5汽车行驶转向与制动系统电控悬架
电控悬架

2、进行自诊断的方法
在进行电控悬架故障自诊断测试时 ,根据汽车制造厂家 及车型的不同,可采用以下不同的方法: (1)专用诊断开关法 有些汽车装有按钮式诊断开关,按下或旋转专用开关, 即可进入故障自诊断测试状态,进行故障代码的读取。 (2)加速踏板法 有的汽车在规定的时间内,将加速踏板连续踩下5次, 即可使电控悬架进入故障自诊断状态。 (3)点火开关法 有的汽车在将点火开关进行“ON-OFF-ON-OFF-ON” 一次,即可使电控悬架进入故障自诊断状态。如美国克 莱斯勒公司生产的电控悬架就采用这种方法。
4、 悬架控制执行器
悬架控制执行器的功 用是调节减振器的阻 尼力和弹簧的刚度。 采用空气弹簧的悬架, 空气弹簧与减振器为 并联形式,如图所示。
空气弹簧和减震器
悬架控制执行器安装在空气弹簧与减振器总 成的上部、由驱动电机、传动齿轮、小齿轮 和 两根输出轴组成,其外形如图所示。
电控悬架执行器
凌志LS400乘用车悬架控制开关由LRC开关和高 度控制开关组成。两开关都装在中央控制板的、靠 近驾驶座换档杆指示灯处。 LRC开关用于选择减振 器和空气弹簧的工作模式(NORMAL AUTO)或 (SPORT AUTO);高度控制开关用于选择所车 身高度(NORMAL或HIGH)。 LRC开关还可以 选择悬架的刚度和阻尼力。
二 、电控空气悬架的组成及工作原理 Electroni-controlled Air Suspension (ECAS)
功用: 可以根据路面和车辆的运动情况,主动的调节悬架系 统的刚度、减震器阻尼系数、车身高度和姿态。 组成: 电控空气悬架主要有电控系统和空气悬架系统和执行 器三部分组成。 1电控系统 控制单元ECU、高度控制传感器、转向传感器、节气 门位置传感器、车速传感器、悬架控制开关等 2空气悬架系统 空气压缩机、空气弹簧、阻力力可调减振器等 3执行器 悬架控制执行器、高度控制阀等。
关于车辆电控悬架系统的研究

主动悬 架主要 由控制 系统 和一套 由油泵 、储油罐 、各轮 压 力控 制阀 、工作缸液压 控制系统 和安全 阀等构成 的液压系 统所组成 。全主 动悬架系 统的基本 工作原理 是 :传感器 将采 集的反 映悬架振 动的信号 传给控制器 ,控制器 控制主动 悬架 的力发 生器 ,产 生控制 力控制车 身的振动 ,从 而提 高车辆的
平 顺 性 等性 能 。
半 主动悬架可 以根据 路面 的激 励和车 身的响 应对悬架 的 阻尼系数 进行 自适应调 整 ,使 车身的振 动被控制 在某个范 围 内 ,半主动悬 架系统 无动力源 。因此 ,汽车在转 向、起步 、
半主动悬架 介于 主动悬架 和被动悬 架之 间 ,从 结构 上看 比主动悬架 简单 ,其 制造成本 也较低 。半主动悬 架系统基本 工作 原理是 :用可调 弹簧或可 调阻尼 元件 组成悬 架 ,并根据
图1电控悬 架系统基本工作原理
电子控 制悬架 系统 能根据 不 同的路 面状 况、不 同的载重 量 、不 同的车速等 控制悬架 系统的 刚度和减 振器 的 阻尼 ,也 可 以调节 车身 高度以提高 车辆 的通过性 。根据 有无动 力源 , 可以将 电子控 制悬架分 为两大类 :半主动悬 架 (e - t e S mi i Ac v S se s n up ni )及主动悬架 ( cie upnin o A t se s )。 vS o
的功 能和 类型 ,分析 了它的基本 工作原理 ,着 重论述 以现代控制理论为核心的 电控悬架 系统的控制方法。
关键 词 : 车辆 悬 架 电子控 制 研 究
1 引 言
化 以及 在汽车起 步、制 动、转 向等工况 时 ,主动悬架都 可 以
汽车技术电子培训课件资料 现代汽车电子控制悬架系统简介

