数据结构复习提纲

合集下载

数据结构复习提纲

数据结构复习提纲

《数据结构》复习提纲参考书:《数据结构》(C语言版)严蔚敏吴伟民编著清华大学出版社考试范围:第一章~第七章、第九章~第十章第1章绪论什么是数据结构;基本概念和术语,数据结构分类;抽象数据类型的表示和实现;逻辑结构、存储结构异同;算法和算法分析包括:算法、算法设计的要求、算法效率的度量、算法的存储空间需求第2章线性表线性表的类型定义,掌握基本概念。

线性表的顺序表示和实现线性表的链式表示和实现线性链表、循环链表、双向链表第3章栈和队列栈和队列的基本概念和基本操作栈抽象数据类型栈的定义栈的表示和实现栈的应用举例队列抽象数据类型队列的定义链队列——队列的链式表示和实现循环队列——队列的顺序表示和实现顺序表示和实现第4章串串类型的定义串的表示和实现定长顺序存储表示堆分配存储表示串的块链存储表示第5章数组和广义表数组的定义数组的顺序表示和实现矩阵的压缩存储特殊矩阵稀疏矩阵及三元组表示广义表的定义及其存储结构第6章树和二叉树掌握数和二叉树的基本概念和基本操作树的定义和基本术语二叉树二叉树的定义二叉树的性质二叉树的存储结构遍历二叉树树和森林树的存储结构森林与二叉树的转换树和森林的遍历赫夫曼树及其应用第7章图图的定义和术语图的存储结构数组表示法邻接表十字链表邻接多重表图的遍历深度优先搜索广度优先搜索图的连通性问题无向图的连通分量和生成树最小生成树有向无环图及其应用拓扑排序关键路径最短路径第9章查找静态查找表顺序表的查找有序表的查找索引顺序表的查找动态查找表二叉排序表和平衡二叉树B_树和B+树哈希表第10章内部排序了解、掌握各种排序方法的大致思路插入排序直接插入排序其它插入排序希尔排序快速排序选择排序简单选择排序树形选择排序堆排序C语言考试大纲C语言程序设计的考试内容一、C语言程序的结构1.程序的构成,main函数和其他函数。

