【典型题】八年级数学下期末模拟试题及答案

合集下载

【浙教版】初二数学下期末模拟试题(含答案)

【浙教版】初二数学下期末模拟试题(含答案)

一、选择题1.反映一组数据变化范围的是( )A .极差B .方差C .众数D .平均数 2.某次知识竞赛中,两组学生成绩如下表,通过计算可知两组的方差为S 2甲172=,S 2乙256=,下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均是80,但成绩≥80的人数甲比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的有( )个A .2B .3C .4D .53.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据22a -,22b -,22c -的平均数和方差分别是( )A .8,16B .10,6C .3,2D .8,8 4.随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学八年级六班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )A .20,20B .30,20C .30,30D .20,30 5.如图,在矩形ABCD 中,3AB =,4BC =,动点P 沿折线BCD 从点B 开始运动到点D ,设点P 运动的路程为x ,ADP △的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A.B.C.D.6.如图,在平面直角坐标系中,点A的坐标为(﹣2,3),AB⊥x轴,AC⊥y轴,D是OB的中点.E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,43)B.(0,1)C.(0,103)D.(0,2)7.已知关于x,y的二元一次方程组(7)2(31)5y k xy k x=--⎧⎨=-+⎩无解,则一次函数32y kx=-的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.下列图象中,不可能是关于x的一次函数y=px﹣(p﹣3)的图象的是()A .B .C .D . 9.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是( )A .3B .2C .23D .410.如图,在平行四边形ABCD 中,100B D ︒∠+∠=,则B 等于( )A .50°B .65°C .100°D .130°11.下列各式中,一定是二次根式的个数为( )22313,,1,4,1,(0),212a m x m a a a ⎛⎫+--+<⎪⎭ A .3个 B .4个 C .5个 D .6个12.下图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边()x y >,下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( ).A .①③B .①②③C .②④D .①②③④二、填空题13.小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.14.在一次数学测验中,甲组4名同学的平均成绩是70分,乙组6名同学的平均成绩是80分,则这10名同学的平均成绩是______________.15.A 、B 两地相距480千米,甲车从A 地匀速前往B 地,乙车同时从B 地沿同一公路匀速前往A 地.甲车出发30分钟时发现自己有物件落在A 地,于是立即掉头以原速返回取件,取件后立即掉头以原速继续匀速前行(掉头和取件时间忽略不计),两车之间相距的路程(km)y 与甲车出发时间(h)t 之间的函数关系如图所示.则当甲车到达B 地时,乙车离A 地的路程为______千米.16.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号)17.如图,在菱形ABCD 中,6AC =,5AB =,点E 是直线AB ,CD 之间任意一点,连接AE ,BE ,DE ,CE ,则EAB 和ECD 的面积之和是______.18.如图,在ABC 中,45BAC ∠=︒,4AB AC ==,点D 是AB 上一动点,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是________.19.若224y x x =-+-+,则y x 的平方根是__________.20.如图,在ABC 中,5AB AC ==,8BC =,D 是线段BC 上的动点(不含端点B 、C ),若线段AD 的长是正整数,则点D 的个数共有______个.三、解答题21.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a .小云所住小区5月1日至30日的厨余垃圾分出量统计图:b .小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下: 时段1日至10日 11日至20日 21日至30日 平均数 100 170 250(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的多少倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s 12,5月11日至20日的厨余垃圾分出量的方差为s 22,5月21日至30日的厨余垃圾分出量的方差为s 32.直接写出s 12,s 22,s 32的大小关系.22.根据重庆轨道集团提供的日客运量统计,2019年2月21日重庆轨道交通首次日客运量突破300万乘次,其中近期开通的重庆轨道交通环线日客运量为21.5万乘次.据了解,某工作日上午7点至9点轨道环线四公里站有20列列车进出站,每列车进出站时,将上车和下车的人数记录下来,各得到20个数据,并将数据进行整理,绘制成了如下两幅不完整统计图.(数据分组为:A 组:170180x ≤<,B 组:180190x ≤<,C 组:190200x ≤<,D 组:200210x ≤<,E 组:210220x ≤≤)I .上车人数在C 组的是:190,190,191,192,193,193,195,196,198,198,198,198; II .上车人数的平均数、中位数如下表:平均数 中位数 上车人数(人) 194 a根据以上信息,回答下列问题:(1)请补全频数分布直方图;(2)表中a =________,扇形统计图中m =_________,扇形统计图中E 组所在的圆心角度数为________度;(3)请利用平均数,估算一周内5个工作日的上午7点至9点重庆轨道环线四公里站的上车总人数.23.如图1,在平面直角坐标系中,直线3:32AB y x =+与x 轴交于点A ,且经过点(2,)B m ,已知点(3,0)C . (1)求点,A B 的坐标和直线BC 的函数表达式.(2)在直线BC 上找一点D ,使ABO 与ABD △的面积相等,求点D 的坐标. (3)如图2,E 为线段AC 上一点,连结BE ,一动点F 从点B 出发,沿线段BE 以每秒1个单位运动到点E 再沿线段EA 以每秒2个单位运动到A 后停止,设点F 在整个运动过程中所用时间为t ,当t 取最小值时,求点E 的坐标.24.如图,点B 、E 分别在AC 、DF 上,AF 分别交BD 、CE 于点M 、N ,A F ∠=∠,12∠=∠.(1)求证:BC DE =.(2)已知2DE =,连接BN ,若N 平分DBC ∠,求CN 的长.25.计算题:(1)()1623263-⨯-; (2)()()()2515132+---. 26.在ABC 中,AB c =,BC a =,AC b =.如图1,若90C ∠=︒时,根据勾股定理有222+=a b c .(1)如图2,当ABC 为锐角三角形时,类比勾股定理,判断22a b +与2c 的大小关系,并证明;(2)如图3,当ABC 为钝角三角形时,类比勾股定理,判断22a b +与2c 的大小关系,并证明;(3)如图4,一块四边形的试验田ABCD ,已知90B ∠=︒,80AB =米,60BC =米,90CD =米,110AD =米,求这块试验田的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A【分析】根据极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围大小解答.【详解】解:反映一组数据变化范围的是极差;故选:A .【点睛】本题考查了极差、方差、众数以及平均数的概念和意义,掌握极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围是解题的关键.2.C解析:C【分析】根据中位数、众数、方差、平均数的概念来解答.【详解】解:①平均数:甲组:(50×2+60×5+70×10+80×13+90×14+100×6)÷50=80,乙组:(50×4+60×4+70×16+80×2+90×12+100×12)÷50=80,②S 甲2=172<S 乙2=256,故甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数90>乙组成绩的众数70;④成绩≥80的人数甲组33人比乙组26人多;从中位数来看,甲组成绩80=乙组成绩80,故错误.⑤成绩高于或等于90分的人数乙组24人比甲组20人多,高分段乙组成绩比甲组好. 故①②③⑤正确.故选:C .【点睛】此题考查中位数和众数的定义.解题关键在于掌握各定义性质.3.A解析:A【分析】如果一组的数据的每一个数都扩大或缩小相同的倍数,则平均数也扩大或缩小相同的倍数,方差则扩大或缩小平方倍;如果一组的数据的每一个数都增加或减少相同的数,则平均数也增加或减少相同的数,方差不变.【详解】根据题意可知:这组数据的平均数为:2×5-2=8;方差为:24216⨯=.故选:A【点睛】本题主要考查的是数据的平均数和方差的变化规律,属于中等难度题型.解决这个问题的关键就是要明确变化规律,根据规律进行解答.4.C解析:C【分析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.【详解】解:30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选:C .【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.5.D解析:D【分析】分别求出04x ≤≤、47x <<时函数表达式,即可求解.【详解】解:由题意当04x ≤≤时,如题图,1134622y AD AB =⨯⨯=⨯⨯=, 当47x <<时,如下图,11(7)414222y PD AD x x =⨯⨯=⨯-⨯=-.故选:D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.6.B解析:B【分析】作点A 关于y 轴的对称点A',连接A'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A ',连接A 'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD +DA '的长;∵A 的坐标为(﹣2,3),AB ⊥x 轴,B 点坐标为(-2,0), D 是OB 的中点,∴D 点坐标为:(﹣1,0),A 关于y 轴的对称点A',可知A '(2,3),设A 'D 的直线解析式为y =kx +b ,则:230k b k b +=⎧⎨-+=⎩, 解得:11k b =⎧⎨=⎩, ∴A 'D 的直线解析式为y =x +1,当x =0时,y =1∴E (0,1).故选:B .【点睛】本题考查了待定系数法求解析式和求一次函数图象与坐标轴交点坐标,能够利用轴对称求线段的最短距离,将AE +DE 的最短距离转化为两点之间,线段最短,并能利用一次函数求出点的坐标是解题的关键.7.B解析:B【分析】先根据二元一次方程组无解,得出k 的值,再利用一次函数图象与系数的关系可得出一次函数的图象经过第一、三、四象限,进而可得出一次函数322y x =-的图象不经过第二象限.【详解】解:∵(7)2(31)5y k x y k x =--⎧⎨=-+⎩∴(7-k )x-2=(3k-1)x+5(7-k )x-(3k-1)x=7(7-k-3k+1)x=7(8-4k)x=7∵二元一次方程组无解∴8-4k=0解得:k=2∴将k=2代入一次函数32y kx =-得322y x =- ∵k=2﹥0,b=32-<0 ∴一次函数322y x =-的图象不经过第二象限 故选:B【点睛】 本题考查了一次函数图象与系数的关系,牢记“k ﹥0,b <0⇔y =kx +b 的图象在一、三、四象限”是解题的关键.8.D解析:D【分析】先根据一次函数的增减性、与y 轴的交点可得一个关于p 的一元一次不等式组,再找出无解的不等式组即可得.【详解】A 、由图象知,0(3)0p p >⎧⎨-->⎩,解得03p <<,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;B 、由图象知,0(3)0p p >⎧⎨--=⎩,解得3p =,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;C 、由图象知,0(3)0p p <⎧⎨-->⎩,解得0p <,即它可能是关于x 的一次函数(3)y px p =--的图象,此项不符题意;D 、由图象知,0(3)0p p <⎧⎨--<⎩,不等式组无解,即它不可能是关于x 的一次函数(3)y px p =--的图象,此项符合题意;故选:D .【点睛】本题考查了一次函数的图象与性质、一元一次不等式组,熟练掌握一次函数的图象与性质是解题关键.9.B解析:B【分析】根据菱形的性质证明△ABD 是等边三角形,求得BD=4,再证明EF 是△ABD 的中位线即可得到结论.【详解】解:连接AC ,BD∵四边形ABCD 是菱形,∴AC BD ⊥,BD 平分∠ABC ,4AB BC CD DA ====∴∠111206022ABD ABC ︒=∠=⨯=︒ ∵AB AD =∴△ABD 是等边三角形, ∴ 4.BD =由折叠的性质得:EF AO ⊥,EF 平分AO ,又∵BD AC ⊥,∴//EF BD∴EF 为△ABD 的中位线, ∴122EF BD == 故选:B .【点睛】 本题考查了折叠性质,菱形性质,主要考查学生综合运用定理进行推理和计算的能力. 10.A解析:A【分析】根据平行四边形的对角相等求出∠B 即可得解.【详解】解:□ABCD 中,∠B =∠D ,∵∠B +∠D =100°,∴∠B =12×100°=50°, 故选:A .【点睛】本题考查了平行四边形的性质,主要利用了平行四边形的对角相等是基础题.11.A解析:A【分析】根据二次根式的定义即可作出判断.【详解】 解:3一定是二次根式; 当m <0时,m 不是二次根式;对于任意的数x ,x 2+1>0,则21x +一定是二次根式;34是三次方根,不是二次根式;﹣m 2﹣1<0,则21m --不是二次根式;a (0)a 是二次根式; 当a <12时,2a +1可能小于0,则21a +不一定是二次根式. 综上所述,一定是二次根式的有23,1,(0)3a x a +,共3个, 故选:A .【点睛】 主要考查了二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数. 12.B解析:B【分析】根据直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.【详解】解:如图所示,∵△ABC 是直角三角形,∴根据勾股定理:22249x y AB +==,故①正确;由图可知42x y CE -===,故②正确;由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积,列出等式为144492xy ⨯+=,即2449xy +=,故③正确;由2449xy +=可得245xy =,又∵2249x y +=,两式相加得:2224945x xy y ++=+,整理得:()294x y +=,9x y +=≠,故④错误; 故正确的是①②③.故选:B .