小波变换课件ch4 Mallat算法及二维小波

合集下载

《小波变换》课件

《小波变换》课件

离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,即将时间和频率轴进 行离散化,使小波变换能够应用 于数字信号处理。
原理
离散小波变换通过将信号进行离 散化,将连续的小波变换转换为 离散的运算,从而能够方便地应 用于数字信号处理系统。
应用
离散小波变换在图像压缩、数字 水印、音频处理等领域有广泛应 用,能够提供较好的压缩效果和 数据隐藏能力。
小波变换的应用拓展
图像处理
研究小波变换在图像压缩、去噪、增强等方面的应用,提高图像 处理的效果和效率。
语音信号处理
将小波变换应用于语音信号的降噪、特征提取等方面,提高语音 识别的准确率。
医学成像
利用小波变换对医学成像数据进行处理,提高医学影像的质量和 诊断准确率。
小波变换的算法优化
快速小波变换算法
《小波变换》ppt课 件 (2)
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
小波变换是一种数学分析方法,它通 过小波基函数的平移和伸缩,将信号 分解成不同频率和时间尺度的分量。
提供较好的特征提取和分类能力。
01
小波变换的算法实 现
常用的小波基函数
Haar小波
Daubechies小波
是最简单的小波,具有快速变换的特性, 但缺乏连续性和平滑性。
具有紧支撑性和良好的数学特性,广泛应 用于信号处理和图像处理。
Morlet小波
具有振荡性,适用于分析非平稳信号。

小波变换PPT课件

小波变换PPT课件
作的年轻的地球物理学家Jean Morlet提出 了小波变换WT(wavelet transform)的概念。 20世纪80年代,从STFT开发了CWT:
2002年10月9日
.
13
Definition - Basis Functions: a set of linearly independent functions that can be used (e.g., as a weighted sum) to construct any given signal.
.
7
2. Wavelet Transform
老课题 函数的表示方法
新方法 Fourier Haar wavelet transform
2002年10月9日.8(1) 1807: Joseph Fourier
傅立叶理论指出,一个信号可表示成一系列正 弦和余弦函数之和,叫做傅立叶展开式。
用傅立叶表示一个信号时,只有频率分辨率而 没有时间分辨率,这就意味我们可以确定信号 中包含的所有频率,但不能确定具有这些频率 的信号出现在什么时候。
2002年10月9日
.
10
(2) 1910: Alfred Haar发现Haar小波
哈尔(Alfred Haar)对在函数空间中寻找一个与 傅立叶类似的基非常感兴趣。
1909年他发现了小波,1910年被命名为Haar wavelets
他最早发现和使用了小波。
2002年10月9日
.
11
(3) 1945: Gabor提出STFT
2002年10月9日
.
3
1. What is wavelet
一种函数 具有有限的持续时间、突变的频率和振幅 波形可以是不规则的,也可以是不对称的 在整个时间范围里的幅度平均值为零 比较正弦波

小波分析整理 第三章 小波变换ppt课件

小波分析整理 第三章  小波变换ppt课件
这样,a 和b 联合越来确定了对x(t) 分析的 中心位置及分析的时间宽度。
.
a b
.
小波函数的范数不变性: a(t)b 0 2 R a(t)b 2 d tR (t)2 dt(t)0 2
此式表明: ( t ) 经过平移与伸缩以后,其模量没有 改变。
在不同的尺度a 时,ψa b (t) 终能和母函数ψ(t) 有着相同的能量 。
当a<1时, ( t ) 被拉宽且振幅被压低, ab (t) 含有表现低 频分量的特征;当a>1时, ( t ) 被压窄且振幅被拉
高, ab (t )含有表现高频分量的特征。
(2t)
(2t 3)
a2
0
1 1.5
3
6
t
a 1 a1
2
(t)
0
1
(1 t) 2
0
1
(t 3)
3
6
t
( 1 t 3) 2
R
可以反映局部频率特性,但是窗函数一经设定,没有 自适应能力,不能满足低频部分需要时窗宽、频窗窄, 高频部分需要时窗窄、频窗宽的要求。
为此,定义窗函数的一般形式为:
w ~ab(t)a1/2(a tb) ( 其 他 形 式 w ~ a b(t)a 1 /2 (t ab )
它是经过平移和放缩的结果。
.
小波函数的频域特性: ^a(b)a1/2eib/a^(a) 此式表明, ( t ) 经过平移和伸缩以后得到的新
函数 a b (t )的频域特性随参数a的变化而变化。
.
2、小波变化的回复公式推导
任何一种变换应该是可逆的。为推导小波变换的
回复公式,先得推出与Fourier变换中类似的乘积
公式。
在Fourier变换中,有公式:2 1 R F [f(t)]F _[g(t)]dRf(t)_ g(t)dt