2.头文件、数据说明、函数的开始和结束标志以及程序中的注释。

3.源程序的书写格式。

4.C语言的风格。

(完整word版)数据结构复习提纲

(完整word版)数据结构复习提纲

数据结构复习提纲复习内容:基本概念掌握:数据结构,逻辑结构,存储结构;数据类型;算法;T(n),S(n)的理解。

要学习的数据结构定义形式:n(n〉=0)个数据元素的有限集合.将约束:1、数据元素本身.2、数据元素之间的关系。

3、操作子集。

大多有两种存储(表示、实现)方式:1、顺序存储。

2、链式存储.一、线性结构:1、线性表:n(n〉=0)个相同属性的数据元素的有限序列。

12种基本操作.顺序表:9种基本操作算法实现.单链表:11种基本操作算法实现。

(重点:插入、删除)顺序表与单链表之时间性能、空间性能比较.循环链表:类型定义与单链表同。

算法实现只体现在循环终止的条件不同。

双向链表:重点插入、删除算法。

2、操作受限的线性表有:栈、队列。

栈:顺序栈;链栈(注意结点的指针域指向)。

(取栈顶元素、入栈、出栈)队列:循环队列(三个问题的提出及解决);链队列(注意头结点的作用).(取队头元素、入队、出队。

链队列中最后一个元素出队)3、数据元素受限的线性表有:串、数组、广义表。

串:定长顺序存储;堆分配存储.块链存储(操作不方便)数组:顺序存储。

特殊矩阵的压缩存储;稀疏矩阵(三元组表示、十字链表)广义表:长度、深度.取表头(可以是原子也可以是子表);取表尾(肯定是子表)。

链式存储。

二、树型结构:1、树:n(n>=0)个数据元素的有限集合.这些数据元素具有以下关系:……。

(另有递归定义。

)术语;存储(双亲表示、孩子表示、孩子双亲表示、孩子兄弟表示)。

2、二叉树:n(n〉=0)个数据元素的有限集合。

这些数据元素具有以下关系:……。

(另有递归定义)5个性质(理解、证明;拓展)。

遍历二叉树(定义、序列给出、递归算法、非递归算法);遍历二叉树应用:表达式之前序表达式、后序表达式、中序表达式转换。

线索二叉树(中序线索二叉树)。

树森林与二叉树的转换。

树与森林的遍历.赫夫曼树及其应用:定义、构造、赫夫曼编码。

三、图形结构:n(n〉=0)个数据元素的有限集合。

数据结构复习资料复习提纲知识要点归纳

数据结构复习资料复习提纲知识要点归纳

数据结构复习资料复习提纲知识要点归纳数据结构复习资料:复习提纲知识要点归纳一、数据结构概述1. 数据结构的定义和作用2. 常见的数据结构类型3. 数据结构与算法的关系二、线性结构1. 数组的概念及其特点2. 链表的概念及其分类3. 栈的定义和基本操作4. 队列的定义和基本操作三、树结构1. 树的基本概念及定义2. 二叉树的性质和遍历方式3. 平衡二叉树的概念及应用4. 堆的定义和基本操作四、图结构1. 图的基本概念及表示方法2. 图的遍历算法:深度优先搜索和广度优先搜索3. 最短路径算法及其应用4. 最小生成树算法及其应用五、查找与排序1. 查找算法的分类及其特点2. 顺序查找和二分查找算法3. 哈希查找算法及其应用4. 常见的排序算法:冒泡排序、插入排序、选择排序、归并排序、快速排序六、高级数据结构1. 图的高级算法:拓扑排序和关键路径2. 并查集的定义和操作3. 线段树的概念及其应用4. Trie树的概念及其应用七、应用案例1. 使用数据结构解决实际问题的案例介绍2. 如何选择适合的数据结构和算法八、复杂度分析1. 时间复杂度和空间复杂度的定义2. 如何进行复杂度分析3. 常见算法的复杂度比较九、常见问题及解决方法1. 数据结构相关的常见问题解答2. 如何优化算法的性能十、总结与展望1. 数据结构学习的重要性和难点2. 对未来数据结构的发展趋势的展望以上是数据结构复习资料的复习提纲知识要点归纳。

希望能够帮助你进行复习和回顾,加深对数据结构的理解和掌握。

在学习过程中,要注重理论与实践相结合,多进行编程练习和实际应用,提高数据结构的实际运用能力。

祝你复习顺利,取得好成绩!。

数据结构(复习提纲)【整理】

数据结构(复习提纲)【整理】

2010年复习提纲第一章数据、数据结构的概念;基本逻辑结构的种类;集合线性树形图状基本存储方式的种类;顺序链式散列索引算法、算法的时间复杂度以及其计算。

算法的五大特性:输入输出确定性有穷性有效性时间复杂度的计算:忽略常数与中间变量,循环套循环用乘法第二章线性表的概念;顺序存储和链接存储的线性表的数据结构、特性;顺序存储的特性:查找方便,不易扩充链接存储的特性:插入删除方便顺序存储和链接存储的线性表的基本算法:创建、插入、查找、删除等;链表的其他形式(带表头、循环、双向、双向循环等)的概念及基本算法(与一般链表的不同处)。

