2010年7月数字信号处理02356t7

合集下载

北京信息科技大学-[2010年]-数字信号处理-试卷A及参考答案.介绍

北京信息科技大学-[2010年]-数字信号处理-试卷A及参考答案.介绍

《数字信号处理》课程期末考试试卷(A )填空题(本题满分30分,共含4道小题,每空2分)1. 两个有限长序列x 1(n),0≤n ≤33和x 2(n),0≤n ≤36,做线性卷积后结果的长度是 ,若对这两个序列做64点圆周卷积,则圆周卷积结果中n= 至 为线性卷积结果。

2. DFT 是利用nkN W 的 、 和 三个固有特性来实现FFT 快速运算的。

3. IIR 数字滤波器设计指标一般由 、 、 和 等四项组成。

4. FIR 数字滤波器有 和 两种设计方法,其结构有 、和 等多种结构。

一、判断题(本题满分16分,共含8道小题,每小题2分,正确打√,错误打×) 1. 相同的Z 变换表达式一定对应相同的时间序列。

( )2. Chirp-Z 变换的频率采样点数M 可以不等于时域采样点数N 。

( )3. 按频率抽取基2 FFT 首先将序列x(n)分成奇数序列和偶数序列。

( )4. 冲激响应不变法不适于设计数字带阻滤波器。

( )5. 双线性变换法的模拟角频率Ω与数字角频率ω成线性关系。

( )6. 巴特沃思滤波器的幅度特性必在一个频带中(通带或阻带)具有等波纹特性。

( )7. 只有FIR 滤波器才能做到线性相位,对于IIR 滤波器做不到线性相位。

( )8. 在只要求相同的幅频特性时,用IIR 滤波器实现其阶数一定低于FIR 阶数。

( )二、 综合题(本题满分18分,每小问6分)若x (n)= {3,2,1,2,1,2 },0≤n≤5, 1) 求序列x(n)的6点DFT ,X (k)=?2) 若)()]([)(26k X W n g DFT k G k ==,试确定6点序列g(n)=?3) 若y(n) =x(n)⑨x(n),求y(n)=?三、IIR 滤波器设计(本题满分20分,每小问5分)设计一个数字低通滤波器,要求3dB 的截止频率f c =1/π Hz ,抽样频率f s =2 Hz 。

1. 导出归一化的二阶巴特沃思低通滤波器的系统函数H an (s)。

数字信号处理(姚天任江太辉第三版)课后习题答案 清晰版

数字信号处理(姚天任江太辉第三版)课后习题答案 清晰版

k n0
x1(k ) ,y2(n)= x 2(k ) ,由于
k n 0 k n0
n
y(n)=T[ax1(n)+ bx2(n)]=
[ax (k ) bx (k )]
1 2
n
= a
k n0
x1(k ) +b x 2(k ) =ay1(n)+by2(n)
k n 0
n
n
故该系统是线性系统。 因 y(n-k)=

5 2 16 。因此 是有理数,所以 8 5
是周期序列。最小周期等于 N=
16 k 16(k取5) 。 5
(2)对照复指数序列的一般公式 x(n)=exp[ j ]n,得出 是周期序列。
1 2 。因此 16 是无理数,所以不 8
(3) 对照正弦型序列的一般公式 x(n)=Acos( n ), 又 x(n)=Asin( = Acos( N=
2 (n-k)+ ]| 3 6 2 =|x(n)|| sin[ (n-k)+ ]| 3 6
≤M|sin[
2 (n- k)+ ]|≤M 3 6
故系统是稳定系统。 因 y(n)只取决于现在和过去的输入 x(n),不取决于未来的输入,故该系统是因果系统。 (3)设 y1(n)=
k
(2)y(n)= x(n)sin[
2 n+ ] 3 6
(3)y(n)=
k
x(k )

(4)y(n)=
k n0
x(k )
n
(5)y(n)= x(n)g(n)
解 (1)设 y 1 (n)=2x 1(n)+3,y 2 (n)=2x 2 (n)+3,由于 y(n)=2[x 1(n)+x 2 (n)]+3 ≠y 1 (n)+ y 2 (n) =2[x 1(n)+x 2 (n)]+6 故系统不是线性系统。 由于 y(n-k)=2x(n-k)+3,T[x(n-k)]=2x(n-k)+3,因而 y(n-k) = T[x(n-k)] 故该系统是非移变系统。 设|x(n)|≤M,则有 |y(n)|=|2x(n)+3|≤|2M+3|<∞ 故该系统是稳定系统。 因 y(n)只取决于现在和过去的输入 x(n),不取决于未来的输入,故该系统是因果系统。 (2)设