【点睛】 本题主要考查了勾股定理的应用,掌握勾股定理、直角三角形的面积公式和完全平方公式是解题的关键.二、填空题13.82【分析】设第三次考试成绩为x 根据三次考试的平均成绩不少于80分列不等式求出x 的取值范围即可得答案【详解】设第三次考试成绩为x ∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少得82分 解析:82【分析】设第三次考试成绩为x ,根据三次考试的平均成绩不少于80分列不等式,求出x 的取值范围即可得答案.【详解】设第三次考试成绩为x ,∵三次考试的平均成绩不少于80分, ∴7286803x ++≥, 解得:82x ≥, ∴他第三次数学考试至少得82分,故答案为:82【点睛】本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.14.76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩再除以10即可得出答案【详解】这10名同学的平均成绩为:=76(分)故答案为:76分【点睛】本题考查的是加权平均数的求法本解析:76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩,再除以10,即可得出答案.【详解】这10名同学的平均成绩为:70481060⨯+⨯=76(分), 故答案为:76分.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求70、80这两个数的平均数. 15.【分析】结合题意分析函数图象:由甲车开车半小时后返回再到达出发点A 地共用时此时两车间距离减少求得乙车的速度为由经过时两车相遇求得甲车的速度再求得甲车到达B 地时所用时间即可求解【详解】甲车开车半小时后 解析:80【分析】结合题意分析函数图象:由甲车开车半小时后返回再到达出发点A 地共用时1h ,此时两车间距离减少80km ,求得乙车的速度为80/km h ,由经过3h 时,两车相遇,求得甲车的速度,再求得甲车到达B 地时,所用时间,即可求解.【详解】甲车开车半小时后返回再到达出发点A 地共用时1h ,而此时两车间距离减少48040080-=(km ),则乙车的速度为80/km h ,3h 时,两车距离为0,即两车相遇,()31803480v -+⨯=甲,解得:120v =甲(/km h ),∴甲车到达B 地时,共用时48015120t =+=(h ), 此时,乙车行驶了580400⨯=(km ),则乙车离A 地的路程为48040080-=(km ),故答案为:80.【点睛】本题考查了函数图象的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x 和y 表示的数量关系.16.①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤【分析】根据一次函数的定义进行一一判断.【详解】 ①3x y =是一次函数;②2y x =是一次函数,③1y x =不是一次函数,④23y x =-是一次函数,⑤()222121y x x x x =--+=+是一次函数.故答案为:①②④⑤.【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数. 17.12【分析】连接BD 根据菱形对角线的性质利用勾股定理计算BD 的长根据两平行线的距离相等所以△EAB 和△ECD 的面积和等于菱形ABCD 面积的一半再利用菱形面积等于对角线积的一半计算可得结论【详解】如图解析:12 【分析】连接BD ,根据菱形对角线的性质,利用勾股定理计算BD 的长,根据两平行线的距离相等,所以△EAB 和△ECD 的面积和等于菱形ABCD 面积的一半,再利用菱形面积等于对角线积的一半计算可得结论.【详解】如图,连接BD 交AC 于O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=12AC=12×6=3, ∵AB =5,由勾股定理得:224AB OA -=,∴BD=2OB=8,∵AB ∥CD , ∴△EAB 和△ECD 的高的和等于点C 到直线AB 的距离,∴△EAB 和△ECD 的面积和=12×ABCD S 菱形=12×12×AC×BD=168=124⨯⨯.故答案为:12.【点睛】本题考查菱形的性质,三角形的面积,平行线的性质,熟知平行线的距离相等,得△EAB 和△ECD的高的和等于点C到直线AB的距离是解题的关键.18.2【分析】平行四边形ADCE的对角线的交点是AC的中点O当OD⊥AB时OD最小即DE最小根据直角三角形勾股定理即可求解【详解】解:如图∵平行四边形ADCE的对角线的交点是AC的中点O又AB=AC=4解析:22【分析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥AB时,OD最小,即DE最小,根据直角三角形勾股定理即可求解.【详解】解:如图∵平行四边形ADCE的对角线的交点是AC的中点O,又AB=AC=4∴OC=OA=12AC=2当OD⊥AB时,OD最小,即DE最小.∵OD⊥BA,∠BAC=45°,∴∠AOD=45°∴△ADO为等腰直角三角形在Rt△ADO由勾股定理可知OD=222∴2故答案为:2【点睛】本题考查了勾股定理,平行四边形的性质,即平行四边形对角线互相平分,正确理解DE 最小值的条件是关键.19.【分析】根据二次根式的有意义的条件得出x值进而求出y代入计算即可【详解】解:要使有意义则:∴∴∴∴的平方根为故答案为:【点睛】本题考查了二次根式的有意义的条件解题的关键是掌握被开方数大于或等于零解析:4±【分析】根据二次根式的有意义的条件得出x 值,进而求出y ,代入计算即可.【详解】 解:要使224y x x =-+-+有意义,则:2020x x -≥⎧⎨-≥⎩, ∴2x =,∴4y =,∴y x ±42=±4=±,∴y x 的平方根为4±,故答案为:4±.【点睛】本题考查了二次根式的有意义的条件,解题的关键是掌握被开方数大于或等于零. 20.3【分析】首先过A 作AE ⊥BC 当D 与E 重合时AD 最短首先利用等腰三角形的性质可得BE=EC 进而可得BE 的长利用勾股定理计算出AE 长然后可得AD 的取值范围进而可得答案【详解】解:过A 作AE ⊥BC ∵AB解析:3【分析】首先过A 作AE ⊥BC ,当D 与E 重合时,AD 最短,首先利用等腰三角形的性质可得BE=EC ,进而可得BE 的长,利用勾股定理计算出AE 长,然后可得AD 的取值范围,进而可得答案.【详解】解:过A 作AE ⊥BC ,∵AB=AC ,∴EC=BE=12BC=4, ∴2254-,∵D 是线段BC 上的动点(不含端点B 、C ).∴3≤AD <5,∴AD=3或4,∵线段AD 长为正整数,∴AD 的可以有三条,长为4,3,4,∴点D 的个数共有3个,故答案为:3.【点睛】此题主要考查了等腰三角形的性质和勾股定理,关键是正确利用勾股定理计算出AD 的最小值,然后求出AD 的取值范围.三、解答题21.(1)173;(2)2.9;(3)222123s s s >>【分析】(1)结合表格,利用加权平均数的定义列式计算可得;(2)结合(1)所求结果计算即可得出答案;(3)由图a 知第1个10天的分出量最分散、第3个10天分出量最为集中,根据方差的意义可得答案.【详解】解:(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为10010170102501017330⨯+⨯+⨯≈(千克), 故答案为:173;(2)该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的173 2.960≈(倍), 故答案为:2.9;(3)由小云所住小区5月1日至30日的厨余垃圾分出量统计图知:第1个10天的分出量最分散、第3个10天分出量最为集中,222123s s s ∴>>. 【点睛】本题主要考查方差和加权平均数,解题的关键是掌握方差的意义和加权平均数的定义. 22.(1)补图见解析;(2)193,30,36;(3)19400人.【分析】(1)用20减去A 、C 、D 、E 组的数量得到B 组数量,据此即可补全直方图;(2)利用中位数的概念可求得a 的值,用100%减去B 、C 、D 、E 组所占的百分比求得A 组所占的百分比可求得m 的值,用360度乘以E 组所占的比例即可求得相应圆心角的度数;(3)用样本的平均数乘以这一时间段的进站车数再乘以天数即可得.【详解】(1)B 组的数量为:20-2-12-2-1=3,补全频数直方图如图所示:(2)20个数据从小到大排列后位于中间的应该是第10、第11个数据,A 、B 、C 、D 、E 组的数据是从小到大进行的,A 、B 组共有5个数据,C 组有12个数据,从小到大排列为:190,190,191,192,193,193,195,196,198,198,198,198,C 组中的第5个数据是总数据的第10个,为193,C 组中的第6个数据是总数据的第11个,为193,所以中位数为:(193+193)÷2=193,即a=193;m%=100%-25%-20%-15%-10%=30%,所以m=30;扇形统计图中E 组所在的圆心角度数为360°×10%=36°,故答案为:193,30,36;(3)估算一周内5个工作日的上午7点至9点重庆轨道环线四公里站的上车总人数为: 194×20×5=19400人.【点睛】本题考查了频数分布直方图,扇形统计图,中位数,用样本估计总体等知识,弄清题意,准确识图,熟练运用相关知识是解题的关键.23.(1)(2,0),(2,6),618A B y x -=-+;(2)1218,55⎛⎫ ⎪⎝⎭或842,55⎛⎫ ⎪⎝⎭;(3)(223,0)-.【分析】(1)令直线332y x =+中的0y =,得出点A 的坐标,再把x=2代入得出点B 的坐标,然后用待定系数法即可求解; (2)过点O 作直线m ,在点H 上方作直线n ,使直线m 、n 和直线AB 等距离,则直线m (n )和BC 的交点即为所求点,进而求解;(3)过点B 作BM ⊥x 轴于点M ,过点A 作直线AH 使∠CAH=30°,过点B 作BH ⊥AH 于点H ,交x 轴于点E ,则点E 为所求点,进而求解.【详解】(1)令直线33 2y x=+中的0y=,则3302x+=,解得:2x=-,∴由题意得:(2,0)A-,将(2,)B m代入直线332y x=+中得3232m⨯+=,6m=,(2,6)B∴,设直线BC为:y kx b=+,∴代入(2,6),(3,0)B C可得,2630k bk b+=⎧⎨+=⎩,解得:618kb=-⎧⎨=⎩,∴直线BC的函数表达式为:618y x=-+.(2)设直线AB交y轴于点H,则点H(0,3),过点O作直线m,在点H上方作直线n,使直线m、n和直线AB等距离,由AB的表达式知,直线m的表达式为32y x=直线n的表达式为362y x=+∴32618y xy x⎧=⎪⎨⎪=-+⎩,解得125,185xy⎧=⎪⎪⎨⎪=⎪⎩故点D的坐标为1218(,)553+62618y xy x⎧=⎪⎨⎪=-+⎩,解得85,425xy⎧=⎪⎪⎨⎪=⎪⎩点D′的坐标为842,55⎛⎫ ⎪⎝⎭故点D 的坐标为为1218,55⎛⎫ ⎪⎝⎭或842,55⎛⎫ ⎪⎝⎭(3)过点B 作BM ⊥x 轴于点M ,过点A 作直线AH 使∠CAH=30°,过点B 作BH ⊥AH 于点H ,交x 轴于点E ,则点E 为所求点,理由:∵∠CAH=30°,∴12EH AE = ∴12=+=+=BE EA t BE EH BH 为最小, ∴∠EBM=∠BME-∠BEM=90°-∠BEM=90°-∠AEH=∠EAH=30°,设EM=x ,则BE=2x ,BM=6,∴BE 2=EM 2+BM 2,即(2x )2=x 2+36,解得23x =∴23,=-=-OE OM EM∴点E 的坐标为(223,0)-.【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、最小距离问题等,有一定的综合性.24.(1)见解析;(2)2【分析】(1)由已知角相等,利用对顶角相等,等量代换得到同位角相等,进而得出DB 与EC 平行,再由内错角相等两直线平行得到DE 与BC 平行,即可得证;(2)由角平分线得到一对角相等,再由两直线平行内错角相等,等量代换得到一对角相等,再利用等角对等边得到CN=BC ,再由平行四边形对边相等即可确定出所求.【详解】解:(1)证明:∵∠A=∠F ,∴DE ∥BC ,∵∠1=∠2,且∠1=∠DMF ,∴∠DMF=∠2,∴DB ∥EC ,则四边形BCED 为平行四边形;(2)解:∵BN 平分∠DBC ,∴∠DBN=∠CBN ,∵EC ∥DB ,∴∠CNB=∠DBN ,∴∠CNB=∠CBN ,∴CN=BC=DE=2.【点睛】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.25.(1)6;(2)1.【分析】(1)直接利用二次根式的加减乘除运算法则求出答案.(2)直接利用乘法公式以及二次根式的混合运算法则计算得出答案.【详解】(1)⨯=6=-6=.(2)21)-222212⎡⎤=---⎣⎦51(32)=---1=-.【点睛】本题考查了二次根式的混合运算以及完全平方运算,正确化简二次根式是解题的关键. 26.(1)猜想:222a b c +> ,证明见解析;(2)猜想:222+b a c <,证明见解析;(3)四边形ABCD 的面积是(2400+米2.【分析】(1)先作高线如图2,过点A 作AD BC ⊥于点D ,构造两个直角三角形,设CD x =,则BD a x =-,由勾股定理和AD 构造等式2222()b x c a x -=-- ,利用放缩法可得 222b a c +>(2)先作高线如图3,过点A 作AD BC ⊥,交BC 的延长线于点D ,构造两个直角三角形设CD y =,则BD a y =+,利用勾股定得2222()b y c a y -=-+,整理得,2222b a c ay +=-利用放缩法222b a c +<(3)如图4,连接AC .过点D 作DE AC ⊥于点E ,由勾股定理求出100AC = 设AE x =,则EC=100-x ,由勾股定理构造方程222211090(100)x x -=--,解方程的70x =,再求出DE ,利用分割法求面即可【详解】解:(1)猜想:222a b c +> ,证明:如图2,过点A 作AD BC ⊥于点D ,设CD x =,则BD a x =-,在Rt ACD △中,有222b x AD -=,在Rt ABD △中,有222()c a x AD --= ,∴2222()b x c a x -=-- ,解之:2222b a c ax +=+,∵a b c x ,,,均为正数,∴222b a c +> ;(2)猜想:222b a c +<证明:如图3,过点A 作AD BC ⊥,交BC 的延长线于点D ,设CD y =,则BD a y =+,在Rt ACD △中,有222b y AD -=,在Rt ABD △中,有222()c a y AD -+= , ∴2222()b y c a y -=-+,解之:2222b a c ay +=-,∵a b c y ,,,均为正数,∴222b a c +< ;(3)如图4,连接AC .在Rt ABC 中,有222AC AB BC =+,∴222806010000AC =+=,∵0AC >,∴100AC = ,过点D 作DE AC ⊥于点E ,设AE x =,则EC=100-x ,在Rt ADE 中,有222AD AE DE -=,即222110x DE -=,在Rt CDE △中,有222CD CE DE -=,即22290(100)x DE --= ,∴222211090(100)x x -=--,解之:70x =,在Rt ADE 中,有2222211070DE AD AE =-=-,∴DE=602±∴DE=602, ∴1122ABC ADC ABCD S SS AB BC AC DE =+=⨯⨯+⨯⨯四边形, =11608010060222=⨯⨯+⨯⨯ =240030002+2),∴四边形ABCD 的面积是(240030002+米2.【点睛】本题考查作高线,勾股定理,利用勾股定理推出锐角三角形,钝角三角形结论,用分割法求四边形面积,掌握高线最烦,利用勾股定理构造方程,判读锐角三角形与钝角三角形,利用分割法四边形求面是解题关键.。

