角动量与角动量定理
角动量和角动量守恒定律

恒矢量
M 0
质点或质点系所受对参考点 O 的合外力矩为零 时,质点或系统对该参考点 O 的角动量为一恒矢量 . (1) 不受外力
(2) 力臂 d 0 (3) F // r
3 – 2 角动量 角动量守恒动量守恒。
质点在有心力作用下的运动:r 与 F 同向或
第三章 刚体力学
dp dL F, ? Lrp dt d t dL d dp dr (r p) r p dt dt d t dt dr dL dp v, v p 0 r r F dt dt dt 作用于质点的合力对参考点 O dL 的力矩 ,等于质点对该点 O 的角 M dt 动量随时间的变化率 .
L mR
2 32 12
2g 12 ( sin ) R
L mR (2g sin )
Lx 、Ly 、Lz 质点对x、y、z 轴的角动量 M y、 M x、 M z 质点对x、y、z 轴的力矩
3 – 2 角动量 角动量守恒定律
第三章 刚体力学
1)求角动量和力矩某一方向的分量的方法
L ( xi yj zk ) ( pxi py j pz k ) M (xi yj zk) (Fxi Fy j Fz k)
rb
通过一点(力心)—— 力对力心的力矩为零。
当力 F 的作用线始终
vb
ra mva rb mvb ra v b va va rb
ra
r
F
3 – 2 角动量 角动量守恒定律
第三章 刚体力学
举例: 将一个质量为m的小球系在轻绳的一端,放在 光滑的水平桌面上,轻绳的另一端从桌面中间的一 光滑小孔穿出。先使小球以一初速度在水平桌面上 作圆周运动,然后向下拉绳。 动画演示:模拟实验
刚体定轴转动的角动量定理和角动量守恒定律

刚体定轴转动的角动量定理和角动量守恒定律
1、刚体定轴转动的角动量
刚体绕定轴转动的角动量等于刚体对该轴的转动惯量与角速度的乘积;方向与角速度的方向相同。
2、刚体定轴转动的角动量定理
(1)微分形式:刚体绕某定轴转动时,作用于刚体的合外力矩,等于刚体绕该定轴的角动量随时间的变化率。
(2)积分形式:当物体绕某定轴转动时,作用在物体上的冲量矩等于角动量的增量。
3、刚体定轴转动的角动量守恒定律
如果物体所受的合外力矩等于零,或者不受外力矩作用,物体的角动量保持不变。
练习:1角动量守恒的条件是 。
0=M 11222
1ωωJ J Mdt t t -=⎰刚体 ) 21J J ==ωJ 恒量
ωJ L =()ωJ dt d dt dL M ==。
角动量 角动量守恒定律

角动量与线动量关系
角动量与线动量的关系
角动量是线动量在物体绕某点或某轴 转动时的表现形式,二者之间存在密 切关系。
动量守恒定律
在不受外力作用的情况下,物体的总 动量(包括线动量和角动量)保持不 变,即动量守恒定律。
02
角动量守恒定律
守恒条件及适用范围
守恒条件
当系统不受外力矩作用时,系统的角动量守恒。即在没有外力矩的情况下,系统内部各部分之间的相 互作用力不会导致系统总角动量的改变。
06
总结与展望
课程内容回顾与总结
角动量的定义与性
质
角动量是物体绕某点或某轴转动 的动量,具有矢量性质,其大小 与物体的质量、速度和转动半径 有关。
角动量守恒定律的
表述
在没有外力矩作用的情况下,系 统内的角动量保持不变,即角动 量守恒。
角动量守恒定律的
应用
角动量守恒定律在天体物理、刚 体转动、分子运动等领域有广泛 应用,如行星运动、陀螺仪工作 原理等。
对未来研究方向的展望
角动量守恒定律在复 杂系统较成熟,但在复 杂系统中的应用还有待深入研究, 如多体问题、非线性问题等。
角动量与其他物理量 的关系研究
角动量与能量、动量等物理量之 间存在一定的联系,未来可以进 一步探讨它们之间的关系,以及 如何利用这些关系解决实际问题。
在机械工程中,飞轮储能系统被应用 于能量回收和节能领域。飞轮储能系 统利用刚体定轴转动的角动量守恒定 律,通过加速和减速飞轮来储存和释 放能量。这种储能方式具有高效率、 环保等优点,在电动汽车、风力发电 等领域具有广阔的应用前景。
04
质点和质点系相对于固定 点角动量守恒
质点相对于固定点角动量定义和性质
双星系统由两颗互相绕转的恒星组成。在双星系统中,两颗恒星的角动量守恒,因此它们的轨道周期、距离和质量之 间存在一定关系。
大学物理(上册)角动量 角动量守恒定律(3)