带表头:便于其后结点执行标准化操作循环:首尾相接双向:既可以查找前继又可以查找后继双向循环:结合以上两点链表逆转;第二章相关算法列举如下1.。

顺序线性表的插入Int sq_insert(int list[],int *p_n,int i,int x) { Int j;If(i<0||i>*p_n) return(1);If(*p_n==MAXSIZE) return(2);For(j=*p_n;j>I;j--)List[j]=list[j-1];List[i]=x;(*p_n)++;Return(0);} 2.顺序线性表的删除Int sq_delete(int list[],int *p_n,int i) {Int j;If(i<0||i>=*p_n) return(1);For(j=i+1;j<*p_n;j++)List[j-1]=list[j];(*p_n)--;Return(0);}3.链式线性表的创建NODE *create_link_list(int n){ int i;NODE *p,*q;NODE *p_head;if(n==0) return(NULL);p_head=new(NODE);p_head->data=-1;p=p_head;for(i=1;i<=n;i++){printf("请输入第%d个节点的值\n",i);q=new(NODE);scanf("%d",&(q->data));p->link=q;p=q;}q->link=NULL;return(p_head);/*返回的是假头*/ ※4.链式线性表的插入(i之后)Int insert(NODE* *p_head,int i,int a) { int n=0;NODE *p,*q,*r;p=*p_head;if(i<1) return(0);while((p!=NULL)&&(n<i)){If(p->data!=-1) n++;q=p;p=p->link;}r=new(NODE);r->data=a;r->link=q->link;q->link=r;}※5.链式线性表的删除int del(NODE* *p_head,int I) { NODE *p,*q;int n=0;p=*p_head;if(i<1) return(0);while((p!=NULL)&&(n<i)){If(p->data!=-1) n++;q=p;p=p->link;}if(p==NULL) return(0);q->link=p->link;delete(p);return(1);} 6.单链表的逆置NODE * reverse(NODE *head) {NODE *p,*q;P=head->next;Head->next=NULL;While(p){Q=p->next;p->next=head->next;head->next=p;p=q;}return(head);}7.试写一高效的算法,删除表中所有大于mink且小于maxk的元素Void Delete_between(int a[],int mink,int maxk){p=L;while(p->next->data<=mink) p=p->next;(本循环结束时p是最后一个不大于mink的元素)if(p->next)(如果还有比mink更大的元素){q=p->next;while(q->data<maxk) q=q->next;(本循环结束时q 是第一个不小于maxk 的元素)p->next=q;}}第三章栈与队列的概念;栈:只允许在一端进行插入和删除的线性表队列:只允许在一端进行插入,且只允许在另一端进行删除的线性表顺序栈和链栈的数据结构与基本算法;顺序队列(尤其是循环队列)和链队列的数据结构与基本算法;栈的应用算法;如何判断顺序栈的空与满、如何判断循环队列的空与满;判断顺序栈的空与满:若top的初始值是-1 则判空条件是if(top==-1) 判满条件是if(top==MAXN)若top的初始值是0 则判空条件是if(top==0) 判满条件是if(top==MAXN-1)判断循环队列的空与满{Head=0,tail=0;判断循环队列的空与满的条件都是if(head==tail)}中缀表达式与后缀表达式规则以及两者间的转换。

数据结构_(严蔚敏C语言版)_学习、复习提纲.

数据结构_(严蔚敏C语言版)_学习、复习提纲.

期末复习 第一章 绪论 复习1、计算机算法必须具备输入、输出、可行性、确定性、有穷性5个特性。

2、算法分析的两个主要方面是空间复杂度和时间复杂度。

3、数据元素是数据的基本单位。

4、数据项是数据的最小单位。

5、数据结构是带结构的数据元素的集合。

6、数据的存储结构包括顺序、链接、散列和索引四种基本类型。

基础知识数据结构算 法概 念逻辑结构 存储结构数据运算数据:计算机处理的信息总称 数据项:最小单位 数据元素:最基本单位数据对象:元素集合数据结构:相互之间存在一种或多种特定关系的数据元素集合。

概念:数据元素之间的关系 线性结构:一对一非线性结构 树:一对多 图:多对多顺序存储结构 链表存储结构 索引。

散列。

算法描述:指令的有限有序序列算法特性 有穷性 确定性 可行性 输入 输出 算法分析时间复杂度 空间复杂度第二章 线性表 复习1、在双链表中,每个结点有两个指针域,包括一个指向前驱结点的指针 、一个指向后继结点的指针2、线性表采用顺序存储,必须占用一片连续的存储单元3、线性表采用链式存储,便于进行插入和删除操作4、线性表采用顺序存储和链式存储优缺点比较。

5、简单算法第三章 栈和队列 复习线性表顺序存储结构链表存储结构概 念基本特点基本运算定义逻辑关系:前趋 后继节省空间 随机存取 插、删效率低 插入 删除单链表双向 链表 特点一个指针域+一个数据域 多占空间 查找费时 插、删效率高 无法查找前趋结点运算特点:单链表+前趋指针域运算插入删除循环 链表特点:单链表的尾结点指针指向附加头结点。