八年级数学下册期末模拟练习试卷及答案详解(PDF可打印)

八年级数学下册期末模拟练习试卷及答案详解(PDF可打印)

2020-2021学年福建省莆田市八年级(下)期末数学模拟练习试卷一.选择题(共10*4=40分)1.(4分)如果=2﹣a,那么()A.a<2B.a≤2C.a>2D.a≥22.(4分)若3、4、a为勾股数,则a的相反数的值为()A.﹣5B.5C.﹣5或﹣D.5或3.(4分)下列关于一次函数y=﹣2x+2的图象的说法中,错误的是()A.函数图象经过第一、二、四象限B.函数图象与x轴的交点坐标为(2,0)C.当x>0时,y<2D.y的值随着x值的增大而减小4.(4分)如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()A.10B.50C.120D.1305.(4分)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm26.(4分)如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AB =3,AC=2,则四边形ABCD的面积为()A.B.C.D.57.(4分)如果正整数a、b、c满足等式a2+b2=c2,那么正整数a、b、c叫做勾股数,某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x+y的值为()A.47B.62C.79D.988.(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE =3,ED=3BE,则AB的值为()A.6B.5C.2D.39.(4分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1)C.(1,)D.(2,)10.(4分)已知=k,则一次函数y=kx﹣2k的图象一定过()A.一、二、三象限B.一、四象限C.一、三、四象限D.一、二象限二.填空题(共6*4=24分)11.(4分)计算﹣2的结果是.12.(4分)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,则k =.使代数式有意义的x的取值范围是.13.(4分)=2,=3,=4,…观察下列各式:请你找出其中规律,并将第n(n≥1)个等式写出来.14.(4分)如图,两条宽度分别为2和4的纸条交叉放置,重叠部分为四边形ABCD,若AB•BC=100,则四边形ABCD的面积是.15.(4分)小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是分钟.16.(4分)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(2,0),B(6,0)是x轴上的两点,则PA+PB的最小值为.三.解答题17.(8分)计算:(﹣1)(+1)+﹣.18.(8分)已知:如图,直线y1=x+1在平面直角坐标系xOy中(1)在平面直角坐标系xOy中画出y2=﹣2x+4的图象;(2)求y1与y2的交点坐标;(3)根据图象直接写出当y1≥y2时,x的取值范围.19.(8分)如图,在四边形ABCD中,AD=BC,E、F分别是边DC、AB的中点,FE的延长线分别AD、BC的延长线交于点H、G,求证:∠AHF=∠BGF.20.(8分)定义:关于x的一次函数y=ax+b与y=bx+a(ab≠0)叫做一对交换函数,例如:一次函数y=3x+4与y=4x+3就是一对交换函数.(1)一次函数y=2x﹣b的交换函数是;(2)当b≠﹣2时,(1)中两个函数图象交点的横坐标是;(3)若(2)中两个函数图象与y轴围成的三角形的面积为4,求b的值.21.(8分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总数甲班120118130109123600乙班109120115139117600经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)填空:甲班的优秀率为,乙班的优秀率为;(2)填空:甲班比赛数据的中位数为,乙班比赛数据的中位数为;(3)根据以上两条信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.22.(10分)已知一次函数y=﹣3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.①求点E的坐标;②△AOB与△FOD是否全等,请说明理由;(2)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.23.(10分)在平面直角坐标系中,已知点A(a,0),C(0,b)满足(a+1)2+=0(1)直接写出:a=,b=;(2)点B为x轴正半轴上一点,如图1,BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,求直线BE的解析式;(3)在(2)条件下,点M为直线BE上一动点,连OM,将线段OM逆时针旋转90°,如图2,点O的对应点为N,当点N的运动轨迹是一条直线l,请你求出这条直线l的解析式.24.(12分)在平面直角坐标系中,A(0,8)、C(8,0),四边形AOCB是正方形,点D (a,0)是x轴正半轴上一动点,∠ADE=90°,DE交正方形AOCB外角的平分线CE 于点E.(1)如图1,当点D是OC的中点时,求证:AD=DE;(2)点D(a,0)在x轴正半轴上运动,点P在y轴上.若四边形PDEB为菱形,求直线PB的解析式.(3)连AE,点F是AE的中点,当点D在x轴正半轴上运动时,点F随之而运动,点F到CE的距离是否为定值?若为定值,求出这个值;若不是定值,请说明理由.25.(14分)如图,平面直角坐标系xOy中,正方形ABCD的边AB在x轴上,点O是AB 的中点,直线l:y=kx+2k+4过定点D,交x轴于点P.(1)求正方形ABCD的边长;(2)如图1,在直线l上有一点N,DN=AB,连接BN,点M为BN的中点,连接AM,求线段AM的长度的最小值,并求出此时点N的坐标.(3)如图2,过点P作PE⊥DP交∠CBx的平分线于点E,点Q是直线AD上一点,四边形PQCE是否可能为菱形,如果能求出此时直线CQ的解析式,如果不能,则说明理由.2020-2021学年福建省莆田市八年级(下)期末数学模拟练习试卷参考答案与试题解析一.选择题(共10*4=40分)1.(4分)如果=2﹣a,那么()A.a<2B.a≤2C.a>2D.a≥2【考点】二次根式的性质与化简.【分析】利用二次根式的性质得出2﹣a≥0,进而得出答案.【解答】解:∵=2﹣a,∴2﹣a≥0,解得:a≤2.故选:B.2.(4分)若3、4、a为勾股数,则a的相反数的值为()A.﹣5B.5C.﹣5或﹣D.5或【考点】勾股数;实数的性质.【分析】根据勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数求解即可.【解答】解:∵3、4、a为勾股数,∴a==5,∴a的相反数为﹣5,故选:A.3.(4分)下列关于一次函数y=﹣2x+2的图象的说法中,错误的是()A.函数图象经过第一、二、四象限B.函数图象与x轴的交点坐标为(2,0)C.当x>0时,y<2D.y的值随着x值的增大而减小【考点】一次函数的性质;一次函数的图象.【分析】根据一次函数的性质可以判断各个选项是否正确,从而可以解答本题.【解答】解:A、∵k=﹣2<0,b=2>0,∴函数图象经过第一、二、四象限,说法正确;B、∵y=0时,x=1,∴函数图象与x轴的交点坐标为(1,0),说法错误;C、当x>0时,y<2,说法正确;D、∵k=﹣2<0,∴y的值随着x值的增大而减小,说法正确;故选:B.4.(4分)如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()A.10B.50C.120D.130【考点】平面展开﹣最短路径问题.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:如图所示,∵它的每一级的长宽高为20cm,宽30cm,长50cm,∴AB==50(cm).答:蚂蚁沿着台阶面爬行到点B的最短路程是50cm,故选:B.5.(4分)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2【考点】勾股定理;完全平方公式.【分析】要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=100.根据勾股定理就可以求出ab的值,进而得到三角形的面积.【解答】解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选:A.6.(4分)如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AB =3,AC=2,则四边形ABCD的面积为()A.B.C.D.5【考点】菱形的判定与性质;三角形的面积.【分析】先证四边形ABCD是菱形,由勾股定理可求BO,由菱形的面积公式可求解.【解答】解:过点A作AE⊥CD于E,AF⊥BC于F,连接AC,BD交于点O,∵两条纸条宽度相同,∴AE=AF.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AF=CD•AE.又∵AE=AF.∴BC=CD,∴四边形ABCD是菱形,∴AO=CO=1,BO=DO,AC⊥BD,∴BO===2,∴BD=4,∴四边形ABCD的面积==4,故选:A.7.(4分)如果正整数a、b、c满足等式a2+b2=c2,那么正整数a、b、c叫做勾股数,某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x+y的值为()A.47B.62C.79D.98【考点】勾股数;规律型:数字的变化类.【分析】依据每列数的规律,即可得到a=n2﹣1,b=2n,c=n2+1,进而得出x+y的值.【解答】解:由题可得,3=22﹣1,4=2×2,5=22+1,……∴a=n2﹣1,b=2n,c=n2+1,∴当c=n2+1=65时,n=8,∴x=63,y=16,∴x+y=79,故选:C.8.(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE =3,ED=3BE,则AB的值为()A.6B.5C.2D.3【考点】矩形的性质.【分析】由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB==2,故选:C.9.(4分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1)C.(1,)D.(2,)【考点】正方形的性质;坐标与图形性质;勾股定理.【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故选:D.10.(4分)已知=k,则一次函数y=kx﹣2k的图象一定过()A.一、二、三象限B.一、四象限C.一、三、四象限D.一、二象限【考点】一次函数的性质.【分析】根据=k,可以得到k的值,再根据一次函数y=kx﹣2k,可知k≠0,然后即可得到该函数图象经过哪几个象限,从而可以解答本题.【解答】解:∵=k,∴a=k(b+c),b=k(a+c),c=k(a+b),∴a+b+c=2k(a+b+c),∴(a+b+c)﹣2k(a+b+c)=0,∴(1﹣2k)(a+b+c)=0,∴1﹣2k=0或a+b+c=0,∴k=,b+c=﹣a,∴=﹣1=k,由上可得,k=或k=﹣1,∴当k=时,一次函数y=x﹣1,该函数图象过第一、三、四象限,当k=﹣1时,一次函数y=﹣x+2,该函数图象过第一、二、四象限,∴一次函数y=kx﹣2k的图象一定过第一、四象限,故选:B.二.填空题(共6*4=24分)11.(4分)计算﹣2的结果是3.【考点】二次根式的加减法;二次根式的性质与化简.【分析】直接化简二次根式,进而合并得出答案.【解答】解:﹣2=2×2﹣2×=4﹣=3.故答案为:3.12.(4分)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,则k=﹣5.使代数式有意义的x的取值范围是x≤2.【考点】一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标;二次根式有意义的条件;一次函数的性质.【分析】根据点P的坐标可求出点P′的坐标,再利用一次函数图象上点的坐标特征可求出关于k的一元一次方程,解之即可求出k值.根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:∵点P(1,2)关于x轴的对称点为P′,∴点P′的坐标为(1,﹣2).∵点P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣5.由题意得,2﹣x≥0,解得x≤2.故答案为:﹣5;x≤2.13.(4分)=2,=3,=4,…观察下列各式:请你找出其中规律,并将第n(n≥1)个等式写出来=(n+1).【考点】二次根式的性质与化简.【分析】根据观察,可发现规律,根据规律,可得答案.【解答】解:由=2,=3,=4,…得=(n+1),故答案为:=(n+1).14.(4分)如图,两条宽度分别为2和4的纸条交叉放置,重叠部分为四边形ABCD,若AB•BC=100,则四边形ABCD的面积是20.【考点】平行四边形的判定与性质;三角形的面积.【分析】根据题意判定四边形ABCD是平行四边形.如图,过点A作AE⊥BC于点E,过点A作AF⊥CD于点F,利用面积法求得AB与BC的数量关系,从而求得该平行四边形的面积.【解答】解:依题意得:AB∥CD,AD∥BC,则四边形ABCD是平行四边形.如图,过点A作AE⊥BC于点E,过点A作AF⊥CD于点F,∴AE=2,AF=4,∴BC•AE=AB•AF,即BC=2AB.又AB•BC=100,∴BC=10,∴四边形ABCD的面积=10×2=20,故答案为20.15.(4分)小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是15分钟.