悬架发展与分类
1981年开始车身高度控制,同年开发出可变减 震器阻尼力的新技术
1987年日本田公司率先推出空气弹簧主动悬架
90年代随电子技术发展,已具有在10-20秒内 做出反应的电控悬架系统
悬架发展与分类
悬架的分类: 1. 结构分:非独立悬架、独立悬架 2. 作用原理分:被动悬架(传统悬架)、 主动悬架(按照其是否包含动力源分为:全 主动悬架-有源主动悬架;办主动悬架-无源 主动悬架) 现代轿车大都是采用独立式悬架,按其结构 形式的不同,独立悬架又可分为横臂式(双 叉式)、纵臂式、烛式以及麦弗逊式悬架等
另一方面,为了提高汽车的操纵稳定性,一般要求 悬架具有较大的弹簧刚度和减振器阻尼,这显然与
改善车辆的舒适性的要求相矛盾。
被动悬架即传统悬架在设计时,不可能使乘坐舒适 性及操稳性都得到优化,只能是:在二者中间寻求 折中方案(在特定道路及速度下实现);或偏重于 某一种方案(牺牲一个方面,达到另一个目的)。
组成:弹簧、减振器、导向机构。
弹簧的功用:缓冲振动、摆动、提 高轮胎抓地力。
减振器的功用:衰减振动、方向稳 定。
导向机构:传递动力
典型独立悬架(前)
双横臂式 (双叉式) 独立悬架
典型独立悬架(后)
典型独立悬架
双横臂式 (双叉式) 独立悬架
典型独立悬架
麦弗逊悬挂
传统悬架对汽车性能的影响
悬架发展与分类
悬架发展与分类
1.被动悬架:为固定的悬架刚度和阻尼系数,只能保证在 特定道路状态下达到性能最优折衷。 2.全主动电控悬架:组成—执行机构、测量系统、反馈系 统、能源系统(液压缸及蓄能器)。其悬架刚度、减振器 的阻尼系数、车身高度都能随汽车载荷、行驶速度、路面 状况等行驶条件变化,而自动调节,使悬架性能总是处于 最佳状态。未解决问题:高频率下的行驶平顺性、能量消 耗、可靠性、价格、振动、噪声等。 3.全主动悬架分类:主动油气悬架(雪铁龙XM油气弹 簧)、主动空气悬架(日本三菱)、主动液力悬架(代表 车型为VOLVO740)。
电子控制悬架系统PPT课件

2.按照控制方式分
按照控制方式分不同,汽车悬架系统通常分为传统被动式悬 架(Passive Suspension)、半主动式悬架(semi-active suspension)、主动式悬架(Active Suspension)三类。
其中半主动式又分为有级半主动式(阻尼力有级可调)
和无级半主动式(阻尼力连续可调)两种;主动式悬架根据
图5-13 空气弹簧的刚度为“软”
.
21
当空气阀转到如图5-14所示的位置时,主、副气室的气 体通道被关闭,主、副气室之间的气体不能相互流动,此时 的空气弹簧只有主气室的气体参加工作,空气弹簧的刚度为 “硬”。
图5-14 空气弹簧的刚度为“硬”
主气室是可变容积的,在它的下部有一个可伸展的隔膜,
压缩空气进入主气室可升高悬架高度,反之使悬架下降。车
雪铁龙C5液压式可调悬架结构示意图 1-纵向横梁;2-球体;
. 3-上三角叉臂;4-支杆;5-长纵臂 8
通过增减液压油的方式实现车身高度的升或降,也就是 根据车速和路况自动调整离地间隙,从而提高汽车的平顺性 和操纵稳定性。
雪铁龙C5液压式可调悬架在车上的布置
采用液压式可调悬架的代表车型有雪铁龙C5、雪铁龙
. 传统的汽车悬架(麦弗逊式前悬架) 5
5.2.1 电控悬架系统的组成和控制形式
电子控制汽车悬架系统主要由(车高、转向角、加速度、 路况预测)传感器、ECU、悬架控制执行器等组成。
1.空气式可调悬架
空气式可调悬架是指利用空气压缩机形成压缩空气,并 通过压缩空气来调节汽车底盘的离地间隙一种悬架。
一般装备空气式可调悬架的车型在前轮和后轮的附近都 设有离地距离传感器,按离地距离传感器的输出信号,行车 电脑判断出车身高度的变化,再控制空气压缩机和排气阀门, 使弹簧自动压缩或伸长,从而起到减振的效果。
汽车底盘电控技术-5-电控悬架系统