数字信号处理习题答案

数字信号处理习题答案

部分练习题参考答案第二章2.1 )1(2)(3)1()2(2)(-+++-+=n n n n n x δδδδ)6()4(2)3()2(-+-+-+-+n n n n δδδδ2.2 其卷积过程如下图所示)5(5.0)4()3()2(5.2)1(5)(2)(-------+-+=n n n n n n n y δδδδδδ2.3 (1)3142,73==ωππω这是有理数,因此是周期序列。

周期N =14。

(2)k kp ππ168/12==,k 取任何整数时,p 都不为整数,因此为非周期序列。

(3)k kp k k p 45.02,5126/5221====ππππ,当p 1,p 2 同时为整数时k =5,x (n )为周期序列,周期N =60。

(4)k kp πππ25.16.12==,取k =4,得到p =6,因此是周期序列。

周期N =6。

2.4 (1) ∑∞-∞=-=*=m m n R m Rn h n x n y )()()()()(45(a) 当n <0 时,y (n )=0-0.5 -1 2.55h (m ) x (m ) 00 mm-121 0.51 2 h (0-m)m-121 h (-1-m)m-12 1h (1-m) 0m-121y (n )n-12(b) 当30≤≤n 时,11)(0+==∑=n n y nm(c) 当74≤≤n 时,n n y n m -==∑-=81)(34(d) 当n>7时,y (n )=0所以74307081)(≤≤≤≤><⎪⎩⎪⎨⎧-+=n n n n n n n y 或 (2))2(2)(2)]2()([)(2)(444--=--*=n R n R n n n R n y δδ )]5()4()1()([2-----+=n n n n δδδδ(3)∑∞-∞=--=*=m mn m n u m Rn y n x n y )(5.0)()()()(5∑∞-∞=--=m mnm n u m R )(5.0)(5.05(a) 当n <0 时,y (n )=0(b) 当40≤≤n 时,nn nnm mnn y 5.0221215.05.05.0)(1-=--==+=-∑(c) 当5≥n 时,nnm mnn y 5.03121215.05.05.0)(54⨯=--==∑=-最后写成统一表达式:)5(5.031)()5.02()(5-⨯+-=n u n R n y nn(4)∑∞-∞=-=*=m mn m Rn h n x n y 5.0)()()()(3(a) 当n ≤0 时,y (n )=0(b) 当31≤≤n 时,nnnn m mnn y 5.0121215.05.05.0)(1-=--==∑-=- (c) 当54≤≤n 时,25.05.01621)21(25.05.05.0)(6232-⨯=--==---=-∑nnn nn m mnn y(d) 当n ≥6时,y (n )=0)5(25.0)4(75.0)3(875.0)2(75.0)1(5.0)(-+-+-+-+-=n n n n n n y δδδδδ2.6 (1)非线性、移不变系统(2)线性、移不变系统 (3)线性、移变系统 (4)非线性、移不变系统 (5)线性、移变系统2.7 (1)若∞<)(n g ,则稳定,因果,线性,时变(2)不稳定,0n n ≥时因果,0n n <时非因果,线性,时不变 (3)线性,时变,因果,不稳定 2.8 (1)因果,不稳定(2)因果,稳定(3)因果,稳定 (4)因果,稳定 (5)因果,不稳定 (6)非因果,稳定 (7)因果,稳定 (8)非因果,不稳定 (9)非因果,稳定 (10)因果,稳定2.9 因为系统是因果的,所以0)(,0=<n h n令)()(n n x δ=,)1(5.0)()1(5.0)()(-++-==n x n x n h n h n y 1)1(5.0)0()1(5.0)0(=-++-=x x h h15.05.0)0(5.0)1()0(5.0)1(=+=++=x x h h 5.0)1(5.0)2()1(5.0)2(=++=x x h h25.0)2(5.0)3()2(5.0)3(=++=x x h h 15.0)1(5.0)()1(5.0)(-=-++-=n n x n x n h n h所以系统的单位脉冲响应为)1(5.0)()(1-+=-n u n n h n δ 2.10 (1)初始条件为n <0时,y (n )=0设)()(n n x δ=,输出)(n y 就是)(n h 上式可变为)()1(5.0)(n n h n h δ+-=可得 11)1(5.0)0(=+-=h h 依次迭代求得5.00)0(5.0)1(=+=h h25.00)1(5.0)2(=+=h hnn h n h 5.00)1(5.0)(=+-=故系统的单位脉冲响应为)(5.0)(n u n h