【考点】函数的图象.【分析】依据图象分别求出平路、上坡路和下坡路的速度,然后根据路程,求出时间即可.【解答】解:先算出平路、上坡路和下坡路的速度分别为、和(千米/分),所以他从单位到家门口需要的时间是(分钟).故答案为:15.16.(4分)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(2,0),B(6,0)是x轴上的两点,则PA+PB的最小值为2.【考点】一次函数图象上点的坐标特征;轴对称﹣最短路线问题.【分析】作A点关于直线y=x的对称点A′,利用一次函数图象上点的坐标性质得出OA′=2,进而利用勾股定理得出结论即可.【解答】解:如图所示:作A点关于直线y=x的对称点A′,连接A′B,交直线y=x 于点P,此时PA+PB最小,∵OA′=2,BO=6,∴PA+PB=A′B==2.故答案为:2.三.解答题17.(8分)计算:(﹣1)(+1)+﹣.【考点】二次根式的混合运算;平方差公式.【分析】根据平方差公式和分母有理化,可以化简题目中的式子,然后合并同类项和同类二次根式即可.【解答】解:(﹣1)(+1)+﹣=2﹣1+4﹣=1+.18.(8分)已知:如图,直线y1=x+1在平面直角坐标系xOy中(1)在平面直角坐标系xOy中画出y2=﹣2x+4的图象;(2)求y1与y2的交点坐标;(3)根据图象直接写出当y1≥y2时,x的取值范围.【考点】一次函数的性质;一次函数的图象.【分析】(1)依据函数解析式即可画出y2=﹣2x+4的图象;(2)解方程组可得y1与y2的交点坐标;(3)依据函数图象以及交点坐标即可得到当y1≥y2时,x的取值范围.【解答】解:(1)y2=﹣2x+4的图象如图所示:(2)解方程组,可得,∴y1与y2的交点坐标为(1,2);(3)当y1≥y2时,x的取值范围是x≥1.19.(8分)如图,在四边形ABCD中,AD=BC,E、F分别是边DC、AB的中点,FE的延长线分别AD、BC的延长线交于点H、G,求证:∠AHF=∠BGF.【考点】三角形中位线定理.【分析】连接BD,取BD的中点P,连接EP,FP,根据三角形中位线定理得到PF=AD,PF∥AD,EP=BC,EP∥BC,根据平行线的性质、等腰三角形的性质证明结论.【解答】证明:连接BD,取BD的中点P,连接EP,FP,∵E、F、P分别是DC、AB、BD边的中点,∴EP是△BCD的中位线,PF是△ABD的中位线,∴PF=AD,PF∥AD,EP=BC,EP∥BC,∴∠H=∠PFE,∠BGF=∠FEP,∵AD=BC,∴PE=PF,∴∠PEF=∠PFE,∴∠AHF=∠BGF.20.(8分)定义:关于x的一次函数y=ax+b与y=bx+a(ab≠0)叫做一对交换函数,例如:一次函数y=3x+4与y=4x+3就是一对交换函数.(1)一次函数y=2x﹣b的交换函数是y=﹣bx+2;(2)当b≠﹣2时,(1)中两个函数图象交点的横坐标是x=1;(3)若(2)中两个函数图象与y轴围成的三角形的面积为4,求b的值.【考点】一次函数的性质;三角形的面积.【分析】(1)由题意可以写出一次函数y=2x﹣b的交换函数;(2)根据题意和(1)中的结果,可以求得当b≠﹣2时,(1)中两个函数图象交点的横坐标;(3)根据题意和(1)、(2)的结果,可以计算出b的值.【解答】解:(1)由题意可得,一次函数y=2x﹣b的交换函数是y﹣bx+2,故答案为:y=﹣bx+2;(2)由题意可得,当2x﹣b=﹣bx+2时,解得x=1,即当b≠﹣2时,(1)中两个函数图象交点的横坐标是x=1,故答案为:x=1;(3)函数y=2x﹣b与y轴的交点是(0,﹣b),函数y=﹣bx+2与y轴的交点为(0,2),由(2)知,当b≠﹣2时,(1)中两个函数图象交点的横坐标是x=1,∵(1)中两个函数图象与y轴围成的三角形的面积为4,∴=4,解得b=6或b=﹣10,即b的值是6或﹣10.21.(8分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总数甲班120118130109123600乙班109120115139117600经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)填空:甲班的优秀率为100%,乙班的优秀率为100%;(2)填空:甲班比赛数据的中位数为120,乙班比赛数据的中位数为115;(3)根据以上两条信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.【考点】中位数.【分析】(1)优秀率就是优秀的人数与总人数的百分比;(2)中位数就是一组数据中先把所有数据按从大到小或从小到大的顺序排列起来,如果是奇数个时,就是中间的那一个数,如果是偶数个时,就是中间两个数的平均数;(3)根据计算出来的统计量的意义分析判断.【解答】解:(1)甲班优秀率为100%,乙班优秀率为100%;故答案为:100%,100%;(2)甲班5名学生比赛成绩的中位数是120个,乙班5名学生比赛成绩的中位数是117个.故答案为:120,117;(3)将冠军奖状发给甲班,因为甲班5人比赛成绩的优秀率等于乙班,但中位数比乙班大,综合评定甲班比较好.22.(10分)已知一次函数y=﹣3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.①求点E的坐标;②△AOB与△FOD是否全等,请说明理由;(2)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.【考点】一次函数综合题.【分析】(1)①由等腰直角三角形的性质和中点坐标公式可求点E坐标;②先求点F坐标,由“SAS”可证△AOB≌△FOD;(2)分三种情况讨论,利用等腰三角形的性质可求解.【解答】解:(1)①如图1,连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,∵一次函数y=﹣3x+3的图象分别与x轴,y轴交于A,B两点,∴点A(1,0),点B(0,3),∵点D与点C关于y轴对称,点C(3,0),∴点D(﹣3,0),∵EG⊥OC,EH⊥OB,∴OE平分∠BOC,又∵OB=OC=3,∴OE=BE=EC,∴点E(,);②△AOB≌△FOD,理由如下:设直线DE解析式为y=kx+b,由题意可得:,解得:,∴直线DE解析式为y=x+1,∵点F是直线DE与y轴的交点,∴F(0,1),∴OF=OA=1,又∵OB=OD=3,∠AOB=∠FOD=90°,∴△AOB≌△FOD(SAS);(3)∵点G与点B关于x轴对称,点B(0,3),∴点G(0,﹣3),∵点G(0,﹣3),点C(3,0),∴直线GC的解析式为y=x﹣3,∵点B(0,3),点A(1,0),∴AB2=1+9=10,设点P(a,a﹣3),若AB=AP时,则10=(a﹣1)2+(a﹣3﹣0)2,∴a=0或4,∴点P(0,﹣3)或(4,1);若AB=PB时,则10=(a﹣0)2+(a﹣3﹣3)2,∴a2﹣6a+13=0,∵Δ<0,∴方程无解,若AP=BP时,则(a﹣1)2+(a﹣3﹣0)2=(a﹣0)2+(a﹣3﹣3)2,∴a=,∴点P(,),综上所述:点P(0,﹣3)或(4,1)或(,).23.(10分)在平面直角坐标系中,已知点A(a,0),C(0,b)满足(a+1)2+=0(1)直接写出:a=﹣1,b=﹣3;(2)点B为x轴正半轴上一点,如图1,BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,求直线BE的解析式;(3)在(2)条件下,点M为直线BE上一动点,连OM,将线段OM逆时针旋转90°,如图2,点O的对应点为N,当点N的运动轨迹是一条直线l,请你求出这条直线l的解析式.【考点】一次函数综合题.【分析】(1)根据非负数是性质来求a、b的值;(2)如图1,过点O作OF⊥OE,交BE于F.构建全等三角形:△EOC≌△FOB(ASA),△AOC≌△DOB(ASA),易求D(0,﹣1),B(3,0).利用待定系数法求得直线BE的解析式y=x﹣1;(3)如图2,过点M作MG⊥x轴,垂足为G,过点N作NH⊥GH,垂足为H.构建全等三角形:△GOM≌△HMN,故OG=MH,GM=NH.设M(m,m﹣1),则H(m,﹣m﹣1),N(m﹣1,﹣m﹣1),由此求得点N的横纵坐标间的函数关系.【解答】解:(1)依题意得a+1=0,b+3=0,解得a=﹣1,b=﹣3.故答案是:﹣1;﹣3;(2)如图1,过点O作OF⊥OE,交BE于F.∵BE⊥AC,OE平分∠AEB,∴△EOF为等腰直角三角形.∵在△EOC与△FOB中,,∴△EOC≌△FOB(ASA),∴OB=OC.∴在△AOC与△DOB中,,∴△AOC≌△DOB(ASA),∴OA=OD,∵A(﹣1,0),C(0,﹣3),∴D(0,﹣1),B(3,0)∴直线BD,即直线BE的解析式y=x﹣1;(3)依题意,△NOM为等腰Rt△,如图2,过点M作MG⊥x轴,垂足为G,过点N作NH⊥GH,垂足为H,∵△NOM为等腰Rt△,则易证△GOM≌△HMN,∴OG=MH,GM=NH,由(2)知直线BD的解析式y=x﹣1,设M(m,m﹣1),则H(m,﹣m﹣1),∴N(m﹣1,﹣m﹣1),令m﹣1=x,﹣m﹣1=y,∴m=x代入m﹣1=y,消去参数m得,y=﹣x﹣即直线l的解析式为y=﹣x﹣.24.(12分)在平面直角坐标系中,A(0,8)、C(8,0),四边形AOCB是正方形,点D (a,0)是x轴正半轴上一动点,∠ADE=90°,DE交正方形AOCB外角的平分线CE 于点E.(1)如图1,当点D是OC的中点时,求证:AD=DE;(2)点D(a,0)在x轴正半轴上运动,点P在y轴上.若四边形PDEB为菱形,求直线PB的解析式.(3)连AE,点F是AE的中点,当点D在x轴正半轴上运动时,点F随之而运动,点F到CE的距离是否为定值?若为定值,求出这个值;若不是定值,请说明理由.【考点】一次函数综合题.【分析】(1)如图1中,取OA的中点M,连接DM.只要证明△AMD≌△DCE即可;(2)如图2中,作BP⊥AD交y作于P,则PD∥DE,由四边形AOBC是正方形,可证△AOD≌△BAP,四边形PDEB是平行四边形,当D点在边OC上时,P点在OA上,DP<DA(DE),推出四边形PDEB不可能是菱形,推出点D在点C的右侧,如图3中,利用全等三角形的性质求出OP,可得当P坐标,致力于待定系数法即可解决问题;(3)只要证明点F到CE的距离为定值且等于平行线OB、CE之间的距离即可;【解答】解:(1)如图1中,取OA的中点M,连接DM.∵CE为正方形的外角平分线,∴∠BCE=45°,∴∠DCE=90°+45°=135°,∵D、M分别为OC、OA的中点,∴OM=OD=AM=CD,∴△OMD是等腰直角三角形,∴∠OMD=45°,∴∠AMD=45°,∴∠AMD=135°=∠DCE,∵∠EDC+∠ADO=90°,∠ADO+∠DAO=90°,∴∠EDC=∠DAM,∴△AMD≌△DCE,∴AD=DE.(2)如图2中,作BP⊥AD交y作于P,由四边形AOBC是正方形,可证△AOD≌△BAP,∴AD=BP,由(1)可知DE=AD,∴DE=BP,∴四边形PDEB是平行四边形,当D点在边OC上时,P点在OA上,DP<DA(DE),∴四边形PDEB不可能是菱形,∴点D在点C的右侧,如图3中,∵四边形PDEB是菱形,∴PD=DE,∵AD=DE,∵OD⊥AP,∴OP=OA=8,∴P(0,﹣8),设直线PB的解析式为y=kx+b,则有,解得,∴直线PB的解析式为y=2x﹣8.(3)如图4或5,连接FC,AC.∵∠ACB=45°,∠BCE=45°,∴∠ACE=90°,∵F是AE中点,∴FA=FC=FE,∴点F在AC的垂直平分线上,∵OB垂直平分AC,∴点F在直线OB上,∵AC⊥CE,AC⊥OB,∴OB∥CE,∴点F到CE的距离为定值且等于平行线OB、CE之间的距离,∴点F到CE的距离d=CT=AC=4.25.(14分)如图,平面直角坐标系xOy中,正方形ABCD的边AB在x轴上,点O是AB 的中点,直线l:y=kx+2k+4过定点D,交x轴于点P.(1)求正方形ABCD的边长;(2)如图1,在直线l上有一点N,DN=AB,连接BN,点M为BN的中点,连接AM,求线段AM的长度的最小值,并求出此时点N的坐标.(3)如图2,过点P作PE⊥DP交∠CBx的平分线于点E,点Q是直线AD上一点,四边形PQCE是否可能为菱形,如果能求出此时直线CQ的解析式,如果不能,则说明理由.【考点】一次函数综合题.【分析】(1)由y=kx+2k+4,可得y﹣4=k(x+2),由y=kx+2k+4过定点,则x与y的值与k无关,可得,解得,进而得出D点的坐标,即可得出正方形ABCD 的边长为4.(2)连BD,取BD中点E,连EM,EA,由三角形中位线定理可得ME=1,由三角形的三边关系可得AM≥AE﹣ME,当点A、M、E三点共线时,AM有最小值为﹣1.(3)如图2中,在DA上截取DS=PB,作CQ⊥DP交AD于点Q,首先证明四边形CQPE 是平行四边形,分两种情形分别求解即可.【解答】解:(1)由y=kx+2k+4,可得y﹣4=k(x+2),∵直线l:y=kx+2k+4过定点,则x与y的值与k无关,∴,解得,∴D(﹣2,4),∴正方形ABCD的边长为4.(2)连BD,取BD中点E,连EM,EA,∵DN=AB=2,∴EM=DN=1,∵AE=BD=,在△AME中,AM≥AE﹣ME,∴当点A、M、E三点共线时,AM有最小值为﹣1,此时PD⊥BD,N(﹣2﹣,4﹣).(3)如图2中,在DA上截取DS=PB,∵AD=AB,DS=PB,∴AS=AP,∴∠ASP=45°,∴∠DSP=135°,∵∠ABC=90°,∠CBE=45°,∴∠PBE=135°=∠DSP,∵∠DPE=∠DAP=90°,∴∠DPA+∠ADP=90°,∠DPA+∠EPB=90°,∴∠SDP=∠EPB,∴△DSP≌△PBE(ASA),∴DP=PE,作CQ⊥DP交AD于点Q,连接PQ,EC,则△CDQ≌△DAP(AAS),∴CQ=DP=PE,∴CQ∥PE且CQ=PE,∴四边形PQCE是平行四边形,∴当QP=QC时,四边形PQCE为菱形,∴QP=QC=DP,①当点Q与点D重合,直线CQ:y=4;②当点Q在x轴下方时,∵QP=QC=PQ,又PA⊥AD,∴QA=AD=4,∴Q(﹣2,﹣4),∵C(2,4),∴直线CQ:y=2x.综上所述,满足条件的直线CQ的解析式为y=4或y=2x.。