小波变换理论与方法ppt课件

小波变换理论与方法ppt课件
R
其中 g,t (t) g(t )eit g(t )eit ,窗口函数g(t)起着时
限作用,eit 起着频限作用。该变化具有不变化宽度(由时间 宽度决定)和不变的窗口面积4g∆g∆
10
短时傅里叶变换示意图
11
cos(440 t) x(t) cos(660 t)
傅里叶变换傅里叶变换小波变换小波变换小波变换的一些应用小波变换的一些应用1822年法国数学家傅里叶jfourier发表的研究热传导理论的热的力学分析提出每一个周期函数都可以表示成三角函数之和奠定了傅里叶级数的理论基础
1
主要内容
1. 傅里叶变换 2. 小波变换 3. 小波变换的一些应用
2
一 傅里叶变换
E(|Wn(j,t)|2)=0
D(|Wn(j,t)|2)= Ψ t 2
j
26
3.1.1小波包去噪步骤
① 选择小波基并确定最佳分解的层次,对信号 进行小波包分解; ② 对步骤(1)获得的小波包树,选择一定的嫡标准,计算最优树; ③ 估计阈值,并应用该阈值对最优树的小波包系数进行阈值量化; ④ 将经量化处理的小波包系数,重构回原始信号。
Gabor变换的基本思想为:取时间函数 g(t) 1/ e4 t2/2 作为窗口函 数,然后用 g(t ) 通待分析函数相乘,τ是时间延迟,是窗函数 g(t)的中心,窗函数根据τ进行时移,然后再进行傅里叶变换:
Gf (, ) f (t)g(t )eitdt f (t), g,t (t)
小波包阈值消噪有两个关键点:1、如何估计阈值;2 如何利用阈值量 化小波包系数。
27
熵的确定
熵:用来确定最优树的标准,熵值越小,对应的小波包基越好。
1)香农熵:约定0log(0)=0,则香农熵定义为: Es si2 logsi2

小波分析实验:二维离散小波变换Mallat快速算法

小波分析实验:二维离散小波变换Mallat快速算法

小波分析实验:实验2 二维离散小波变换(Mallat快速算法)实验目的:在理解离散小波变换原理和Mallat快速算法的基础上,通过编程对图像进行二维离散小波变换,从而加深对二维小波分解和重构的理性和感性认识,并能提高编程能力,为今后的学习和工作奠定基础。