使弹簧刚度变成“硬”状态和使减振阻尼变 成“中”状态。该项控制能改善汽车高速行驶时 的稳定性和操纵性
弹簧刚度和减振阻尼控制
不平整道路 控制
颠动控制
使弹簧刚度和减振阻尼视需要变成“中”或“ 软”状态,以抑制汽车车身在悬架上下跳动, 改善汽车在不平坦道路上行驶时的乘坐舒适 性
光电耦合元件的状态与车高的对照表
车高
1
光电耦合元件的状态
2
3
车高范围
计算结果
4
OFF
OFF
ON
OFF
15
过高
高
OFF
OFF
ON
ON
14
ON
OFF
ON
ON
13
ON
OFF
ON
OFF
12
高
ON
OFF
OFF
OFF
11
ON
OFF
OFF
ON
10
ON
ON
OFF
ON
9
普通
ON
ON
OFF
OFF
8
ON
ON
ON
OFF
一般原理:
利用传感器(包括开关)检测汽车行驶时路面的状况和车 身的状态,输入ECU后进行处理,然后通过驱动电路控制 悬架系统的执行器动作,完成悬架特性参数的调整。
二、传感器的结构与工作原理
转向盘转角传感器
传感器位置
加速度传感器
车身高度传感器 加速度传感器
车身高度传感器
1、转向盘转角传感器
【作用】检测转向盘的中间位置、转动方向、转向角 度和转动角度。以判断转向时侧向力的大小和方向, 以控制车身的侧倾。
汽车底盘电控概述

兰
公司在1886 年就 将V
形橡胶带
的DAF公司 研
制出 Variomatic
式CVT安装到 该
公司生产的汽 油
机汽车上
双V形橡胶带 式
CVT并装备于 其制造的
Daffodil轿 车上
橡胶带传动的 CVT
◆功率有限 ◆离合器工作不稳定 ◆液压泵、传动带和 夹紧机构的能量损失 较大
•后来汽车研究人员将液力变矩器集成到CVT系统中 主、从动轮的夹紧力由电子装置进行控制 •在CVT中采用节能泵 •传动带使用金属带代替传统的橡胶带
电子控制的其它特点
电子控制的出现使得自 动变速器可根据具体的行 驶工况进行补偿调节有些 变速器类型有一个由驾驶 员控制的模式开关不同的 驾驶模式包括正常模式、 经济模式、动力模式、冬 天模式和手动换档模式等
经济 模式
动力 模式
冬天 模式
手动 模式
使发动 机经常 处于经 济转速 下工作
使发动机 经常处于 大功率大 扭距范围 内运行
ESP是在 ABS系统的基础上开发出来的ESP能够识别诸如驾驶 员慌乱反应这样的紧急驾驶工况并通过对单个车轮施加制动和干预 发动机控制系统来保持车辆的稳定性这个软件能够综合理想转向 角、横摆角度、侧向力和轮速差异等信号很快判别出汽车失去控 制的时刻然后不管驾驶员如何操作对车辆施加制动还是加速ESP开始
什么是制动 防抱死系统
制动防抱死系统简称ABS是 英文Anti-lock Brake System的缩写ABS的作用就 是在汽车制动时自动控制制 动器制动力的大小使车轮不 被抱死处于边滚边滑的状态 以保证车轮与地而的附着力 在最大值.
ABS的发展概况
•ABS最初用于飞 机、但这种采用 真空管的ABS在 汽车上应用其性 能达不到要求, 加之其体积大、 成个高等.因此 未能在汽车普遍 使用。
A4-04-电控悬架系统