【必考题】初二数学下期末模拟试卷(附答案)

【必考题】初二数学下期末模拟试卷(附答案)

【必考题】初二数学下期末模拟试卷(附答案)一、选择题1.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A .5.5B .5C .6D .6.52.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥ 3.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( ) A .7B .6C .5D .44.下列命题中,真命题是( ) A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形5.如图,以 Rt △ABC 的斜边 BC 为一边在△ABC 的同侧作正方形 BCEF,设正方形的中心为 O ,连接 AO ,如果 AB =4,AO =62,那么 AC 的长等于( )A .12B .16C .3D .26.若一个直角三角形的两边长为12、13,则第三边长为( ) A .5B .17C .5或17D .5或7.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S 甲2=1.5,S 乙2=2.6,S 丙2=3.5,S 丁2=3.68,你认为派谁去参赛更合适( ) A .甲 B .乙C .丙D .丁8.函数的自变量取值范围是( ) A .x ≠0 B .x >﹣3 C .x ≥﹣3且x ≠0 D .x >﹣3且x ≠0 9.直角三角形中,有两条边长分别为3和4,则第三条边长是( )A .1B .5C .7D .5或710.下列运算正确的是( ) A .235+= B .32﹣2=3 C .236⨯=D .632÷=11.正方形具有而菱形不一定具有的性质是( ) A .对角线互相平分 B .每条对角线平分一组对角 C .对边相等 D .对角线相等12.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .二、填空题13.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1_____S 2;(填“>”或“<”或“=”)14.若3的整数部分是a,小数部分是b,则3a b-=______.15.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。

新人教版八年级数学下册期末模拟考试(加答案)

新人教版八年级数学下册期末模拟考试(加答案)

新人教版八年级数学下册期末模拟考试(加答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=__________. 3.4的平方根是 .4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.6.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快_________s后,四边形ABPQ成为矩形.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111xx x-=--(2)31523162x x-=--2.先化简,再求值:2222222a ab b a aba b a a b-+-÷--+,其中a,b满足2(2)10a b-+=.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、D6、C7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、13、±2.4、﹣2<x <25、706、4三、解答题(本大题共6小题,共72分)1、(1)2x 3=;(2)10x 9=.2、1a b-+,-1 3、8k ≥-且0k ≠.4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、(1)略(2)等腰三角形,理由略6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。

13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。

2024年最新人教版初二数学(下册)模拟考卷及答案(各版本)

2024年最新人教版初二数学(下册)模拟考卷及答案(各版本)

2024年最新人教版初二数学(下册)模拟考卷及答案(各版本)一、选择题:每题1分,共5分1. 下列数中,既是有理数也是无理数的是( )A. 0B. 3/2C. √2D. 52. 已知函数f(x)=x²3x+2,那么f(1)= ( )A. 0B. 2C. 3D. 23. 在三角形ABC中,AB=AC,那么角B等于角C的( )A. 1/2B. 1C. 2D. 无法确定4. 下列哪个数是最大的( )A. √3B. √2C. √5D. √45. 已知函数f(x)=2x+3,那么f(2)= ( )A. 1B. 1C. 2D. 2二、判断题:每题1分,共5分1. 0是整数,也是有理数。

( )2. 任何一个正整数都能被表示为两个质数的和。

( )3. 两条平行线的斜率相等。

( )4. 任何两个奇数之和都是偶数。

( )5. √3是整数。

( )三、填空题:每题1分,共5分1. 2³=_______2. 已知函数f(x)=3x2,那么f(2)=_______3. 在三角形ABC中,AB=AC,那么角B等于_______4. 1/2的倒数是_______5. 2的平方根是_______四、简答题:每题2分,共10分1. 请简述有理数的定义。

2. 请简述平行线的性质。

3. 请简述一次函数的性质。

4. 请简述勾股定理。

5. 请简述概率的定义。

五、应用题:每题2分,共10分1. 已知函数f(x)=x²2x+1,求f(3)的值。

2. 在三角形ABC中,AB=3,AC=4,BC=5,求三角形ABC的面积。

3. 一个袋子里有3个红球,2个绿球,求摸出一个红球的概率。

4. 解方程:2x+3=7。

5. 已知函数f(x)=2x+1,求f(3)的值。

六、分析题:每题5分,共10分1. 已知函数f(x)=x²4x+3,求f(x)的最小值。

2. 在三角形ABC中,AB=AC,BC=6,求三角形ABC的面积。

人教版八年级第二学期下册期末模拟数学试卷答案

人教版八年级第二学期下册期末模拟数学试卷答案

最新人教版八年级第二学期下册期末模拟数学试卷【答案】一、选择题(共10小题,每小题4分,满分40分x1 x 2)有意义,则.要使式子的取值范围是(A.x>0 B.x≥﹣2C.x≥2 D.x≤2D答案:)b.判断下列三条线段a,,c组成的三角形不是直角三角形的是( 2 =24 25,cb5A.a =4,b=,c=3B.a=7,=13 ,.,40,b=50c=60Da=5,b=12c=.Ca=C答案:3).下列各式计算正确的是(答案:Bnn 4n48).已知是整数,则是正整数,的最小值是(A.1B.2C.3D.4答案:C5.一次函数y=kx﹣b,当k<0,b<0时的图象大致位置是()答案:A6.11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差答案:B7.如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是)平行四边形的是(.A.AB∥DC,AD∥BC B.AB∥DC,AD=BCBCAD=AB=DC,,BO=DO D.AOC.=COB:答案8.在平面直角坐标系中,把直线y=3x向左平移2个单位长度,平移后的直线解析式是()A.y=3x+2 B.y=3x﹣2C.y=3x+6D.y=3x﹣6C答案:11xlykxy9l5Am3xkx﹣)和(:,则不等式=.如图,已知两直线,:=﹣≥相交于点2122 5)的解集为(≤3D.x≥A.x6B.≤6 Cx≥3.xB:答案10.如图,在矩形ABCD中,AB=6,AD=8,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为()2D B9C8 A10....41B:答案20二、填空题(每小题5分,满分分)12xyx 11y .﹣.一次函数,函数值=随的增大而32答案:减小ABCEABC12DBCFABAC的周长为、、、分别是的中点,如果△.如图,在△中,点、DEF20+23.,那么△的周长是3 10+:答案,分别在边、E点ABCD在平行四边形如图,13.中,F请添加一个条件上,、BCAD使四边形AECF是平行四边形(只填一个即可).答案:AF=CE;14.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA 的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为.答案:(2,4)或(3,4)或(8,4);三.(本大题共2小题,每题8分,满分16分)2 2+1121512333))﹣(﹣.计算()(﹣42 112412133-+-解:原式=-)=-(16.在等边三角形ABC中,高AD=m,求等边三角形ABC的面积.a,:等边三有形边长为解1222ma?a?,勾股定理,得:423m?a331232mm???m=S面积为:323四.(本大题共2小题,每题8分,满分16分)17.(8分)我国古代数学著作《九章算术》中的一个问题.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,适与岸齐问水深、葭长各几何译文大意是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池边的中点,它的顶端恰好到达池边的水面.问水的深度与这根芦.苇的长度分别是多少?x 尺,如下图,解:设水的深度为OBOAx1 )尺,=+=(根据题意,芦苇长:RtOCB 中,在△222 5xx1)++=(x12 ,解得:=x113=+1213 尺。