n= (2)初始条件为n ≥0时,y (n )=0)]()([2)1(n x n y n y -=-0,0)(≥=n n h2)]0()0([2)1(-=-=-x h h22)]1()1([2)2(-=---=-x h h 32)]2()2([2)3(-=---=-x h hnn h n h 2)1(2)(-=+=所以)1(2)(---=n u n h n2.11 证明(1)因为∑∞-∞=-=*m m n h m x n h n x )()()()(令m n m -=',则)()()'()'()()('n x n h m h m n x n h n x m *=-=*∑∞-∞=(2)利用(1)证明的结果有)]()([)()]()([)(1221n h n h n x n h n h n x **=**∑∞-∞=-*-=m m n h m n hm x )]()()[(12 ∑∑∞-∞=∞-∞=--=m k k m n h k hm x )()()(12交换求和的次序有∑∑∞-∞=∞-∞=--=**k m k m n hm x k h n h n h n x )()()()]()([)(1221∑∞-∞=-*-=k k n h k n x k h)]()()[(12)]()([)(12n h n x n h **=)()]()([21n h n h n x **=(3)∑∞-∞=-+-=+*m m n h m n hm x n h n h n x )]()()[()]()([)(2121∑∑∞-∞=∞-∞=-+-=m m m n hm x m n h m x )()()()(21)()()()(21n h n x n h n x *+*=2.12 ∑∞-∞=--=*=m mn Nm n u am Rn y n x n y )()()()()(∑∞-∞=--=m mNnm n u am Ra)()((a) 当n <0 时,y (n )=0(b) 当10-≤≤N n 时,11/11)/1(1)(11--=--==++=-∑a aa a aaan y n n nnm mn(c) 当N n ≥时,1)/1(1)/1(1)(111--=--==+-+-=-∑a aaa a aaan y N n n NnN m mn最后写成统一表达式:)(1)(11)(111N n u a aa n R a an y N n n N n ---+--=+-++2.13 )]4()([*)()()()(11--=*=n n n u n h n x n y δδ)()4()(4n R n u n u =--=)()()()()(421n u a n R n h n y n y n*=*= )4(1)(113141---+--=-++n u a aan R a an n n2.14 (1)采样间隔为005.0200/1==T)()82sin()(ˆ0nT t nT f t xn a -+=∑∞-∞=δππ)()8100sin(nT t nT n -+=∑∞-∞=δππ (2))85.0sin()(ππ+=n n x数字频率πω5.0=,42=ωπ,周期N =42.15 (1)0)()(0n j n nj j eenn eX ωωωδ-∞-∞=-=-=∑(2)∑∑∞=-+-∞-∞=-==)(0)()(n nj n j n nj j eeen x eX ωωαωω∑∞=--=0)(0n nj eeωωα)(01ωωα---=j ee(3)∑∑∑∞=+-∞=--∞-∞=-===0)(0)()(n nj n nj nn nj j eeeen x eX ωαωαωω)(11ωαj e+--=(4)∑∑∞=--∞-∞=-==00cos )()(n nj nn nj j ne een x eX ωαωωω∑∑∞=----+---∞=-+=+=)()(0][21)(210000n nj j nj j nj nj nj n neeeeeeωωαωωαωωωααωαωαωωωαωωαωω2200)()(cos 21cos 111112100------+----+--=⎥⎦⎤⎢⎣⎡-+-=e e e e e e eeee j j j j j (5)nj N N n n nj j e n N en x eX ωωωπ--=∞-∞=-∑∑⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+==12cos 1)()( ∑∑-=---=-++=1212)(21N Nn nj nNjnNjN Nn nj eeeeωππω⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+--+--=+-+-+-------)()()()()()(1)1(1)1(211)1(ωπωπωπωπωπωπωωωNj NNj NNj Nj NN j NNj j Nj Nj eeeeee