自动水平控制悬架
系统组成(凯迪拉克SLS)
电控悬架控制模块 电控悬架控制模块(ESC)是整个系统的控制中心,控制悬架高度并检测系统
故障。 模块监测来自悬架高度传感器和气压传感器的输入信息,确定何时调节车身后
部高度达到车辆整备高度。 控制空气压缩泵的工作时间(限制在255秒以内),防止空气温度过高。
控制模块向减振器电磁线圈发出1000次/秒的电子指令,用以改变油液的流动特 性,使减振器获得低阻力与高阻力之间的任何状态,实现悬架系统持续可变的 实时减振。
20
控制原理
ESC输入信息 • 车身高度 • 车辆速度 • 方向盘转向角度 • 制动压力 • 偏航率
ESC输出信息 • 阻尼控制 • 诊断故障代码
30
半主动式阻尼系统
控制原理
系统工作模式 驾驶员可以通过模式开关选择4种不同的工作模式。
31
单元总结
32
谢谢
33
22
半主动式阻尼系统
系统组成
SADS系统主要由一个悬架控制模块、三个车身加速度感应传感器、两个前轮 加速度传感器和四个带阻尼调节执行器的减振器等部件组成。
1. 右前车身加速度传感器(FR) 2. 左前车身加速度传感器(FL) 3. 后部车身加速度传感器(R ) 4. 右前车轮加速度传感器(FR) 5. 左前车轮加速度传感器(FL) 6. 悬架控制模块(ECU)
吸收压缩空气中的水分,防止减振 器内部积水
空气排出气囊时,水分也随之被排 到大气中
内部包含一个能维持48~97kPa的 限压阀,以限制系统压力,提高空 气软管的可靠性。
气压传感器 气压传感器一般位于空气压缩泵
输出管路上。ESC通过气压传感器的信 号电压来判断压缩泵是否发挥作用及 系统气压是否稳定。
汽车转向及悬架系统与整车操控性能探讨

摘要在汽车实际操控过程中,助力泵转向系统和悬架控制器系统对汽车平稳行驶有着巨大影响。
汽车助力泵为调整方向的零部件,能够有效完成方向纠偏及刹车助力。
主动悬架控制器则主要用于汽车转动角度、角速度与垂直加速度等的控制,来实现汽车平稳操控与安全运行。
针对主动悬架控制器和助力泵转向系统进行研究,通过相应减振、助力转向器或电动泵等数据分析,得出汽车转向及悬架系统对汽车操控性能的影响,从而对车辆行驶或转向进行优化调整,以提升车辆驾驶中的安全性与操控性。
当前主动悬架与汽车转向技术为汽车控制研究的重点内容。
在汽车某一主动悬架控制器自由转动模型中,主要通过自适应控制算法及神经网络来完成汽车转动方向或振动幅度的控制。
因此对汽车转向或主动悬架系统的研究,能够针对车身、发动机等转向影响因素,进行车辆行驶或转向的优化调整,以提升车辆驾驶中的安全性与操控性。
汽车液压助力转向及主动悬架操控系统概述当前对于汽车操控系统中控制器的研究,着重于影响汽车多向运动的非线性因素剖析。
通过对干扰性更强的非线性控制因素的研究,从而得出汽车液压助力转向、主动悬架操控系统的控制效果。
当下汽车转向通常为机械液压助力系统,其主要包括液压助力、机械装置两部分内容,液压助力系统涵盖了管线电路、液压助力泵和转向油泵等内容;机械装置涵盖转向传动摇臂、转向节臂、拉杆和压力轴承等。
因此液压助力系统能在保证汽车安全情况下,提升车辆转向的灵活性。
而主动悬架操控系统是连接车轴与车身的主要部分,通过减轻车身与车轮之间的负载冲击,保证在复杂路面车身转向与行驶的安全。
因此主动悬架操控系统作为动力控制生发器,其能根据外部干扰因素的变化,对汽车的转向、平衡激励与行驶状态进行调整。
在主动悬架系统的设计过程中,通过引入VOFB自适应控制算法,来对各个性能指标进行干扰因素的控制运算,最终得出主动悬架操控系统的响应曲线,并对其中的数据变量进行分析。
汽车垂直方向与横向运动的动力学模型2.1 汽车横向与纵向的非线性动力模型在汽车保持匀速行驶过程中,侧向风及其他路面干扰因素,始终与车辆纵向面保持垂直关系。