【浙教版】初二数学下期末模拟试题及答案

【浙教版】初二数学下期末模拟试题及答案

一、选择题1.已知5个数1a 、2a 、3a 、4a 、5a 的平均数是a ,则数据11a +、22a +、33a +、44a +、55a +的平均数为( )A .aB .3a +C .56a D .15a +2.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )A .1999年B .2004年C .2009年D .2014年3.某校10名学生参加某项比赛成绩统计如图所示。

对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .参赛学生最高成绩与最低成绩之差是154.某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B .全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C .这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D .这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩5.下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 为常数,且mn≠0)的图象的是( )A .B .C .D .6.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( ) A .12m <B .12m >C .m 1≥D .1m <7.已知关于x ,y 的二元一次方程组(7)2(31)5y k x y k x =--⎧⎨=-+⎩无解,则一次函数32y kx =-的图象不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.如图,直线y =kx (k≠0)与y =23x+2在第二象限交于A ,y =23x+2交x 轴,y 轴分别于B 、C 两点.3S △ABO =S △BOC ,则方程组0236kx y x y -=⎧⎨-=-⎩的解为( )A .143x y =-⎧⎪⎨=⎪⎩B .321x y ⎧=-⎪⎨⎪=⎩C .223x y =-⎧⎪⎨=⎪⎩D .3432x y ⎧=-⎪⎪⎨⎪=⎪⎩9.如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE CD ⊥,GF BC ⊥,1500m AD =,小敏行走的路线为B A G E →→→,小聪行走的路线为B A D E F →→→→.若小敏行走的路程为3100m ,则小聪行走的路程为( )A.3100m B.4600m C.5500m D.6100m10.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.4﹣22B.32﹣4 C.1 D.2a=a那么a应满足什么条件()11.已知,()22A.a>0 B.a≥0C.a =0 D.a任何实数12.勾股定理是人类最伟大的科学发现之一,在我国古代《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若图中阴影部分图形的面积为3,则较小两个正方形重叠部分图形的面积为()A.2 B.3 C.5 D.6二、填空题13.某中学篮球队12名队员的年龄情况如下:年龄(单位:1415161718岁)人数14322则这个队队员年龄的众数和中位数分别是_____岁、_____岁.14.有一组数据:1,3,5,3,若再添加一个数,所得的新一组数据与原数据的中位数,众数,平均数都没有发生变化,则添加的数为____.15.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x (时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有______千米到达甲地.16.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.17.菱形ABCD 有一个内角是60°,它的边长是2,则此菱形的对角线AC 长为_________.18.生活中,有人喜欢把传送的便条折成形状,折叠过程如图所示(阴影部分表示纸条的反面):已知由信纸折成的长方形纸条(图①)长为25cm ,宽为cm x .如果能折成图④的形状,且为了美观,纸条两端超出点P 的长度相等,即最终图形是轴对称图形,则在开始折叠时起点M 与点A 的距离(用x 表示)为______cm . 19.比较大小:23_____32(填“>”、“<”或“=”).20.已知一个三角形工件尺寸(单位dm )如图所示,则高h =__dm .三、解答题21.某公司共有三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B 8C5(1)①在扇形图中,C部门所对应的圆心角的度数为___________;②在统计表中,___________,___________;(2)求这个公司平均每人所创年利润.22.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.23.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过36m 时,水费按每立方米1.1元收费,超过36m 时,超过部分每立方米按1.6元收费,设每户每月用水量为3m x ,应缴水费为y 元. (1)写出y 与x 之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?24.已知:平行四边形ABCD 中,点M 为边CD 的中点,点N 为边AB 的中点,联结AM 、CN .(1)求证:AM ∥CN ;(2)过点B 作BH AM ⊥,垂足为H ,联结CH .求证:△BCH 是等腰三角形.25.计算:(1)2(132)486-+-÷ (2)(263)(326)---26.已知长方形纸片ABCD ,将长方形纸片按如图所示的方式折叠,使点D 与点B 重合,折痕为EF .(1)△BEF 是等腰三角形吗?若是,请说明理由; (2)若AB =4,AD =8,求BE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的和多15,可得数据11a +、22a +、33a +、44a +、55a +的平均数比a 多3,据此求解即可 【详解】解:a+()()24512345132+4+51+3+-+a a a a a a a a a a ++++++++⎡⎤⎣⎦ ÷5 =a+[1+2+3+4+5] ÷5 =a+15÷5 =a+3 故选:B 【点睛】此题主要考察了算术平均数的含义和求法,解题关键是判断出:数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的平均数多3.2.C解析:C 【分析】把数据的年份从小到大排列,根据中位数的定义即可得答案, 【详解】把数据的年份从小到大排列为:2014年、1994年、2009年、2004年、1999年, ∵中间的年份是2009年,∴五次统计数据的中位数的年份是2009年, 故选:C . 【点睛】本题考查中位数,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.3.C解析:C 【分析】根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案. 【详解】解:∵90出现了5次,出现的次数最多,∴众数是90; 故A 正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故C错误;参赛学生最高成绩与最低成绩之差是:95-80=15;故D正确.故选:C.【点睛】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、极差.4.B解析:B【分析】A、由于这八个班的人数不一定相等,故全年级学生的平均成绩应等于所有学生成绩的和除以学生人数;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间;C、由于这八个班的人数不一定相等,故这10个平均成绩的中位数不一定是全年级学生的平均成绩;D、众数是一组数据中出现次数最多的数,能反映数据的集中程度,平均数也能反映数据的集中程度,是有可能相等的.【详解】A、全年级学生的平均成绩应等于所有学生成绩的和除以学生人数,而这八个班的人数不一定相等,故错误;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间,故正确;C、中位数不一定与平均数相等,故错误;D、众数与平均数有可能相等,故错误.故选B.【点睛】本题考查了平均数、中位数、众数的关系,它们有可能相等,也可能不相等.5.A解析:A【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【详解】解:①当mn>0,m,n同号,同正时y=mx+n过1,3,2象限,同负时过2,4,3象限;②当mn<0时,m,n异号,则y=mx+n过1,3,4象限或2,4,1象限.故选:A.【点睛】此题主要考查一次函数与正比例函数的图象判断,解题的关键是熟知一次函数的图象与性质.6.A解析:A【分析】由题目条件可判断出一次函数的增减性,则可得到关于m的不等式,可求得m的取值范围.【详解】解:∵点P(-1,y1)、点Q(3,y2)在一次函数y=(2m-1)x+2的图象上,∴当-1<3时,由题意可知y1>y2,∴y随x的增大而减小,∴2m-1<0,解得m<12,故选:A.【点睛】本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键.7.B解析:B【分析】先根据二元一次方程组无解,得出k的值,再利用一次函数图象与系数的关系可得出一次函数的图象经过第一、三、四象限,进而可得出一次函数322y x=-的图象不经过第二象限.【详解】解:∵(7)2(31)5 y k xy k x=--⎧⎨=-+⎩∴(7-k)x-2=(3k-1)x+5(7-k)x-(3k-1)x=7(7-k-3k+1)x=7(8-4k)x=7∵二元一次方程组无解∴8-4k=0解得:k=2∴将k=2代入一次函数32y kx =- 得322y x =-∵k=2﹥0,b=32-<0 ∴一次函数322y x =-的图象不经过第二象限 故选:B 【点睛】本题考查了一次函数图象与系数的关系,牢记“k ﹥0,b <0⇔y =kx +b 的图象在一、三、四象限”是解题的关键.8.C解析:C 【分析】 先根据223y x =+可得B 、C 的坐标,进而确定OB 、OC 的长,然后根据3S △ABO =S △BOC 结合点A 在第二象限确定A 点的纵坐标,然后再根据点A 在y =23x+2上,可确定点A 的横坐标即可解答. 【详解】解:由223y x =+可得B (﹣3,0),C (0,2), ∴BO =3,OC =2, ∵3S △ABO =S △BOC ,∴3×12×3×|yA|=12×3×2, 解得y A =±23, 又∵点A 在第二象限, ∴y A =23, 当y =23时,23=23x+2,解得x =﹣2, ∴方程组0236kx y x y -=⎧⎨-=-⎩的解为223x y =-⎧⎪⎨=⎪⎩.故答案为C . 【点睛】本题主要考查了一次函数与二元一次方程组,理解方程组的解就是两个相应的一次函数图象的交点坐标成为解答本题的关键.9.B解析:B【分析】连接CG ,由正方形的对称性,易知AG=CG ,由正方形的对角线互相平分一组对角,GE ⊥DC ,易得DE=GE .在矩形GECF 中,EF=CG .要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.【详解】解:连接GC ,∵四边形ABCD 为正方形,所以AD=DC ,∠ADB=∠CDB=45°,∵∠CDB=45°,GE ⊥DC ,∴△DEG 是等腰直角三角形,∴DE=GE .在△AGD 和△GDC 中,AD CD ADG CDG DG DG ⎧⎪∠∠⎨⎪⎩===,∴△AGD ≌△GDC (SAS )∴AG=CG ,在矩形GECF 中,EF=CG ,∴EF=AG .∵BA+AD+DE+EF-BA-AG-GE ,=AD=1500m .∵小敏共走了3100m ,∴小聪行走的路程为3100+1500=4600(m ),故选:B .【点睛】本题考查了正方形的性质、全等三角形的性质和判定、矩形的性质及等腰三角形的性质.解决本题的关键是证明AG=EF ,DE=GE .10.A解析:A【分析】根据正方形的对角线平分一组对角可得∠ABD =∠ADB =45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边的性质得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,最后根据等腰直角三角形的直角边等于斜边的2倍计算即可得解. 【详解】解:在正方形ABCD 中,∠ABD =∠ADB =45°,∵∠BAE =22.5°,∴∠DAE =90°﹣∠BAE =90°﹣22.5°=67.5°,在△ADE 中,∠AED =180°﹣45°﹣67.5°=67.5°,∴∠DAE =∠AED ,∴AD =DE =4,∵正方形的边长为4,∴BD =∴BE =BD ﹣DE =﹣4,∵EF ⊥AB ,∠ABD =45°,∴△BEF 是等腰直角三角形,∴EF =2BE =2×(﹣4)=4﹣. 故选:A .【点睛】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD 是解题的关键,也是本题的难点.11.B解析:B【分析】与a 的取值范围即可得到答案.【详解】∵a 的取值范围是0a ≥a 的取值范围是任意实数, 故a 应满足的条件是0a ≥,故选:B.【点睛】此题考查二次根式的性质:双重非负性,二次根式的被开方数满足大于等于零的条件. 12.B解析:B【分析】由图①结合勾股定理可得三个正方形面积之间的关系,在图②中,可知两个小正方形的面积与阴影部分面积之和减去大正方形的面积即可得到重叠部分的面积.【详解】设以直角三角形三边为边长的正方形面积分别为S1,S2,S3,大小正方形重叠部分的面积为S,则由勾股定理可得:S1+S2=S3,在图②中,S1+S2+3-S=S3,∴S=3,故选:B.【点睛】本题主要考查勾股定理与图形面积,灵活运用勾股定理处理图形面积之间的转化是解题关键.二、填空题13.1615【分析】根据中位数和众数的定义求解【详解】解:从小到大排列此数据数据15出现了四次最多为众数16和16处在第5位和第六位它两个数的平均数为16为中位数故答案为:1615【点睛】本题属于基础题解析:16 15【分析】根据中位数和众数的定义求解.