运算:联接1、 栈和队列的异同点。

2、 栈和队列的基本运算3、 出栈和出队4、 基本运算第四章 串 复习栈存储结构栈的概念:在一端操作的线性表 运算算法栈的特点:先进后出 LIFO初始化 进栈push 出栈pop队列顺序队列 循环队列队列概念:在两端操作的线性表 假溢出链队列队列特点:先进先出 FIFO基本运算顺序:链队:队空:front=rear队满:front=(rear+1)%MAXSIZE队空:frontrear ∧初始化 判空 进队 出队取队首元素第五章 数组和广义表 复习串存储结构运 算概 念顺序串链表串定义:由n(≥1)个字符组成的有限序列 S=”c 1c 2c 3 ……cn ”串长度、空白串、空串。

数据结构复习提纲

数据结构复习提纲

复习提纲:第一章:1.数据结构的基本概念;2.数据结构的4类基本结构及其特性;3.存储结构的分类及特点;4.算法的时间复杂度计算;第二章:1.线性表的基本概念;2.线性表的顺序存储结构的特点和插入删除算法;3.顺序存储结构的应用;4.单循环链表的存储结构特点,链表空的判断方法、插入、删除结点算法实现,报数游戏算法实现;5.双链表的存储特点,插入、删除结点算法实现。

第三章:1.栈的特点、对同一序列根据栈的特点进行不同入栈、出栈操作所得结果的判断;栈的实现的相关操作;2.顺序栈的4各要素和相关操作关键语句;链栈的4个要素和相关操作关键语句;3.了解队列的特点和可执行的基本操作,并能做相关判断;4.顺序循环队列的队空、队满判断条件,入队、出队操作的相关关键语句;5.顺序循环队列中对同一序列根据队列进行不同的入队、出队操作后队头和队尾指针的变化判断。

第四章:1.串的定义、串长的定义和计算、子串个数计算(注意区分:子串与非空且不同于S本身的子串);2.串的模式匹配(区分BF算法和KMP算法),掌握使用KMP算法计算next数组的值,并且要求掌握匹配过程(BF和KMP的匹配过程不同!)。

前三章程序重点掌握作业四、作业五、作业六、作业八、作业九第五章:1.特殊矩阵的压缩存储地址计算,稀疏矩阵的压缩存储结构图。

2.广义表的定义、区分原子和子表,求表头和表尾,深度和层次计算,存储结构图绘制;3.提供一广义表,写出通过head()和tail()操作求出某个原子的表达式。

4.注意:取表头时即广义表的第一个元素,外面不再加括号;而取表尾时,要将除表头元素外的其他元素一起用圆括号括起来,即将原广义表去掉表头;第六章:1.树的定义和相关基本术语;2.树的表示和各种存储结构的表示;3.二叉树的定义和结点形态;4.熟练使用二叉树的性质进行相关计算;5.掌握提供边集画树及树的存储结构图并将树转换为二叉树;6.根据后序遍历和中序遍历的序列画出二叉树直观图,并给出其先序遍历的序列,画出线索二叉树存储结构图;7.根据二叉树的顺序存储结构图,画出二叉树及二叉链存储结构图,并给出该二叉树转换后的森林。

