SO3H, -COR(H), -CO2H, -CCl3 弱致钝基:-COOR,-CONHCH3, -CONH2, -NH3, etc.
H
O
X
CR
卤代反应 NO2
SO3H
R 酰基化 反应
硝化反应
20
磺化反应 烷基化反应
反应机理: 亲电取代反应
sp2 + E+
E+ 慢
sp3
H -H+
+
E
sp2 E
亲电试剂 络合物
络合物
产物
用极限式表示中间体 络合物 :
H
H
E
E
+
+
21
+H E
1.卤代反应
卤 素:Cl2 、Br2 催化剂:FeX3 AlCl3 ZnCl2或 Fe
具有三个相同烃基的取代苯也有三种异构体。如:
CH3 CH3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
芳香烃和芳香化合物
芳香烃和芳香化合物是化学中常见的两个概念,它们的区别在于,芳香烃是一种特殊
的碳氢化合物,而芳香化合物则是一类呈现出芳香性质的有机化合物。
芳香烃是一类含有苯环或其衍生物的碳氢化合物,其中最简单的是苯,化学式为C6H6。
由于苯环拥有特殊的结构特征,因此芳香烃的化学性质与非芳香烃有很大不同。
它们具有
稳定的共轭结构,可以进行亲电反应、加成反应、脱氢反应等。
其中的共轭稳定性是芳香
烃的一个重要特点,它使得分子中的电子分布更加均匀,同时更容易参与到反应中去。
芳香烃的一些重要代表包括苯、萘、苊、蒽等。
这些化合物在化工、生物和医药等领
域都有着广泛的应用。
例如,苯是合成许多重要有机化合物的重要原料,如塑料、橡胶、
染料、医药等;萘则是一种常见的多环芳香烃,广泛应用于制造染料、甲基丙烯酸甲酯等;苊和蒽则是许多杂环芳香烃的前体化合物。
芳香化合物则是一类呈现出芳香性质的有机化合物,具有类似芳香烃的化学性质。
它
们主要是由苯环外的一个原子或基团取代或添加而成。
可以说,芳香烃是芳香化合物的基
本单元。
一些常见的芳香化合物包括苯酚、苯乙酮、苯胺、三硝基苯等。
这些化合物常常
用于制造染料、香料、药物、柴油等,同时也是一些工业废料和环境污染物的来源。
总的来说,芳香烃和芳香化合物在化学性质和应用方面都有着广泛的差异。
芳香烃作
为基本的结构单元,具有稳定的共轭结构和丰富的反应特性;而芳香化合物则是根据苯环
外围的取代基或功能基不同而呈现出多样的物化性质。
它们的应用领域十分广泛,对于理
解与应用有机化学和应用化学学科都有着十分重要的意义。