【详解】解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故答案为:16,15.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.14.3【分析】依据定义和公式分别计算新旧两组数据的平均数中位数众数求解即可【详解】原数据的1335的平均数为=3中位数为=3众数为3;添加的数为3后新数据13335的平均数为=3中位数为3众数为3;故答解析:3.【分析】依据定义和公式分别计算新旧两组数据的平均数、中位数、众数求解即可.【详解】原数据的1、3、3、5的平均数为13354+++ =3,中位数为332+=3,众数为3; 添加的数为3后,新数据1、3、3、3、5的平均数为133355++++ =3,中位数为3,众数为3;故答案为:3.【点睛】 此题考查众数、中位数、平均数,熟练掌握相关概念和公式是解题的关键.15.70【分析】利用待定系数法求出相遇前y 与x 的关系式确定出甲乙两地的距离进而求出两车的速度即可确定出所求【详解】解:设线段AB 的解析式为把与代入得:解得即令则即甲乙两地相距280千米设两车相遇时慢车行 解析:70【分析】利用待定系数法求出相遇前y 与x 的关系式,确定出甲乙两地的距离,进而求出两车的速度,即可确定出所求.【详解】解:设线段AB 的解析式为y kx b =+,把()1.5,70与()2,0代入得: 1.57020k b k b +=⎧⎨+=⎩, 解得140280k b =-⎧⎨=⎩, 即140280y x =-+,令0x =,则280y =,即甲乙两地相距280千米,设两车相遇时,慢车行驶了x 千米,则快车行驶了()40x +千米,根据题意得:40280x x ++=,解得:120x =,即两车相遇时,慢车行驶了120千米,则快车行驶了160千米,∴快车的速度为80千米/时,慢车速度为60千米/时,根据题意得:()28016080 1.5-÷=(小时),1.56090⨯=(千米),2801209070--=(千米),则快车到达乙地时,慢车还有70千米到达甲地.【点睛】本题考查一次函数的应用,解题的关键是能看懂函数图象,利用数形结合的思想将图象与已知条件联系在一起,灵活变化,找出所求问题需要的条件.16.【分析】利用待定系数法求出两点坐标利用勾股定理求出根据确定点坐标即可【详解】解:令得到令得到以为圆心长为半径作圆交坐标轴即为点或故答案为:【点睛】本题考查一次函数的应用等腰三角形的判定和性质等知识熟 解析:()15,0+()15,0-()0,2 【分析】利用待定系数法求出A 、B 两点坐标,利用勾股定理求出AB ,根据AC AB =,确定点C 坐标即可.【详解】解:令0x =,得到2y =-,(0,2)B ,令0y =,得到1x =,(1,0)A ∴,1OA ∴=,2OB =,22125AB ,以A 为圆心,AB 长为半径作圆,交坐标轴即为C 点,5ACAB , (15C ,0),(15,0)或(0,2), 故答案为:()15,0+、()15,0-、()0,2. .【点睛】本题考查一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握待定系数法确定交点坐标是解题的关键.17.或2【分析】根据菱形有一个内角为60°可以得到等边三角形分两种情况画出图形结合勾股定理求出AC 的长【详解】解:∵四边形ABCD 是菱形∴AC⊥BDOA=OCOB=ODAD=AB=2若∠BAD=60°∴解析:23或2【分析】根据菱形有一个内角为60°可以得到等边三角形,分两种情况,画出图形,结合勾股定理求出AC的长.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,AD=AB=2,若∠BAD=60°,∴△ABD是等边三角形,∴BD=2,∴OD=1,∴OA=22213-=,∴AC=23;若∠ABC=60°,∴△ABC是等边三角形,∴AC=2;故答案为:32.【点睛】此题考查了菱形的性质和勾股定理,等边三角形的判定和性质,要记住菱形的对角线互相平分且垂直,菱形的四条边都相等.18.【分析】按图中方式折叠后可得到除去两端纸条使用的长度为5个宽由此解题即可【详解】解:根据折叠的过程发现中间的长度有5个宽则在开始折叠时起点与点的距离为:故答案为:【点睛】本题考查翻折变换(折叠问题)解析:2552x-【分析】按图中方式折叠后,可得到除去两端,纸条使用的长度为5个宽,由此解题即可.【详解】解:根据折叠的过程,发现中间的长度有5个宽,则在开始折叠时起点M与点A的距离为:2552x-,故答案为:2552x-.【点睛】本题考查翻折变换(折叠问题),是重要考点,难度较易,掌握相关知识是解题关键.19.<【分析】先把根号的外的因式移入根号内再比较大小即可【详解】∵==<∴<故答案为:<【点睛】本题考查了比较二次根式的大小能选择适当的方法比较两个实数的大小是解此题的关键解析:<【分析】先把根号的外的因式移入根号内,再比较大小即可.【详解】∵,∴故答案为:<【点睛】本题考查了比较二次根式的大小,能选择适当的方法比较两个实数的大小是解此题的关键.20.4【分析】过点A作AD⊥BC于点D则AD=h根据等腰三角形的性质求出BD=BC=3dm利用勾股定理求出h【详解】解:过点A作AD⊥BC于点D则AD=h∵AB=AC=5dmBC=6dm∴AD是BC的垂解析:4【分析】过点A作AD⊥BC于点D,则AD=h,根据等腰三角形的性质求出BD=12BC=3dm,利用勾股定理求出h.【详解】解:过点A作AD⊥BC于点D,则AD=h.∵AB=AC=5dm,BC=6dm,∴AD是BC的垂直平分线,∴BD=12BC=3dm.在Rt△ABD中,AD4=dm,即h=4(dm).答:h的长为4dm.故答案为:4..【点睛】此题考查勾股定理的实际应用,等腰三角形三线合一的性质,正确理解题意构建直角三角形,利用勾股定理解决问题是解题的关键.三、解答题21.(1)①108°;②9,6;(2)7.6万元.【解析】试题分析:(1)①在扇形图中,由C部门所占比例乘以360°即可得出C部门所对应的圆心角的度数.②先计算出A部门所占比例,再计算出总人数,根据B、C部门所占比例即可求出b、c的值.(2)利用加权平均数的计算公式计算即可.试题(1)①360°×30%=108°;②∵a%=1-45%-30%=25%5÷25%=20∴20×45%=9(人)20×30%=6(人)(2)10×25%+8×45%+5×30%=7.6答:这个公司平均每人所创年利润是7.6万元.考点:1.扇形统计图;2.加权平均数.22.(1)30元;(2)50元;(3)250.【分析】(1)根据众数的定义即可判判断;(2)根据中位数的定义即可判断;(3)先计算出样本中计划购买课外书花费50元的学生所占的比例,然后在乘以总人数即可;【详解】(1)花费30元的有12人,最多,故众数是30元;(2)一共有40个数据,排序后第20、21个数据的平均数即是中位数,6+12=18<20,6+12+10=28>20,故第20、21个数据都是50元,故中位数是50元;(3)10÷40×2400=600(人),故估计本学期计划购买课外书花费50元的学生有50人.23.(1)1.1(06)1.63(6)x xyx x≤≤⎧=⎨->⎩;(2)这两户家庭这个月的用水量分别为35m和38m【分析】(1)由题意可分06x ≤≤,x>6两种情况写出y 与x 之间的函数表达式;(2)首先判断消费是否大于1.1×6,若不大于,则采用(1)中06x ≤≤的函数关系式求解,若大于,则采用x>6的函数关系式求解.【详解】解:(1)当06x ≤≤时, 1.1y x =;当6x >, 1.16 1.6(6)y x =⨯+⨯-即 1.63y x =-,所以y 与x 之间的函数表达式为 1.1(06)1.63(6)x x y x x ≤≤⎧=⎨->⎩, (2)因为5.5 1.16<⨯所以用水量不超过6立方米,所以当 5.5y =时,5.5 1.1x =,解得5x =.因为9.8 1.16>⨯所以用水量超过6立方米,所以当9.8y =时,9.8 1.63x =-,解得8x =.答:这两户家庭这个月的用水量分别为35m 和38m【点睛】本题考查一次函数的应用,熟练掌握分段函数的特点和解决方法是解题关键 . 24.(1)见解析;(2)见解析【分析】(1)由四边形ABCD 是平行四边形,根据平行四边形的性质,可得AB ∥CD ,AB=CD ,又由点M 为边CD 的中点,点N 为边AB 的中点,即可得CM=AN ,继而可判定四边形ANCM 是平行四边形,则可证得AM ∥CN .(2)由AM ∥CN ,BH ⊥AM ,点N 为边AB 的中点,可证得BH ⊥CN ,ME 是△BAH 的中位线,则可得CN 是BH 的垂直平分线,继而证得△BCH 是等腰三角形.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB CD =.∵点M 、N 分别是边CD 、AB 的中点, ∴12CM CD =,1AN AB 2=. ∴CM AN =.又∵AB ∥CD ,∴四边形ANCM 是平行四边形∴AM ∥CN .(2)设BH 与CN 交于点E ,∵AM ∥CN ,BH ⊥AM ,∴BH ⊥CN ,∵N 是AB 的中点,∴EN 是△BAH 的中位线,∴BE=EH ,∴CN 是BH 的垂直平分线,∴CH=CB ,∴△BCH 是等腰三角形.【点睛】此题考查了平行四边形的判定与性质、线段垂直平分线的性质以及等腰三角形的判定.此题难度适中,注意掌握数形结合思想的应用.25.(1)2;(2)-15.【分析】(1)利用二次根式的加减运算法则计算即可;(2)根据平方差公式计算.【详解】(1)原式=2622--2(2)原式=22(326)(326)(3)6)92415-+--=--=-=-【点睛】本题考查了二次根式的加减法及平方差公式,掌握二次根式的加减法的运算法则是解题的关键.26.(1)BEF 是等腰三角形,理由见解析;(2)5.【分析】(1)先根据长方形的性质可得//AD BC ,再根据平行线的性质可得DEF BFE ∠=∠,然后根据折叠的性质可得DEF BEF ∠=∠,从而可得BFE BEF ∠=∠,最后根据等腰三角形的判定即可得;(2)先根据长方形的性质可得90A ∠=︒,再根据折叠的性质可得BE DE =,然后设BE DE x ==,从而可得8AE x =-,最后在Rt ABE △中,利用勾股定理即可得.【详解】(1)BEF 是等腰三角形,理由如下:四边形ABCD 是长方形,//AD BC ∴,DEF BFE ∴∠=∠,由折叠的性质得:DEF BEF ∠=∠,BFE BEF ∴∠=∠,BEF ∴是等腰三角形;(2)四边形ABCD 是长方形,90A ∴∠=︒,由折叠的性质得:BE DE =,设BE DE x ==,则8AE AD DE x =-=-,在Rt ABE △中,222AB AE BE +=,即2224(8)x x +-=,解得5x =,即BE 的长为5.【点睛】本题考查了长方形与折叠问题、勾股定理、等腰三角形的判定等知识点,熟练掌握各判定定理与性质是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【典型题】八年级数学下期末模拟试题及答案一、选择题1.若2(5)x -=x ﹣5,则x 的取值范围是( ) A .x <5 B .x ≤5 C .x ≥5 D .x >5 2.顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( ) A .矩形B .菱形C .正方形D .平行四边形3.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >4.三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形5.对于函数y =2x +1下列结论不正确是( ) A .它的图象必过点(1,3) B .它的图象经过一、二、三象限 C .当x >12时,y >0 D .y 值随x 值的增大而增大6.若一个直角三角形的两边长为12、13,则第三边长为( ) A .5B .17C .5或17D .5或7.如图(1),四边形ABCD 中,AB ∥CD ,∠ADC =90°,P 从A 点出发,以每秒1个单位长度的速度,按A →B →C →D 的顺序在边上匀速运动,设P 点的运动时间为t 秒,△PAD 的面积为S ,S 关于t 的函数图象如图(2)所示,当P 运动到BC 中点时,△APD 的面积为( )A .4B .5C .6D .78.如图,点P 是矩形ABCD 的边上一动点,矩形两边长AB 、BC 长分别为15和20,那么P 到矩形两条对角线AC 和BD 的距离之和是( )A .6B .12C .24D .不能确定9.一列火车由甲市驶往相距600km 的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A .B .C .D .10.下列运算正确的是( ) A 235+=B .22=3 C 236=D 63211.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)12.正方形具有而菱形不一定具有的性质是( )A .对角线互相平分B .每条对角线平分一组对角C .对边相等D .对角线相等二、填空题13.函数y =21xx -中,自变量x 的取值范围是_____.14.一次函数的图象过点()1,3且与直线21y x =-+平行,那么该函数解析式为__________.15.如图,一次函数y =kx+b 的图象与x 轴相交于点(﹣2,0),与y 轴相交于点(0,3),则关于x 的方程kx =b 的解是_____.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、E 的面积分别为2,5,1,10.则正方形D 的面积是______.17.在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”). 18.菱形的边长为5,一条对角线长为6,则该菱形的面积为__________.19.2019x -x 的取值范围是_____. 20.已知一直角三角形两直角边的长分别为6cm 和8cm ,则第三边上的高为________.三、解答题21.先化简,再求值:()22111a a a ⎛⎫-+÷+ ⎪+⎝⎭,其中21a =.22.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.()1求每套队服和每个足球的价格是多少?()2若城区四校联合购买100套队服和a(a 10)>个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花的费用;()3在()2的条件下,若a 60=,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?23.