,已足以盖过整个银河发光的总和。 ( 10
?
第二篇 实物的运动规律 第五章 角动量 角动量守恒定律
第五章第三讲
本章共3讲
§5.3 角动量守恒定律 一. 角动量守恒定律 研究对象:
dL M外 dt
质点系
由角动量定理: 得:当M 外 0时,L 恒矢量 分量式:
Mx 0 My 0 Mz 0 时 时 时 Lx 恒量 L y 恒量 Lz 恒量
F轴 0 m M系统 p 不守恒; M轴 0 m M系统 对O点角动量守恒 m 2 gh R m M vR
回顾习题( p84 4 -11)
C B Ny
o
Nx
A
F轴 0
M轴 0
A、B、C系统 p 不守恒;
A、B、C系统对 o 轴角动量守恒
应用广泛,例如:
天体运动
(行星绕恒星、卫星绕行星...) 微观粒子运动 (电子绕核运动;原子核中质子、中子的运动一级 近似;加速器中粒子与靶核散射...)
[例2] 已知:地球 R=6378 km
卫星 近地:h1= 439 km v1=8.1 km.s-1
远地: h2= 2384 km
求: v2=?
严格同步条件
卫星轨道平面与地球赤道平面倾角为零
轨道严格为圆形
运行周期与地球自转周期完全相同 (23小时56分4秒)
地球偏心率,太阳、月球摄动引起同步卫星星下点漂 移,用角动量、动量守恒调节 ~ 定点保持技术
•研究微观粒子相互作用规律
自学教材P108[例4]
第五章
角动量
角动量守恒
习题课
复习提要:三个概念,两条规律
mA mB v1 R mA mB mc vR
5.2 质点的角动量定理与角动量定理定律

M r F M r F i j k
x Fx
y Fy
z Fz
L r p r mv Lrp i j k x y z p x p y pz
15
5.2 质点的角动量定理与角动量守恒定律
dp dL F, ? Lrp dt dt dL d dp dr ( r p) r p dt dt dt dt dr dL dp υ, υ p 0 r r F dt dt dt 表述: 作用在质点上的合力对某参 dL M 考点 的力矩 ,等于质点对同一参考 dt 点的角动量随时间的变化率。
(质点角动量定理的微分形式)
16
三、质点的角动量定理
5.2 质点的角动量定理与角动量守恒定律
在实际过程中,要研究的是力矩对时间的积累效应。
dL M dt
t2
t1
M dt L2 L1
冲量矩:
t1
t2
M dt
质点的角动量定理:质点所受合力矩的冲量矩 等于质点角动量的增量。 注意:定理中的力矩和角动量都必须是相对于同 一参考点而言的。 说明:
解: 摆球受力如图。
1)以O为参考点。
c l
T 重力矩: M R mg 逆时针方向。 m R o M Rmg υ 张力矩:M R T 顺时针方向。 mg
M RT sin( 900 ) RT cos θ Rmg
对O点的合力矩为零,角动量守恒。
M x yFz zFy M y zFx xFz M xF yF y x z
物理学概念知识:动量定理和动量角动量定理

物理学概念知识:动量定理和动量角动量定理动量定理和动量角动量定理是物理学中非常基本的两个概念。
它们的内容涉及到我们对物体运动规律的认识,不仅有助于我们更好地理解物理学知识,还可以应用于现实生活中的一些问题。
下面,我们将分别介绍这两个概念及其应用。
一、动量定理动量定理是描述物体运动过程中动量变化的一个基本定理。
它指出:在总外力作用下,物体的动量就会发生变化,这种变化的大小跟作用力和时间的乘积成正比。
这个定理的表达方式为:Δp=Ft其中,Δp表示物体动量的变化量,F表示物体所受的总外力,t 表示外力作用的时间。
式子的意义是:在总外力作用下,物体动量的变化量等于总外力作用时间的乘积。
重物移动时,如果外力越大,或者作用时间越长,那么物体的动量就会发生更大的变化。
从而可以更快地推动物体运动起来。
同样,如果要让运动中的物体停下来,也可以利用动量定理的知识。
通过对物体施加一个与它的运动方向相反的恒定力,也就是反向加速度,可以让物体的动量逐渐减小,直到物体停下来。
二、动量角动量定理动量角动量定理是物理学中另一个基本的概念。
它是通过描述物体绕某一点旋转的行为,来了解物体运动过程中动量变化的定理。
它指出:在物体绕某一点旋转时,物体的角动量就会发生变化,这种变化的大小跟作用力矩和时间的乘积成正比。
这个定理的表达方式为:ΔL=Mt其中,ΔL表示物体角动量的变化量,M表示作用力矩,t表示外力作用的时间。
式子的意义是:在物体绕某一点旋转时,物体角动量的变化量等于力矩作用时间的乘积。
个陀螺时,如果外力越大,或者作用时间越长,那么陀螺的角动量也会发生更大的变化。
从而可以更快地让陀螺旋转。
同样,如果要让旋转中的陀螺停下来,也可以利用动量角动量定理的知识。
通过对陀螺施加一个与它的旋转方向相反的外力矩,也就是反向加速度矩,可以让陀螺的角动量逐渐减小,直到陀螺停下来。
总之,动量定理和动量角动量定理是物理学中非常重要的两个概念。
它们既可以帮助我们更好地理解物理学知识,也可以用于实际生活中的问题解决。
角动量及角动量定理