数据结构复习提纲

数据结构复习提纲

数据结构复习提纲一、线性表线性表是最基本的数据结构之一,它是具有相同数据类型的 n 个数据元素的有限序列。

1、顺序表定义和特点:顺序表是用一组地址连续的存储单元依次存储线性表的数据元素。

存储结构:通常使用数组来实现。

基本操作:插入、删除、查找、遍历等。

时间复杂度分析:插入和删除操作在平均情况下的时间复杂度为O(n),查找和遍历操作的时间复杂度为 O(n)。

2、链表定义和特点:链表是通过指针将各个数据元素链接起来的一种存储结构。

单链表:每个节点包含数据域和指针域,指针域指向链表的下一个节点。

双链表:节点包含两个指针域,分别指向前驱节点和后继节点。

循环链表:尾节点的指针指向头节点,形成一个环形结构。

基本操作:插入、删除、查找等。

时间复杂度分析:插入和删除操作在平均情况下的时间复杂度为O(1),查找操作的时间复杂度为 O(n)。

二、栈和队列1、栈定义和特点:栈是一种限制在一端进行插入和删除操作的线性表,遵循“后进先出”的原则。

存储结构:顺序栈和链栈。

基本操作:入栈、出栈、栈顶元素获取等。

应用:表达式求值、括号匹配、函数调用等。

2、队列定义和特点:队列是一种在一端进行插入操作,在另一端进行删除操作的线性表,遵循“先进先出”的原则。

存储结构:顺序队列和链队列。

基本操作:入队、出队、队头元素获取等。

循环队列:解决顺序队列“假溢出”问题。

应用:层次遍历、消息队列等。

三、串1、串的定义和存储方式定长顺序存储堆分配存储块链存储2、串的基本操作串的赋值、连接、比较、求子串等。

3、模式匹配算法朴素的模式匹配算法KMP 算法:理解其原理和计算 next 数组的方法。

四、数组和广义表1、数组数组的定义和存储结构数组的地址计算特殊矩阵的压缩存储(如对称矩阵、三角矩阵、稀疏矩阵)2、广义表广义表的定义和表示广义表的递归算法1、树的基本概念定义、术语(如节点、度、叶子节点、分支节点、父节点、子节点、兄弟节点、层次等)树的性质2、二叉树定义和特点二叉树的性质完全二叉树和满二叉树3、二叉树的存储结构顺序存储链式存储4、二叉树的遍历先序遍历中序遍历后序遍历层序遍历5、二叉树的递归和非递归遍历算法实现线索化的目的和方法7、树、森林与二叉树的转换8、哈夫曼树定义和构造方法哈夫曼编码六、图1、图的基本概念定义、术语(如顶点、边、权、有向图、无向图、邻接矩阵、邻接表等)2、图的存储结构邻接矩阵邻接表十字链表邻接多重表3、图的遍历深度优先搜索(DFS)广度优先搜索(BFS)4、图的应用最小生成树(Prim 算法、Kruskal 算法)最短路径(Dijkstra 算法、Floyd 算法)拓扑排序关键路径七、查找1、查找的基本概念关键字、平均查找长度等2、顺序查找算法实现时间复杂度3、折半查找算法实现时间复杂度判定树4、分块查找5、二叉排序树定义和特点插入、删除操作查找算法6、平衡二叉树定义和调整方法7、 B 树和 B+树结构特点基本操作8、哈希表哈希函数的构造方法处理冲突的方法(开放定址法、链地址法等)八、排序1、排序的基本概念排序的稳定性2、插入排序直接插入排序折半插入排序希尔排序3、交换排序冒泡排序快速排序4、选择排序简单选择排序堆排序5、归并排序6、基数排序7、各种排序算法的时间复杂度、空间复杂度和稳定性比较。