在一条东西走向河的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB =AC ,由于某种原因,由C 到A 的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H (A 、H 、B 在一条直线上),并新修一条路CH ,测得CB =3千米,CH =2.4千米,HB =1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.24.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩x40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100人数部门甲0011171乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)25.在平面直角坐标系中,一次函数y=kx+b (k ,b 都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y 的取值范围;(2)已知点P (m ,n )在该函数的图象上,且m ﹣n=4,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】因为2a =-a (a≤0),由此性质求得答案即可. 【详解】 ∵()25x -=x-5,∴5-x≤0 ∴x≥5. 故选C . 【点睛】此题考查二次根式的性质:2a =a (a≥0),2a =-a (a≤0).2.C解析:C 【解析】 【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形. 【详解】 解:、、、分别是、、、的中点,,,EH =FG =BD ,EF =HG =AC ,四边形是平行四边形,,, ,, 四边形是正方形,故选:C . 【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.3.B解析:B 【解析】 【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l , ∴12k k =,∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,∴当x 5=时,12y y > 故选B . 【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.4.C解析:C 【解析】 【分析】利用完全平方公式把等式变形为a 2+b 2=c 2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案. 【详解】∵22()2a b c ab +=+, ∴a 2+2ab+b 2=c 2+2ab ,∴a2+b2=c2,∴这个三角形是直角三角形,故选:C.【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.5.C解析:C【解析】【分析】利用k、b的值依据函数的性质解答即可.【详解】解:当x=1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,∴B、D正确,∵y>0,∴2x+1>0,∴x>﹣12,∴C选项错误,故选:C.【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键.6.D解析:D【解析】【分析】根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当12,13为两条直角边时,第三边==,当13,12分别是斜边和一直角边时,第三边==5.故选D.【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.7.B解析:B【解析】【分析】根据函数图象和三角形面积得出AB+BC=6,CD=4,AD=4,AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,求出梯形ABCD的中位线长,再代入三角形面积公式即可得出结果.【详解】解:根据题意得:四边形ABCD是梯形,AB+BC=6,CD=10-6=4,∵12AD×CD=8,∴AD=4,又∵12AD×AB=2,∴AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,∵梯形ABCD的中位线长=12(AB+CD)=52,∴△PAD的面积1545 22;=⨯⨯=故选B.【点睛】本题考查了动点问题的函数图象、三角形面积公式、梯形中位线定理等知识;看懂函数图象是解决问题的关键.8.B解析:B【解析】【分析】由矩形ABCD可得:S△AOD=14S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=12OA•PE+12OD•PF,代入数值即可求得结果.【详解】连接OP,如图所示:∵四边形ABCD是矩形,∴AC=BD,OA=OC=12AC,OB=OD=12BD,∠ABC=90°,S△AOD=14S矩形ABCD,∴OA=OD=12 AC,∵AB=15,BC=20,∴AC25,S△AOD=14S矩形ABCD=14×15×20=75,∴OA=OD=25 2,∴S△AOD=S△APO+S△DPO=12OA•PE+12OD•PF=12OA•(PE+PF)=12×252(PE+PF)=75,∴PE+PF=12.∴点P到矩形的两条对角线AC和BD的距离之和是12.故选B.【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.9.A解析:A【解析】【分析】首先写出函数的解析式,根据函数的特点即可确定.【详解】由题意得:s与t的函数关系式为s=600-200t,其中0≤t≤3,所以函数图象是A.故选A.【点睛】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.10.C解析:C【解析】【分析】根据二次根式得加减法法则及乘除法法则逐一计算即可得答案.【详解】B.,故该选项计算错误,,故该选项计算正确,,故该选项计算错误. 故选:C . 【点睛】本题考查二次根式得运算,熟练掌握运算法则是解题关键.11.B解析:B 【解析】 【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案. 【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =, ∴360x +=,即2x =-, ∴点坐标为(-2,0), 故选B. 【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.12.D解析:D 【解析】 【分析】列举出正方形具有而菱形不一定具有的所有性质,由此即可得出答案. 【详解】正方形具有而菱形不一定具有的性质是:①正方形的对角线相等,而菱形不一定对角线相等; ②正方形的四个角是直角,而菱形的四个角不一定是直角. 故选D . 【点睛】本题考查了正方形、菱形的性质,熟知正方形及菱形的性质是解决问题的关键.二、填空题13.x≠1【解析】【分析】根据分式有意义的条件即可解答【详解】函数y =中自变量x 的取值范围是x ﹣1≠0即x≠1故答案为:x≠1【点睛】本题考查了函数自变量的取值范围当函数表达式是分式时要注意考虑分式的分解析:x ≠1【解析】【分析】根据分式有意义的条件即可解答.【详解】函数y =21x x -中,自变量x 的取值范围是x ﹣1≠0,即x ≠1, 故答案为:x ≠1.【点睛】 本题考查了函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为0.14.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解 解析:25y x =-+【解析】【分析】根据两直线平行,可设2y x b =-+,把点()1,3代入,即可求出解析式.【详解】解:∵一次函数图像与直线21y x =-+平行,∴设一次函数为2y x b =-+,把点()1,3代入方程,得:213b -⨯+=,∴5b =,∴一次函数的解析式为:25y x =-+;故答案为:25y x =-+.【点睛】本题考查了一次函数的图像和性质,解题的关键是掌握两条直线平行,则斜率相等. 15.x=2【解析】【分析】依据待定系数法即可得到k 和b 的值进而得出关于x 的方程kx =b 的解【详解】解:∵一次函数y =kx+b 的图象与x 轴相交于点(﹣20)与y 轴相交于点(03)∴解得∴关于x 的方程kx =解析:x=2【解析】【分析】依据待定系数法即可得到k 和b 的值,进而得出关于x 的方程kx =b 的解.【详解】解:∵一次函数y =kx+b 的图象与x 轴相交于点(﹣2,0),与y 轴相交于点(0,3),∴0=-2k+b3=b⎧⎨⎩,解得323kb⎧=⎪⎨⎪=⎩,∴关于x的方程kx=b即为:32x=3,解得x=2,故答案为:x=2.【点睛】本题主要考查了待定系数法的应用,任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.16.2【解析】【分析】设中间两个正方形和正方形D的面积分别为xyz然后有勾股定理解答即可【详解】解:设中间两个正方形和正方形D的面积分别为xyz则由勾股定理得:x=2+5=7;y=1+z;7+y=7+1解析:2【解析】【分析】设中间两个正方形和正方形D的面积分别为x,y,z,然后有勾股定理解答即可.【详解】解:设中间两个正方形和正方形D的面积分别为x,y,z,则由勾股定理得:x=2+5=7;y=1+z;7+y=7+1+z=10;即正方形D的面积为:z=2.故答案为:2.【点睛】本题考查了勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.17.大于【解析】【分析】根据一次函数的性质当k<0时y随x的增大而减小【详解】∵一次函数y=−2x+1中k=−2<0∴y随x的增大而减小∵x1<x2∴y1>y2故答案为>【点睛】此题主要考查了一次函数的解析:大于【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小.【详解】∵一次函数y=−2x+1中k=−2<0,∴y随x的增大而减小,∵x1<x2,∴y1>y2.故答案为>.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.18.24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线再根据菱形的面积等于两对角线乘积的一半求得菱形的面积【详解】解:如图当BD=6时∵四边形ABCD是菱形∴AC⊥BDAO=COBO=DO=解析:24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线,再根据菱形的面积等于两对角线乘积的一半求得菱形的面积.【详解】解:如图,当BD=6时,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO=3,∵AB=5,∴AO==4,∴AC=4×2=8,∴菱形的面积是:6×8÷2=24,故答案为:24.【点睛】本题考查了菱形的面积公式,以及菱形的性质和勾股定理,关键是掌握菱形的面积等于两条对角线的积的一半.19.x>2019【解析】【分析】根据二次根式的定义进行解答【详解】在实数范围内有意义即x-20190所以x的取值范围是x2019【点睛】本题考查了二次根式的定义熟练掌握二次根式的定义是本题解题关键解析:x>2019【解析】【分析】根据二次根式的定义进行解答.【详解】2019x-在实数范围内有意义,即x-2019≥ 0,所以x的取值范围是x≥ 2019.【点睛】本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.20.8cm【解析】【分析】先由勾股定理求出斜边的长再用面积法求解【详解】解:如图在Rt△ABC中∠ACB=90°AC=6cmBC=8cmCD⊥AB则(cm)由得解得CD =48(cm)故答案为48cm【点解析:8cm【解析】【分析】先由勾股定理求出斜边的长,再用面积法求解.【详解】解:如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CD⊥AB,则2210AB AC BC=+=(cm),由1122ABCS AC BC AB CD==Vg g,得6810CD⨯=g,解得CD=4.8(cm).故答案为4.8cm.【点睛】本题考查了勾股定理和用直角三角形的面积求斜边上的高的知识,属于基础题型.三、解答题21.11 a+,22【解析】【分析】【详解】试题分析:先将分式化简得1a1+,然后把21a=-代入计算即可.试题解析:(a-1+2a1+)÷(a2+1)=2a12a1-++·211a+=1 a1 +当21 a=-时原式=2=.2 211-+考点:分式的化简求值.22.(1) 每套队服150元,每个足球100元;(2) 购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算.【解析】试题分析:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算考点:一元一次方程的应用.23.(1)CH是从村庄C到河边的最近路,理由见解析;(2)原来的路线AC的长为2.5千米.【解析】【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可【详解】(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.【点睛】此题考查勾股定理及其逆定理的应用,熟练掌握基础知识是解题的关键. 24.a.240,b.乙;理由见解析.【解析】试题分析:(1)由表可知乙部门样本的优秀率为:12100%60%40⨯=,则整个乙部门的优秀率也是60%,因此即可求解;(2)观察图表可得出结论.试题解析:如图:整理、描述数据按如下分数段整理按如下分数段整理数据:成绩x人数部门4049x≤≤5059x≤≤6069x≤≤7079x≤≤8089x≤≤90100x≤≤甲0011171乙1007102a.估计乙部门生产技能优秀的员工人数为400×40=240(人);b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高.25.(1) ﹣4≤y<6;(2)点P的坐标为(2,﹣2) .【解析】【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【详解】设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).考点:1、待定系数法求一次函数的解析式,2、一次函数图象上点的坐标特征,3、一次函数的性质。

相关文档
最新文档