eee-0.92-0.380.920.38x (n ) 0nωωωωωωππωωN jj j j N j eN e eNeN eN 232)123()2cos(cos21cos12sin)2sin(------+--+=2.16 (1)⎰⎰⎰-==--πωπωππωωωπωπωπ2121)(21)(d jed jed eeH n h nj nj nj j⎪⎩⎪⎨⎧=--=为奇数为偶数n n n n nππ20)1(1(2))sin()()()(011n n h n x n y ω=*=)cos()()()(022n n h n x n y ω-=*=2.17 (1))(ωj e X -*(2))]()([21ωωj j eX eX -*+(3))]()([2122ωωjje X eX -+(4))(2ωj eX2.18采样间隔为25.0=T ,采样频率π8=Ωs)(1t y a 没有失真,因为输入信号的频率π21=Ω小于π42=Ωs)(2t y a 失真,因为输入信号频率π52=Ω大于π42=Ωs第三章3.1 设)(ωj eX 和)(ωj eY 分别是)(n x 和)(n y 的傅里叶变换,试求下列序列的傅里叶变换: (1))(0n n x - (2) )(*n x (3) )(n x - (4) )(*)(n y n x (5) )()(n y n x ∙ (6) )(n nx(7) )2(n x (8))(2n x(9)⎩⎨⎧===奇数,偶数n n n x n x 0),2()(9解:(1) FT[)(0n n x -]=∑∞-∞=--n nj enn x ω)(0令0n n n -=',0n n n +'=,则FT[)(0n n x -]=)()(00)(ωωωj n j n n n j eX een x -∞-∞=+''-='∑(2) FT[)(*n x ]=)(*])([)(**ωωωj n nj n nj eX en x en x-∞-∞=-∞-∞=-∑∑==(3) FT[)(n x -]=∑∞-∞=--n nj en x ω)(令n n -=',则FT[)(n x -]=∑∞-∞=''n n j en x ω)()(ωj eX -=(4) FT[)(*)(n y n x ]=)(ωj e X )(ωj e Y证明 )(*)(n y n x =∑∞-∞=-m m n y m x )()(FT[)(*)(n y n x ]=∑∑∞-∞=-∞-∞=-n nj m em n y m x ω)]()([令m n k -=,则FT[)(*)(n y n x ]=mj k kj m eek y m x ωω-∞-∞=-∞-∞=∑∑)]()([=mj k m kj em x ek y ωω-∞-∞=∞-∞=-∑∑)()(=)(ωj eX )(ωj eY(5) FT[)()(n y n x ∙] =∑∞-∞=-n nj en y n x ω)()(=∑⎰∞-∞=-'-''n nj nj j ed eeY n x ωωππωωπ])(21)[(=ωπωωππω'∑⎰∞-∞='---'d en x e Y n nj j )()()(21=ωπωωππω''--'⎰d eX eY j j )()(21)(或者 FT[)()(n y n x ]=)(*)(21ωωπj j e Y eX(6) 因为∑∞-∞=-=n nj j en x e X ωω)()(,对该式两边对ω求导,得到j en nx jd e dX n nj j -=-=∑∞-∞=-ωωω)()(FT[)(n nx ]因此 FT[)(n nx ]=ωωd e dX jj )((7) FT[)2(n x ]=∑∞-∞=-n nj en x ω)2(令n n 2=',则FT[)2(n x ]=∑''-'取偶数n n j en x 2)(ω=nj nn en x n x ω21)]()1()([21-∞-∞=-+∑=])()([212121nj n nj nj n e n x een x ωπω-∞-∞=-∞-∞=∑∑+=)]()([21)21(21πωω-+j j eX eX或者FT[)2(n x ]=)()]()([21212121ωωωj j j eX eX eX =+(8) FT[)(2n x ]=∑∞-∞=-n nj en xω)(2利用(5)题结果,令)()(n y n x =,则FT[)(2n x ]=)(*)(21ωωπj j eX eX =ωπωωππω''--'⎰d eX eX j j )()(21)((9) FT[)(9n x ]=∑∞-∞=-取偶数n n nj en x ω)2( 令∞≤'≤∞-='n n n ,2,则FT[)(9n x ]=)()(22ωωj n n n j eX en x ='∑∞-∞='-取偶数3.2 已知⎩⎨⎧≤<<=πωωωωω||,0||,1)(00j eX求)(ωj e X 的傅里叶反变换)(n x 。