dL
vi
mivi
ri
L r p
Fi Mi
~角动量
dt
在惯性系中,作用于质点的合外力对某定点的力矩 等于质点对该点的角动量的时间变化率。
1
二、质点的角动量守恒定律
M 0 M
dL dt
t2
M
d
t
t
1
t2 t
d
L
0
L2
L1
1
在惯性系中,如果作用于质点的合外力对某定点的 力矩恒为零,则质点对于该点的角动量恒定。
例六:对于质量为 m 的质点的匀速直线运动的情形。
解①:如图选择惯性系中的定点,
r
M 0 L r mvsin mvh o
解②:如图选择惯性系中的定点,
mv
h
M 0 L r mvsin 0
r
mv
2
三、质点系的角动量定理及其守恒定律 i fij
1. 角动量定理:
ri
Mi ri(Fi
i j
fij
)
d Li dt
f ji
o
rj
j
ri f ij
M
rj f ji Mi
ri f ij r j ri Fi
f ij
d Li dt
( ri d
dt
(
r j)
Li)
f ij
0 dL dt
在惯性系中,作用于质点系的诸外力对某定点的力 矩和等于各质点对该点的角动量和的时间变化率。
§2.3 角动量定理及角动量守恒定律
一、质点的角动量定理
对于标量,定义了第一质量矩: miri M rc
对于矢量,有力矩:Mi
ri F
4-4 角动量与角动量定理