实验工具:计算机,matlab6.5附录:(1)二维小波分解函数%二维小波分解函数function Y=mallatdec2(X,wname,level)%输入:X 载入的二维图像像数值;% level 小波分解次(级)数设定值(如果设定值超过最高可分解次数,按最高分解次数分解)% wname 小波名字wavelet name%输出:Y 多极小波分解后的小波系数矩阵[h,g]=wfilters(wname,'d'); %h,g分别为低通和高通滤波器X=double(X);hh=size(X,2);while t<=level%先进行行小波变换for row=1:hhY(row,1:hh)=mdec1(X(row,1:hh),h,g) ;end%再进行列小波变换for col=1:hhtemp=mdec1( Y(1:hh,col)',h,g);Y(1:hh,col)=temp';endt=t+1;hh=hh/2;X=Y;end%内部子函数,对一行(row)矢量进行一次小波变换,利用fft实现function y=mdec1(x,h,g)%输入:x 行数组% h为低通滤波器% g为高通滤波器%输出: y 进行一级小波分解后的系数lenx=size(x,2);lenh=size(h,2);rh=h(end:-1:1);rrh=[zeros(1,(lenx-lenh)),rh];rrh=circshift(rrh',1)';rg=g(end:-1:1);rrg=[zeros(1,(lenx-lenh)),rg];rrg=circshift(rrg',1)';r1=dyaddown(ifft(fft(x).*fft(rrh,lenx)),1); %use para 1r2=dyaddown(ifft(fft(x).*fft(rrg,lenx)),1);y=[r1,r2];(2)二维小波重构函数%二维小波重构函数function Y=mallatrec2(X,wname,level)%输入:X 载入的小波系数矩阵;% level 小波分解次(级)数设定值(如果设定值超过最高可分解次数,按最高分解次数分解)% wname 小波名字wavelet name%输出:Y 重构图像矩阵[h,g]=wfilters(wname,'d'); %h,g分别为重构低通滤波器和重构高通滤波器hz=size(X,2);h1=hz/(2^(level-1));while h1<=hz% 对列变换for col=1:h1temp=mrec1(X(1:h1,col)',h,g)';X(1:h1,col)=temp;end%再对行变换for row=1:h1temp=mrec1(X(row,1:h1),h,g);X(row,1:h1)=temp;endh1=h1*2;endY=X;%内部子函数,对一行小波系数进行重构function y=mrec1(x,h,g)%输入:x 行数组% h为低通滤波器% g为高通滤波器%输出: y 进行一级小波重构后值lenx=size(x,2);r3=dyadup(x(1,1:lenx*0.5),0); %内插零use para 0r4=dyadup(x(1,(lenx*0.5+1):lenx),0); %use para 0y=ifft(fft(r3,lenx).*fft(h,lenx))+ ifft(fft(r4,lenx).*fft(g,lenx));(3)测试函数(主函数)%测试函数(主函数)clc;clear;X=imread('E:\Libin的文档\Course\Course_wavelet\实验2要求\exp2\LENA.bmp');%路径X=double(X);A = mallatdec2(X,'sym2',3);image(abs(A));colormap(gray(255));title('多尺度分解图像');Y= mallatrec2(A,'sym2',3);Y=real(Y);figure(2);subplot(1,2,1);image(X);colormap(gray(255));title('原始图像');subplot(1,2,2);image(Y);colormap(gray(255));title('重构图像');csize=size(X);sr=csize(1);sc=csize(2);mse=sum(sum( (Y-X).^2,1))/(sr*sc);psnr=10*log(255*255/mse)/log(10)小波分析实验:实验1 连续小波变换实验目的:在理解连续小波变换原理的基础上,通过编程实现对一维信号进行连续小波变换,(实验中采用的是墨西哥帽小波),从而对连续小波变换增加了理性和感性的认识,并能提高编程能力,为今后的学习和工作奠定基础。