数字信号处理试卷及答案 两份

数字信号处理试卷及答案 两份

数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分) 1.δ(n)的Z变换是( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n ) 4.下面描述中最适合离散傅立叶变换DFT的是( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z变换的收敛域为|z|>2,则该序列为()A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0B.∞C. -∞D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

数字信号处理(姚天任江太辉第三版)课后习题答案

数字信号处理(姚天任江太辉第三版)课后习题答案

第二章2.1 判断下列序列是否是周期序列。

若是,请确定它的最小周期。

(1)x(n)=Acos(685ππ+n ) (2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n ) 解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最小周期等于N=)5(16516取k k =。

(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。

因此πωπ162=是无理数,所以不是周期序列。

(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。

因此382=ωπ是有理数,所以是周期序列。

最小周期等于N=)3(838取k k =2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。

(a)1111(b)(c)111110 0-1-1-1-1-1-1-1-1222222 33333444………nnn nnnx(n)x(n)x(n)h(n)h(n)h(n)21u(n)u(n)u(n)a n ===22解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。

(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n)2.3 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λnu(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0 即y(n)=λλ--+111n u(n)2.4 图P2.4所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a nu(n),|a|<1,求系统的输出y(n).解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥32.5 已知一个线性非移变系统的单位取样响应为h(n)=an-u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。

(完整版)数字信号处理试卷及答案_程培青(第三版),推荐文档

(完整版)数字信号处理试卷及答案_程培青(第三版),推荐文档

《数字信号处理》试卷 A 第 6 页 ( 共 6 页 )
数字信号处理基础 试卷答案及评分标准
一、 填空题:(共 28 分,每空 2 分)
7
建议收藏下载本文,以便随时学习! (1)2y(n),y(n-3) (2)f≥2fs (3)N,抽样 (4) X (k) xnWNnk n0
(5)递归型
(6)8
Z-1 0.5 -1.4
Z-1 -0.8 1
Z-1
Z-1
-0.8
1
3、
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十多个OK地方价格
复加所需时间T1 0.5106 N N 1 0.5106 512 511 0.130816s
所以T T1 T2 1.441536s
2、用 FFT 计算
复乘所需时间
T1
5 106
N 2
log2
N
5 106
512 2
log2
512
0.01152s
复加所需时间T2 0.5106 N log2 N 0.5106 512 log2 512 0.002304s
3、请画出 8 点的按频率抽取的(DIF)基-2 FFT 流图,要求输入自然数顺序,输出倒 位序。
2、用级联型结构实现以下系统函数,试问一共能构成几种级联型网络,并画出结构 图。
4Z 1Z 2 1.4Z 1 H (z) Z 0.5Z 2 0.9Z 0.8
专业班级:
学院名称
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十多个OK地方价格