数据结构复习提纲

数据结构复习提纲

数据结构复习提纲第一章绪论1.基本术语:数据,数据元素,数据对象,数据结构及其分类。

2.什么是算法?算法的特性。

3.时间复杂度及其简单计算。

第二章线性表1.线性表的定义,线性表的存储结构常有哪几种?各有何优缺点?2.顺序表的类型说明及其基本操作算法的实现3.链表结构的类型说明及其基本操作算法的实现。

表空条件,申请结点,插入,删除操作语句。

第三章栈和队列1.栈的定义及其特点。

队列的定义及其特点。

2.顺序栈的类型说明及其算法实现。

栈空,栈满条件,入栈出栈操作语句。

3.循环队列的类型说明及其算法实现。

队空,队满条件,入队出队操作,计算队列的长度语句。

第五章数组与广义表1.二维数组的两种存储方式及地址计算。

2.矩阵的压缩存储,对称矩阵,三角矩阵的地址计算。

3.什么是稀疏矩阵?稀疏矩阵的两种存储结构,算法的实现。

4.广义表的定义。

广义表的两种存储结构,广义表的表头,表尾计算第六章树和二叉树1.树的概念与定义。

2.二叉树。

满二叉树,完全二叉树的定义,二叉树的性质及其证明。

3.二叉树的存储结构及其类型说明。

4.二叉树的三种遍历及其递归算法实现。

5.树的三种存储结构。

6.树,森林与二叉树的转换。

7.哈夫曼树的定义。

哈夫曼树的构造及其哈夫曼编码。

第七章图1.图的定义及其术语。

2.图的存储结构。

邻接表,邻接矩阵。

3.图的深度,广度遍历及其应用4.最小生成树的两种构造算法。

5.什么是AOV网?拓扑排序的定义及其方法。

6.求关键路径的算法及其计算。

7.从源点到其余各顶点的最短路径的算法及其计算。

8.各对顶点的最短路径的算法及其计算。

第九章查找1.顺序表的查找算法及其算法实现ASL计算。

2.有序表的查找算法及其算法实现。

ASL计算3.二叉排序树的定义,特点,构造及其查找算法的实现ASL 计算。

4.B-树的定义,插入,删除,构造。

5.哈希函数,哈希冲突的定义。

构造哈希函数的方法,解决冲突的方法。

6.给出哈希函数,哈希冲突的解决方法,构造哈希表ASL计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构复习提纲复习内容:基本概念掌握:数据结构,逻辑结构,存储结构;数据类型;算法;T(n),S(n)的理解。

要学习的数据结构定义形式:n(n>=0)个数据元素的有限集合。

将约束:1、数据元素本身。

2、数据元素之间的关系。

3、操作子集。

大多有两种存储(表示、实现)方式:1、顺序存储。

2、链式存储。

一、线性结构:1、线性表:n(n>=0)个相同属性的数据元素的有限序列。

12种基本操作。

顺序表:9种基本操作算法实现。

单链表:11种基本操作算法实现。

(重点:插入、删除)顺序表与单链表之时间性能、空间性能比较。

循环链表:类型定义与单链表同。

算法实现只体现在循环终止的条件不同。

双向链表:重点插入、删除算法。

2、操作受限的线性表有:栈、队列。

栈:顺序栈;链栈(注意结点的指针域指向)。

(取栈顶元素、入栈、出栈)队列:循环队列(三个问题的提出及解决);链队列(注意头结点的作用)。

(取队头元素、入队、出队。

链队列中最后一个元素出队)3、数据元素受限的线性表有:串、数组、广义表。

串:定长顺序存储;堆分配存储。

块链存储(操作不方便)数组:顺序存储。

特殊矩阵的压缩存储;稀疏矩阵(三元组表示、十字链表)广义表:长度、深度。

取表头(可以是原子也可以是子表);取表尾(肯定是子表)。

链式存储。

二、树型结构:1、树:n(n>=0)个数据元素的有限集合。

这些数据元素具有以下关系:……。

(另有递归定义。

)术语;存储(双亲表示、孩子表示、孩子双亲表示、孩子兄弟表示)。

2、二叉树:n(n>=0)个数据元素的有限集合。

这些数据元素具有以下关系:……。

(另有递归定义)5个性质(理解、证明;拓展)。

遍历二叉树(定义、序列给出、递归算法、非递归算法);遍历二叉树应用:表达式之前序表达式、后序表达式、中序表达式转换。

线索二叉树(中序线索二叉树)。

树森林与二叉树的转换。

树与森林的遍历。

赫夫曼树及其应用:定义、构造、赫夫曼编码。

三、图形结构:n(n>=0)个数据元素的有限集合。

这些数据元素具有以下关系:……。

术语掌握。

存储结构(数组表示法、邻接表;无向图的邻接多重表)。

图的遍历及应用:无向图的最小生成树(普里姆算法、克鲁斯卡尔算法);拓扑排序、关键路径。

四、查找(查找表):相关概念掌握。

静态查找表:顺序表的查找;有序表的查找;动态查找表:二叉排序树、A VL树的定义及调整。

哈希表:定义及概念;HASH函数;五、内部排序:概念掌握。

插入排序:直接插入排序、折半插入排序、希尔排序交换排序:起泡排序、快速排序选择排序:冒泡、简单选择排序归并排序(外部排序基础)基数排序(链式基数排序)要求:1、排序算法。

