特殊四边形选择填空强化训练(含答案)
【3套】特殊平行四边形习题(含答案)

特殊平行四边形习题(含答案)特殊平行四边形习题一、选择题1.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )A.20B.15C.10D.5答案 B ∵四边形ABCD是菱形,∴AB=BC,AB∥CD,∴∠B+∠BCD=180°,∴∠B=180°-∠BCD=180°-120°=60°,∴△ABC是等边三角形,故△ABC的周长=3AB=15.2.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )A.AB=CDB.AD=BCC.AC=BDD.AB=BC答案 C 可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,故选C.3.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE 的长为( )A.6cmB.4cmC.3cmD.2cm答案 C 因为菱形的四条边相等且对角线互相垂直平分,所以可以由OE∥DC证得点E是BC 的中点,此时利用三角形的中位线或直角三角形斜边上中线的性质都可以求得OE的长为3 cm.4.如图,在菱形ABCD中,AB=8,点E、F分别在AB、AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为( )A.6.5B.6C.5.5D.5答案 C 设AE=x,则EB=8-x,∵四边形ABCD是菱形,AE=AF,EG∥AD,FH∥AB,∴四边形AEOF和四边形OHCG都是菱形.∵四边形AEOF与四边形CGOH的周长之差为12,∴4x-4(8-x)=12,解得x=5.5.故选C.5.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下(如图1-4-5①),再打开,得到如图1-4-5②所示的小菱形的面积为( )A.10cm2B.20cm2C.40cm2D.80cm2答案 A 由题意可得AC=5cm, BD=4cm,故小菱形的面积为×4×5=10(cm2).故选A.6.如图,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列条件:①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四边形BEDF是菱形的条件有( )A.1个B.2个C.3个D.4个答案 C 连接BD,交AC于点O,在正方形ABCD中,AB=BC,∠BAC=∠ACB,AC⊥BD,OB=OD,①在△ABE与△CBF中,∴△ABE≌△CBF(ASA),∴AE=CF,∵OA=OC,∴OE=OF,又∵AC⊥BD,∴四边形BEDF是菱形,故①正确.②正方形ABCD 中,OA=OB=OC=OD,∵AE=CF,∴OE=OF,又EF⊥BD,BO=OD,∴四边形BEDF是菱形,故②正确.③由AB=AF不能推出四边形BEDF其他边的关系,故不能判定它是菱形,故③错误.④在正方形ABCD 中,OA=OC=OB=OD,AC⊥BD,∵BE=BF,EF⊥BD,∴OE=OF,∴四边形BEDF是菱形,故④正确.故选C.7.如图所示,在菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,则∠EBF等于( )A.75°B.60°C.50°D.45°答案 B 连接BD.因为BE⊥AD,AE=ED,所以AB=BD.又因为AB=AD,所以△ABD是等边三角形,所以∠A=60°,所以∠ADC=120°.在四边形BEDF 中,∠EBF=360°-∠BED-∠BFD-∠ADC=360°-90°-90°-120°=60°,故选B.8.如图所示,矩形纸片ABCD中,AB=6cm, BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF长为( )A .cm B.cm C.cm D.8cm答案 B 设AF=x cm,则D'F=DF=(8-x)cm,在Rt△AFD'中,(8-x)2+62=x2,解得x=.9.如图所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )A.15°或30°B.30°或45°C.45°或60°D.30°或60°答案 D 画出所剪的图形示意图如图.∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAD=120°,∴∠ABC=180°-∠BAD=180°-120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与第二次折痕所成的角的度数应为30°或60°.故选D.10.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四边形DEOF,其中正确的有( )A.4个B.3个C.2个D.1个答案 B ∵四边形ABCD为正方形,∴AB=AD=DC,∠D=∠BAD=90°,∵CE=DF,∴DE=AF,∴△DEA≌△AFB,∴AE=BF,∠DEA=∠AFB,又∠DEA+∠DAE=90°,∴∠AFB+∠DAE=90°,∴∠AOF=90°,即AE⊥BF.由△DEA≌△AFB得S△DEA=S△AFB,∴S△DEA-S△AOF=S△AFB-S△AOF,∴S△AOB=S四边形DEOF,所以正确的是(1)(2)(4),共3个,故选B.二、填空题11.如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).答案AC=BD(答案不唯一)12.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM 的周长为.答案20解析在Rt△ABC中,由勾股定理易得AC=13,由矩形的性质得AO=BO=AC=,而OM是△ACD 的中位线,所以OM=CD=,所以四边形ABOM的周长为AB+BO+OM+AM=5+++6=20.13.如图,已知矩形ABCD的对角线AC与BD相交于点O,若AO=1,那么BD= .答案2解析∵在矩形ABCD中,AC与BD相交于点O,AO=1,∴AO=CO=BO=DO=1,∴BD=2.14.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.答案3解析∵AE垂直平分OB,AB=3,∴AB=AO=3,∵四边形ABCD是矩形,∴BO=AO=3,∴BD=2BO=6,∴AD===3.15.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是(写出一个即可).答案CB=BF(或BE⊥CF或∠EBF=60°或BD=BF等,答案不唯一)解析由已知得CB∥EF,CB=EF,∴四边形CBFE是平行四边形.因此可以添加CB=BF;BE⊥CF;∠EBF=60°;BD=BF等,都能说明四边形CBFE是菱形.16.如图,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是.答案(2+,1)解析过点D作DF⊥x轴,垂足为F,在正方形ABCO中,∠BCO=90°,所以∠BCF=90°,在菱形BDCE中,BD=DC,又因为∠D=60°,所以△BCD是等边三角形,因为BC=2,所以CD=2,又∠BCD=60°,所以∠DCF=30°,在Rt△DCF中,因为∠DCF=30°,CD=2,所以DF=CD=1,由勾股定理得CF=,所以OF=OC+CF=2+,所以点D的坐标为(2+,1).17.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.答案13解析连接BE,EF,FD,AC,∵菱形、正方形为轴对称图形,对角线所在直线是其对称轴,∴B,E,F,D在同一条直线上,∵S正方形AECF=AC·EF=AC2=50cm2,∴AC=10cm,∵S菱形ABCD=AC·BD=120cm2,∴BD=24cm.设AC,BD的交点为O,由菱形的性质可得AC⊥BD,AO=5cm,OB=12 cm,∴AB===13cm.18.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.答案3解析设AC与EG相交于点O,∵四边形ABCD是菱形,∠BAD=120°,∴∠EAC=∠DAC=60°,∠B=60°,AB=BC.