小波分析简述(第五章)PPT课件

小波分析简述(第五章)PPT课件

六、多分辨率分析(Multi-resolution Analysis ,MRA),又称为多尺度分析
若我们把尺度理解为照相机的镜头的话,当尺 度由大到小变化时,就相当于将照相机镜头由 远及近地接近目标。在大尺度空间里,对应远 镜头下观察到的目标,只能看到目标大致的概 貌。在小尺度空间里,对应近镜头下观察目标, 可观测到目标的细微部分。因此,随着尺度由 大到小的变化,在各尺度上可以由粗及精地观 察目标,这就是多尺度(即多分辨率)的思想。
小波变换(Wavelet Transform)
1
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
2
主要内容
一、小波的发展历史 二、小波定义 三、连续小波变换 四、小波变换的特点 五、离散小波变换 六、多分辨率分析 七、Mallat算法 八、小波的应用 九、小波的进展
傅立叶分析是把一个信号分解成各种不同频率的正弦波, 因此正弦波是傅立叶变换的基函数。同样,小波分析是 把一个信号分解成由原始小波经过移位和缩放后的一系 列小波,因此小波是小波变换的基函数,即小波可用作 表示一些函数的基函数。
8
• 小波变换的反演公式
xtc1 0 a d2a W xa T ,a,td
26
小波基函数和滤波系数(db 2--正交,不对称 )
db小波
“近似”基函 数
“细节”基 函数
“正变换” 低频 和
高频 “滤波系数 “ ”反变换” 低频 和
• 小波基必须满足的条件—允许条件
ˆ2
c d
ˆ00
tdt0
9
四、小波变换的特点

小波变换原理与应用ppt课件

小波变换原理与应用ppt课件
3.小波变换的基本原理与性质
信号的时域表示和频域表示只适用于平稳信号,对于
非平稳信号而言,在时间域各种时间统计量会随着时 间的变化而变化,失去统计意义;而在频率域,由于 非平稳信号频谱结构随时间的变化而变化导致谱值失 去意义
幅度 A |Y(f)|
信 号 x(t)的 时 域 波 形 1
0.5
0
-0.5
2
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1.小波的发展历史——工程到数学
小波变换的概念是由法国从事石油信号处理的工程 师J.Morlet在1974年首先提出的,通过物理的直观和信 号处理的实际需要经验的建立了反演公式,当时未能 得到数学家的认可。幸运的是,1986年著名数学家 Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat 合作建立了构造小波基的同一方法枣多尺度分析之后 ,小波分析才开始蓬勃发展起来。
1.小波的发展历史——工程到数学
1909: Alfred Haar——发现了Haar小波 1980:Morlet——Morlet小波,并分别与20世纪70年代提
出了小波变换的概念,20世纪80年代开发出了连续小 波变换CWT( continuous wavelet transform ) 1986:Y.Meyer——提出了第一个正交小波Meyer小波 1988: Stephane Mallat——Mallat快速算法(塔式分解和 重构算法)
Rx(t1,t2)ExE(t)x(t1)x ( tx2)f(x)dRxx()m,x t2 t1
Ex2(t)
非平稳信号 不满足平稳性条件至少是宽平稳条件的信号

小波变换原理与应用PPT课件

小波变换原理与应用PPT课件

种函数,“容许”条件非常重要,它限定了小波变换的
可逆性。
(x) ()
()2
C
d
小波本身是紧支撑的,即只有小的局部非零定义域, 在窗口之外函数为零;本身是振荡的,具有波的性质 ,并且完全不含有直流趋势成分,即满足
(x) (x)dx0
.
5
小波的基本概念——什么是小波
➢ 原始小波称为母小波。母小波在时域、频域的 ➢ 有效延伸范围有限,位置固定。为了分析时域、频域的
小波变换原理与应用
.—什么是小波 小波的发展历史——工程到数学 小波的基本类型——多分辨分析 小波的快速算法——Mallat算法 小波包分解算法——精细化处理 小波的工程应用——时频分析与降噪等 小波的结合应用——小波网络等
.
2
小波的基本概念——什么是小波
在当代信息社会,诸多领域都会涉及到信号的分析、 加工、识别、传输及储存等问题。长期以来,傅里叶 变换一直是处理这方面问题最重要的工具,并且已经 发展了一套内容非常丰富并在许多实际问题中行之有 效的方法。 但是傅里叶分析的致命弱点是不能做局部分析,只适 用于平稳信号的分析。而在实际中,瞬变信号大量存 在,人们往往需要的是某一时问内的某一频段的信息 。为克服傅里叶分析的不足,出现了小波分析。
j ln 2
1 2 3 4 56
1 2 3 4 5 6 kTs
.
25
小波的基本类型——多分辨分析
离散小波变换的可逆问题——框架理论 DWT的可逆问题蕴含的是DWT的表达能够完整的表达 待分析信号的全部信息,这就需要数学上的框架理论 作为支撑了,如果对于所有的待分析信号满足框架条 件,那么DWT就是可逆的
小波空间相互正交。随着尺度由大到小的变化,可在
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s s
n
a j ,n hn 2 k a j h (2k )
n
hk h k
d j 1,k a j g (2k )
g k g k
多级分解
无需尺度函数和小波函数的具体表达式
离散小波变换的数据量不变性质
j=0
近似序列 细节序列 j=-1
塔式数据 塔式算法
实际上, f (x)
n
{ fn }
f n f (nx)
a0,k f n (n k )
a0,k f k
(n k ) 1
n
fn fk
原始数据就是j=0的近似序列
DWT的相图
DWT分解树
W1
8点的DWT相图
W2
V1 V3
W3
V2
4.2重构算法