A. 1
B.δ(w)
C. 2πδ(w)

7月浙江自考数字信号处理试题及答案解析

7月浙江自考数字信号处理试题及答案解析

1浙江省2018年7月自学考试数字信号处理试题课程代码:02356一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.若信号频带宽度有限,要想对该信号抽样后能够不失真地还原出原信号,则抽样频率Ωs和信号谱的最高频率Ωc 必须满足( ) A.Ωs <Ωc B.Ωs >ΩcC.Ωs <2ΩcD.Ωs >2Ωc2.下列系统(其中y (n )为输出序列,x (n )为输入序列)中哪个属于线性系统?( ) A.y (n )=y (n -1)x (n ) B.y (n )=nx (n ) C.y (n )=x (2n ) D.y (n )=x (n )-y (n -1)3.序列x (n )=cos ⎪⎭⎫⎝⎛n 5π3的周期为( ) A.3 B.5 C.10D.∞4.序列x (n )=0.5n u (n )的能量为( ) A.0.5 B.2 C.5D.∞5.已知某序列Z 变换的收敛域为∞>|z |>0,则该序列为( ) A.有限长序列 B.右边序列 C.左边序列D.双边序列6.序列共轭对称分量的傅里叶变换等于序列傅里叶变换的( ) A.共轭对称分量 B.共轭反对称分量 C.实部D.虚部7.线性移不变系统的系统函数的收敛域为|z |<2,则可以判断系统为( ) A.因果稳定系统 B.因果非稳定系统 C.非因果稳定系统D.非因果非稳定系统2 8.下面说法中正确的是( )A.连续非周期信号的频谱为非周期连续函数B.连续周期信号的频谱为非周期连续函数C.离散非周期信号的频谱为非周期连续函数D.离散周期信号的频谱为非周期连续函数9.已知序列x (n )=R N (n ),其N 点的DFT 记为X (k ),则X (0)=( ) A.N -1 B.1 C.0D.N10.已知符号W N =Nj eπ2-,则∑-=1N n nN NW=( )A.0B.1C.N -1D.N11.已知DFT [x (n )]=X (k ),0≤n ,k <N ,下面说法中正确的是( ) A.若x (n )为虚数圆周偶对称序列,则X (k )为实数圆周奇对称序列 B.若x (n )为虚数圆周偶对称序列,则X (k )为实数圆周偶对称序列 C.若x (n )为虚数圆周偶对称序列,则X (k )为虚数圆周奇对称序列 D.若x (n )为虚数圆周偶对称序列,则X (k )为虚数圆周偶对称序列12.已知N 点有限长序列X (k )=DFT [x (n )],0≤n ,k <N ,则N 点DFT [nlN W -x (n )]=( )A.X ((k +l ))N R N (k )B.X ((k -l ))N R N (k )C.km N W -D.kmN W13.如题图所示的滤波器幅频特性曲线,可以确定该滤波器类型为( )A.低通滤波器B.高通滤波器C.带通滤波器D.带阻滤波器14.对5点有限长序列[1 3 0 5 2]进行向右1点圆周移位后得到序列( )A.[1 3 0 5 2]B.[2 1 3 0 5]C.[3 0 5 2 1]D.[3 0 5 2 0]15.下列各种滤波器的结构中哪种不是IIR滤波器的基本结构?( )A.直接型B.级联型C.频率抽样型D.并联型二、判断题(本大题共5小题,每小题2分,共10分)判断下列各题,正确的在题后括号内打“√”,错的打“×”。

(完整word版)数字信号处理试卷及答案两份.docx

(完整word版)数字信号处理试卷及答案两份.docx

数字信号处理试卷及答案1一、填空题(每空1分, 共 10分)1.序列x(n)sin(3n / 5) 的周期为。

2.线性时不变系统的性质有律、律、律。

3.对x(n)R4(n)的Z 变换为,其收敛域为。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为。

5.序列 x(n)=(1 ,-2,0,3;n=0,1,2,3), 圆周左移 2 位得到的序列为。

6 .设LTI系统输入为x(n),系统单位序列响应为h(n) ,则系统零状态输出y(n)=。

7.因果序列x(n) ,在Z→∞时,X(Z)=。

二、单项选择题(每题 2 分 ,共 20分)1(.)A.1δ(n)B.δ ( ω)的ZC.2πδ (ω )变换D.2 π是2.序列x(1n)的长度为4,序列x(2n)的长度为3,则它们线性卷积的长度是()A. 3 B. 4 C. 6 D. 73.LTI系统,输入x(n)时,输出y( n);输入为3x( n-2),输出为()A. y (n-2)B.3y ( n-2)C.3y( n)D.y (n)4 .下面描述中最适合离散傅立叶变换DFT()的是A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过即可完全不失真恢复原信号() A. 理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D. 理想带阻滤波器6.下列哪一个系统是因果系统() A.y(n)=x(n+2) B.y(n)=cos(n+1)x (n) C.y(n)=x(2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括()A. 实轴B.原点C.单位圆D.虚轴8.已知序列 Z变换的收敛域为| z | >2 ,则该序列为() A. 有限长序列 B.无限长序列 C.反因果序列 D. 因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k) 恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是()A.N≥ MB.N ≤MC.N≤ 2MD.N≥ 2M10.设因果稳定的LTI系统的单位抽样响应h(n) ,在 n<0时, h(n)=()A.0 B . ∞ C.-∞ D.1三、判断题(每题 1 分 ,共 10分)1 .序列的傅立叶变换是频率ω 的周期函数,周期是2 π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档