设固定轴为 z 轴
z
F F⊥
r⊥sinα Mz
r ˆ Mz = M ⋅ z r r ˆ = (r × F ) ⋅ z r r = r⊥ × F⊥
r⊥
d Lz Mz = dt
α
平面 ⊥ z 轴
M
O
·
r
——质点对轴的转动定律 质点对轴的转动定律 若绕固定轴的力矩为 0,即 ,
力对轴的力矩:力对 力对轴的力矩 力对 某点的力矩在过此点 的某轴上的投影
r F = 0 , r r M = 0 F 过 O点 : 有 心 力 ( 如 行 星 受 中心恒星的万有引力)
r r r L = r × (m v ) = 常 矢 量
第4章 动量和角动量
开普勒第 二定律
α (1) mv r sin =const ) (2)轨道在同一平面内 )
4-4 角动量与角动量定理来自m2R o m 1
第4章 动量和角动量
4-4 角动量与角动量定理
解: 有心力场中, 有心力场中 , 运 用角动量守恒和(m 用角动量守恒和 1 ,m2 m2 )系统机械能守恒 系统机械能守恒 定律: 定律:
R o m 1
3Gm1 1 2 1 ⇒ sin θ = (1 + ) 2 4 2 Rv0
3Gm1 1 2 ) v = v0 (1 + 2 2 Rv0
r L r L0
r v v dL = L − L0
质点的角动量定理:对同一参考点O,质点所受的 质点的角动量定理:对同一参考点 , 冲量矩等于质点角动量的增量. 冲量矩等于质点角动量的增量
第4章 动量和角动量
4-4 角动量与角动量定理
四 角动量守恒定律 由角动量定理
r 当M =0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
L
dt 2 dt 2 dt 2
2m
2m
太阳对行星的引力总是指向太阳,因而行星对太阳
中心的角动量守恒,L为常量,所以得证。
L rmv mr2
方向 垂直于圆面
② 质点作匀速直线运动时,角 动量守恒。
L rmv sin mvd
方向始终垂直纸面向外
r L
r pr r
O
Or
r
d
pr
③ 角动量与参考点的位置有关。
r L
因而在说明一个质点的角动量
pr
时,必须指明是相对于哪一个 参考点而言的。
O
rr
θ m
锥摆 O
l
m
O
v
且在高速低速范围均适用。
例题1:
证明行星运动的开普勒第二定律:行星对太阳
的矢径在相等的时间内扫过的面积相等。
r
L
解:行星位矢扫过的面积dS
dS
1
r
r dr
sin
1
rr drr
dS r
2
2
单位时间行星位矢扫过的面积
•
drr
dS 1 rr drr 1 rr drr 1 rr vr 1
vr
y
xp z
L z
xp y
yp x
L , L , L 分别称为角动量在x、y、z轴上的分 x yz
量式,或称为对x、y、z轴的角动量。
二、力矩
1、定义
力
r F
对参考点O
rr
r F
r
M
r
rr
F
θ
Or
m
大小:
M
rF
sin
rF
(
r
---力臂)
方向:右手螺旋法则判定
单位:N·m
说明:力矩与参考点的位置有关。
讨论
r M
rr
r F
力矩为零的情况:
⑴ 当 F 0 时,M 0
r
M
rr
r F
θ
Or
m
⑵ 有心力对力心的力矩恒为零。
有心力:若一物体所受的力始终指向或背离某 一固定点,这种力称为有心力,这一固定点称 为力心。
2、力矩在直角坐标系中的表达形式
rrr
r M
rr
r F
i x
jk yz
FFF
x
y
z
力矩在各坐标轴上的投影(分量 )为:
d
(rv
pv)
rr
dpr
drr
pr
dt dt
dt dt
Q drv pr vr mvr 0 dt
v dL dt
rv
dpv dt
rv
v F
v M
v dL
角动量定理微分式:作用于质点的
合力对参考点O 的力矩,等于质点
dt 对该点的角动量随时间的变化率.
2、质Mv点的dL角v 动量Mv定dt理
v dL
LO
rom
mv
LO lmv
方向变化
LO
rom
mv
LO (l sin )mv
方向竖直向上不变
④ 角动量是物理学的基本概念之一。
2、角动量在直角坐标系中的表达形式
rrr
r L
rr
pr
i x
jk yz
ppp
x
y
z
角动量在各坐标轴上的投影(分量 )为:
L yp zp
x
L y
z
zp x
v L
t1
2
1
四、质点的角动量守恒定律
若
M
0
,则
r L
rr
pr
恒矢量。
角动量守恒定律:当质点所受的对某参考点的合外
力矩为零时,质点对该参考点的角动量为恒矢量。
⑴质点所受合外力为零时,质点角动量守恒。 讨 ⑵在有心力的作用下,质点对力心角动量守恒。
⑶角动量守恒定律是物理学的基本定律之一,它 论 不仅适用于宏观体系,也适用于微观体系,而
5.1 质点的角动量定理
一、质点的角动量(动量矩)
1、定义
质点对参考点O 的角
动量
r L
为:
ur r r r r
L r p r mv
r L
r p
O
rr
θ m
大小: L rmv sin
方向:右手螺旋法则判定 单位:kgm2/s
说明:
ur L
rr
pr
rr
mvr
① 作圆周运动的质点相对圆心 O的角动量大小
解:rr
r 3i
8
r j
r L
rr
mvr
r (3i
8
r j
)
r (5i
6
r j
)
3
(SI)
r 174k (kg m2/s)
r M
r r
r F
r (3i
8
r j
r ) (7i )
(SI)
r 56k (N m)
三、质点的角动量定理
1、角动量定理的微分形式
v L
rv
pv
对等式两边求时间的导数
v dL
dt
t2
v Mdt
v L
v L
t1
2
1
t2
v Mdt
r L2 r
v dL
t1
L1
t2
v Mdt
--角冲量
t1
(冲量矩)
质点的角动量定理:对同一参考点O,质点
所受的角冲量等于质点角动量的增量.
说明:
在应用角动量定理时,一定要注意等式两边 的力矩和角动量必须都是对同一固定点。
t2
v Mdt
v L
M yF zF
M
x y
z
zF x
y
xF z
Mz
xF y
yF x
M
,M
,M
分别称为
r M
对x、y、z轴的力矩。
x
y
z
例题1:
质 为量vv为 53ivkg的6 vj质(m点/ 位s) 于,x作=用3m于, 质y=点8m上处的时力速大度小为7N,
沿负X方向,求:以原点为参考点时,质点在此时
的角动量和所受的力矩。