2、各种排序算法的O(n)、稳定性。

模拟卷一、填空题1、在用于表示有向图的邻接矩阵中,对第i行的元素进行累加,可得到第i 个顶点的(出)度,而对第j列的元素进行累加,可得到第j个顶点的(入)度。

2、一个连通图的生成树是该图的(极小)连通子图。

若这个连通图有n个顶点,则它的生成树有(N-1)条边。

3、对算法从时间和空间两方面进行度量,分别称为()、()分析。

4、二叉树第i层上最多有( 2i-1 )个结点。

一个二叉树中每个结点最多只有( 2 )个孩子。

5、一棵二叉树有67个结点,这些结点的度要么是0,要么是2。

这棵二叉树中度为2的结点有()个。

6.设一棵二叉树结点的先根序列为A BDECFGH,中根序列为DEBAFCHG,则二叉树中叶子结点是()7.设栈S和队列Q的初始状态皆为空,元素a1,a2,a3,a4,a5和a6依次通过一个栈,一个元素出栈后即进入队列Q,若6个元素出队列的顺序是a3,a5,a4,a6,a2,a1则栈S至少应该容纳( 4 )个元素。

8、循环队列判断队满的条件为()。

9、将两个长度分别m和n(m>n)的排好序的表归并成一个排好序的表,至少要进行(n )次键值比较。

10. 已知在一棵含有n个结点的树中,只有度为k的分支结点和度为0的叶子结点,则该树中含有的叶子结点的数目为((2+NK-2N)/K。

)。

度:一个结点含有的子树的个数称为该节点的度;公式:一个有限图中,各点的度数总和是边数的2倍;而树中的边数为点数减1。

设有x个叶节点,那么分支节点数为N-x各点度数总和为:x*0+(N-x)*K=2*(N-1);最后计算得到叶节点个数为(2+NK-2N)/K。

11. 采用散列技术实现散列表时,需要考虑的两个主要问题是:构造( )和解决( )。

12. 试计算下面程序段时间复杂度( )。

for(i = 1; i <= n; i++)for(j = 1; j<=i; j++)x = x + delta;13. 已知一棵度为3的树有2个度为1的结点,3个度为2的结点,4个度为3的结点,则该树有( )个叶子结点。

出度=入度。

一个结点的度是指它的儿子结点的个数,因此实际是指它的出度。

而每个结点的入度有且仅有一个(根结点入度为0,除外)。

叶子结点的出度为0。

据此可得:入度=结点个数-1;设叶子结点数为X个,则根据题意,入度=X+4+2+2+1-1=X+8;出度=0×X+1×4+2×2+3×2+4×1=18;(结点×结点度数)故X+8=18 X=10;14. G是一个非连通无向图,共有28条边,则该图至少有( 9 )个顶点。

假设有8个顶点,则8个顶点的无向图最多有28条边且该图为连通图连通无向图构成条件:边=顶点数*(顶点数-1)/2顶点数>=1,所以该函数存在单调递增的单值反函数所以边与顶点为增函数关系所以28个条边的连通无向图顶点数最少为8个所以28条边的非连通无向图为9个(加入一个孤立点)15. 己知有序表为(12,18,24,35,47,50,62,83,90,115,134),当用折半查找方法查找90时,需比较( )次查找成功,47需比较( )次查找成功,查100时,需比较_( )次才能确定不成功。