由已知近似序列 {a j ,k } 和细节序列 {d j ,k }求出 序列 {a j 1,k }
第四章 Mallat算法 及二维小波
小波变换应用于信号处理的一般过程
4.1 基于正交小波的分解算法

由已知序列 {a j ,k }分别求出 j 1 级的近似序 列{a j 1,k } 和 j 1 级细节序列 {d j 1,k } 分解目标:

V j V j 1 W j 1
一维小波分解&重构实例

clc;clear;


% 1.正弦波定义 f1=50; % 频率1 f2=100; % 频率2 fs=2*(f1+f2); % 采样频率 Ts=1/fs; % 采样间隔 N=120; % 采样点数
n=1:N; y=sin(2*pi*f1*n*Ts)+sin(2*pi*f2*n*Ts); % 正弦波混合 figure(1) subplot(2,1,1) plot(y); title('Signal') subplot(2,1,2) stem(abs(fft(y))); title('Amplitude Spectrum')


%% 4.MALLAT重构算法 sig1=dyaddown(sig1); % 2抽取 sig2=dyaddown(sig2); % 2抽取 sig1=dyadup(sig1); % 2插值 sig2=dyadup(sig2); % 2插值 sig1=sig1(1,[1:N]); % 去掉最后一个零 sig2=sig2(1,[1:N]); % 去掉最后一个零 hr=h(end:-1:1); % 重构低通 gr=g(end:-1:1); % 重构高通 hr=circshift(hr',1)'; % 位置调整圆周右移一位 gr=circshift(gr',1)'; % 位置调整圆周右移一位
(2) L=2K+2, c(n)=±c(-1-n)
x ( n)
k K 1

K
c (k ) s( n k )
k K 1 K 1 k K

K
c ( k ) s( n k )
k K 1

K
c ( 1 k ) s ( n k )


subplot(2,1,2) stem(abs(fft(g))); title('High-pass Filter(W_{0})')
% 3.MALLAT分解算法(圆周卷积的快速傅里叶变换实现) sig1=ifft(fft(y).*fft(h)); % 低通(低频分量) sig2=ifft(fft(y).*fft(g)); % 高通(高频分量)
边界值重复的对称周期延拓
作对称延拓时重复 原信号的边界值 主周期内以n=-0.5 和n=N-0.5为对称 中心 延拓后的信号不存 在周期性的剧烈突 变

重复S(0),S(N-1)
(1)L=2K-1,c(n)=c(-n)
x(1 n) x(n)
x( N 1 n) x( N n)
简单周期延拓
数据总量保持不变 当信号序列的两端 边界值相差很大时, 延拓后的信号将存 在周期性的剧烈突 变