二、选择题:1.下列有关线性表的叙述中,正确的是(a )A、线性表中的元素之间隔是线性关系B、线性表中至少有一个元素C、线性表中任何一个元素有且仅有一个直接前趋D、线性表中任何一个元素有且仅有一个直接后继2.分别用front和rear表示顺序循环队列的队首和队尾指针,则判断队空的条件是___.A.front+1==rearB.(rear+1) % maxSize == frontC.front==0D.front==rear3.下列关于串的叙述中,正确的是( )A、一个串的字符个数即该串的长度B、一个串的长度至少是1C、空串是由一个空格字符组成的串D、两个串S1和S2若长度相同,则这两个串相等4.设结点x和结点y是二叉树T中的任意两个结点,若在先根序列中x在y之前,而在后根序列中x在y之后,则x和y的关系是( )A、x是y的左兄弟B、x是y的右兄弟C、x是y的祖先D、x是y的后代5. 广义表A=( a, b, ( c, d ), ( e, ( f, g ) ) ),则Head( Tail( Head( Tail( Tail( A ) ) ) ) ) 的值为.A. (g)B. (d)C. cD. d6. 一个栈的输入序列为1 2 3 4 5,则下列序列中不可能是栈的输出序列的是()A. 2 3 4 1 5B. 5 4 1 3 2C. 2 3 1 4 5D. 1 5 4 3 27. 一棵完全二叉树上有1001个结点,其中叶子结点的个数是( D )A.250 B.500 C.254 D.501对于满二叉树来讲,高度为9得总结点数是511个,高度为10得总结点数是1023个。

这样题目中要求的完全二叉树应是高度为10的完全二叉树,完全二叉树的叶结点在最下面两层,本题中就是在第9、第10两层出现。

第10层叶结点数目是:1001-511=490(即总结点数-前9层结点的总数目)。

第9层叶结点数目是:对于满二叉树,第10层的结点数应该是512个,而现在的完全二叉树的第10层有490个结点,相对于完全二叉树少了22个结点,少的这22个结点将导致第9层出现22/2=11个叶结点。

所以这棵完全二叉树得总的叶子结点数是:490+11=501。

8. 三维数组A[5][6][7]按行优先存储方法存储在内存中,若每个元素占2个存储单元,数组元素下标从0开始,且数组中第一个元素的存储地址为120,则元素A[4][4][5]的存储地址为()A. 518B. 520C. 522D. 5249. 若某线性表最常用的操作是存取任一指定序号的元素和在最后进行插入和删除运算,则利用( C )存储方式最节省时间。

A.顺序表B.双链表C.带头结点的双循环链表D.单循环链表选择C,明显带头节点的双向链表,查找尾元素最简单。

这样插入元素最为方便。

10. 在长度为n的顺序表的第i(1≤i≤n+1)个位置上插入一个元素,元素的移动次数为(A)A. n-i+1B. n-iC. iD. i-1(1)顺序表中访问任意一个结点的时间复杂度均为0(1)(2)在有n个结点的顺序表上做插入、删除结点运算的时间复杂度为0(n).(3)在一个长度为n的顺序表中删除第i个元素,要移动n-i个元素。

(4)在一个长度为n的顺序表,如果要在第i个元素前插入一个元素,要后移n-i+1。

(5)等概率情况下,在有n个结点的顺序表上做插入结点运算,需平均移动结点的数为n/2.(6)等概率情况下,在有n个结点的顺序表上做删除结点运算,需平均移动结点的数目为(n-1)/2.11. 已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为()。

A.CBEFDA B.FEDCBA C.CBEDFA D.不定已知一棵二叉树前序遍历和中序遍历分别为ABDEGCFH和DBGEACHF,则该二叉树的后序遍历是什么?先序遍历的第一个结点是根结点,所以A是根,然后在中序遍历中找到A,(DBGE)A(CHF),由中序遍历的定义知(DBGE)是左子树的中序遍历,(CHF)是右子树的中序遍历。

然后在先序遍历中把左子树和右子树划开,A(BDEG)(CHF),所以B是左子树根,C是右子树根。

然后继续在中序遍历中找到B和C,((D)B(GE))A(C(HF))。

对于DBEG,B是根,D是左子树,EG是右子树的中序遍历,对于CHF,C是根,H F是右子树的中序遍历。

因为仍然有没划分完的部分,所以继续看先序。

对于BDEG,B是根已知,D是整个左子树已知,所以EG是右子树的先序遍历,E是右根,再对照中序可知G是E 的左子树,CHF同理。

所以树的结构是A(B(D,E(G,)),C(,F(H,)))把它画成图,后序遍历就是DGEBHFCA12. 一个n个顶点的连通无向图,其边的个数至少为(A )。

相关文档
最新文档