以边界点为对称中心的对称周期延拓
step1 从 s (n)到 s(n) , N’=2N-2 step2 s(n) 作N’周期延 拓 主周期内以n=0和 n=N-1为对称中心 延拓后的信号不存 在周期性的剧烈突 变
c(k )s(n k )
K k K

k K
c(k )s(n k ) x(n)
K k K
K
x ( N 1 n)
K
c(k )s( N 1 n k ) c(k )s( N 1 n k )
k K
不重复S(0),S(N-1)
当 c(n)不对称时,数据总量几乎增大一倍 当 c ( n) 对称时,数据总量保持不变 (1)L=2K+1,c(n)=c(-n)

Hale Waihona Puke x ( n) K
k K
c(k )s(n k ) c(k )s(n k )
k K
K
K
k K
c(k )s( N 1 n k ) x( N 1 n)
输出序列是2N-2的周期序列,且在一个周期内有两个对称中心,只需 保留[0,N-1]的数据,然后进行下采样得到N/2点的序列 a j 1 (n) 和 d j 1 (n) 并采用同样的延拓方式实现重构。 (滤波器的对称中心为0)
c ( k ) s(n 1 k ) x (n 1)
x ( N 1 n)
k K 1

K
c (k ) s( N 1 n k )
k K 1

K
c (k ) s ( N 1 n k )
k K 1



%% 2.小波滤波器谱分析 h=wfilters('db30','l'); % 低通 g=wfilters('db30','h'); % 高通 h=[h,zeros(1,N-length(h))]; % 补零(圆周卷积,且增大分辨率变于观察) g=[g,zeros(1,N-length(g))]; % 补零(圆周卷积,且增大分辨率变于观察) figure(2); subplot(2,1,1) stem(abs(fft(h)));%stem函数用于绘制火柴梗图 title('Low-pass Filter(V_{0})')
(2)L=2K,c(n)=±c(1-n)
x(n) x(n)
x( N n) x( N n)
输出序列是 2N 的周期序列,且在一个周期内有两个对称中心,只需 保留[0,N-1]的数据,然后进行下采样得到N/2点的序列 a j 1 (n) 和 d j 1 (n) 并采用同样的延拓方式实现重构。(采用偶数长的对称(反对称)滤波 器的对称中心为+0.5,奇数长的对称滤波器的对称中心为0)
l l
考虑到
j ,l ( x) 2 j 2 (2 j x l ) 2 j 2 2 hs (2(2 j x l ) s )
hs 2( j 1) 2 (2( j 1) x (2l s )) hs j 1,2l s ( x)
s s s

K
c( 1 k ) s( N 1 n k )
c(k ) s( N 1 n 1 k ) x ( N 2 n)
k K
K 1
输出序列是2N-2的周期序列,且在一个周期内有两个对称中心,只需 保留[0,N-1]的数据,然后进行下采样得到N/2点的序列 a j 1 (n) 和 d j 1 (n) 并采用同样的延拓方式实现重构。(滤波器的对称中心为-0.5)
f ( x) a j -1,k j -1,k ( x) d j -1,k j -1,k ( x)

如何分解?

结论:序列 {a j 1,k } 和 {d j 1,k } 可分别由序列 {a j ,k } 通过数字滤波器{ h ' }和{ g ' },并对输 出作偶数点抽样得到 。




figure(3); % 信号图 subplot(2,1,1) plot(real(sig1)); title('Low-frequency Component')
subplot(2,1,2) plot(real(sig2)); title('High-frequency Component')


figure(4); % 频谱图 subplot(2,1,1) stem(abs(fft(sig1))); title('Amplitude Spectrum of Low-frequency Component')
subplot(2,1,2) stem(abs(fft(sig2))); title('Amplitude Spectrum of High-frequency Component')
近似序列
细节序列

推导:
j 1,k ( x) 2( j 1) 2 (2 j 1 x k ) 2( j 1) 2 2 hs (2(2 j 1 x k ) s)
hs 2 j 2 (2 j x (2k s)) hs j ,2 k s ( x)
a j 1,k Aj 1 ( x), j 1,k ( x) ( a j ,l j ,l d jl jl ), j 1, k ( x) a j ,l j ,l , j 1,k d jl jl , j 1,k
相关文档
最新文档