∴△ABC是等边三角形.又∵AB=6,∴△ABC的面积为18.∴菱形ABCD的面积为36,∵EG⊥AC,∴∠AOE=∠AOG=90°.∴∠AGE=90°-60°=30°.∵△BEF与△GEF关于直线EF对称,点B的对称点是点G,∴∠EGF=∠B=60°,∴∠AGF=∠EGF+∠AGE=90°.∴FG⊥AD,∴FG===3.三、解答题19.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.答案(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,又∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB.∴DE∥AC.∴四边形ACDE是平行四边形.(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,∴AD=CD==5.又∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.∴△ADE的周长为AD+AE+DE=5+5+8=18.20.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.答案(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF.(2)四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.21.如图,在正方形ABCD中,点E、F分别在边AB、BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF是否为菱形,并说明理由.答案(1)证明:在正方形ABCD中,AD=CD,∠A=∠C=90°,在△ADE和△CDF中,∴△ADE≌△CDF(ASA),∴AE=CF.(2)四边形DEGF是菱形.理由如下:在正方形ABCD中,AB=BC,∵AE=CF,∴AB-AE=BC-CF,即BE=BF,∴BD垂直平分EF,∴OE=OF,又∵OG=OD,∴四边形DEGF为平行四边形,∵△ADE≌△CDF,∴DE=DF,∴四边形DEGF是菱形.22.如图,AB∥CD,点E、F分别在AB、CD上,连接EF.∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索.过G作MN∥EF,分别交AB、CD于点M、N,过H 作PQ∥EF,分别交AB、CD于点P、Q,得到四边形MNQP.此时,他猜想四边形MNQP是菱形.请在下列框图中补全他的证明思路.答案(1)证明:∵EH平分∠BEF,∴∠FEH=∠BEF.∵FH平分∠DFE,∴∠EFH=∠DFE.∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,又∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°.同理可证,∠EGF=90°.∵EG平分∠AEF,∴∠FEG=∠AEF.∵EH平分∠BEF,∴∠FEH=∠BEF.∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°.∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°.∴四边形EGFH是矩形.(2)本题答案不唯一,下面答案供参考.例如,FG平分∠CFE;GE=FH;∠GME=∠FQH;∠GEF=∠EFH.23.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD 的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图①,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”,不需要证明)(2)如图②,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图③,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.答案(1)成立.(2)仍然成立.证明:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°.在△ADF和△DCE中,∴△ADF≌△DCE(SAS),∴AF=DE,∠FAD=∠EDC,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE.(3)四边形MNPQ是正方形.证明:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.人教版八年级数学下册第十八章平行四边形单元检测卷一、选择题1.如图,在平行四边形ABCD中,下列结论中错误的是( )A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC=BC2.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )A.10B.14C.20D.223.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )A.3种B.4种C.5种D.6种4.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为( )A.8B.10C.12D.165.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC至F,使CF=BC,若AB=10,则EF的长是( )A.5B.4C.3D.26.下列命题中正确的是( )A.两条对角线相等的平行四边形是矩形B.有三个角是直角的多边形是矩形C.两条对角线相等的四边形是矩形D.有一个角是直角的四边形是矩形7.如图,菱形ABCD的周长为20,一条对角线AC的长为8,另一条对角线BD的长为( )A.16B.12C.6D.48.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长为( )A.4B.6C.8D.109.如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB=( )A.30°B.45°C.22.5°D.135°10.如图,直线EF经过矩形ABCD对角线的交点O,分别交AB、CD于点E、F,那么图中阴影部分的面积是矩形ABCD的面积的( )A. B. C. D.二、填空题11.如图,平行四边形ABCD的周长为20,对角线AC的长为5,则△ABC的周长为.12.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件: ,使四边形AECF是平行四边形(只填一个即可).13.如图,在矩形ABCD中,对角线AC、BD相交于点O,直线EF是OA的中垂线,分别交AD、OA 于点E、F.若AB=6 cm,BC=8 cm,则△DEO的周长= cm.14.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.15.如图,在正方形ABCD中,点E是BC上的一定点,且BE=5,EC=7,点P是BD上的一动点,则PE+PC的最小值是.16.如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD、BC于点M、N,若△CON的面积为2,△DOM的面积为4,则△AOB的面积为.三、解答题17.如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.18.如图,四边形ABCD是平行四边形,DE平分∠ADC,交AB于点E,BF平分∠ABC,交CD于点F.(1)求证:DE=BF;(2)连接EF,写出图中所有的全等三角形.(不要求证明)19.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F,求证:DF=DC.20.如图,在▱ABCD中,E、F为BC上的两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.21.已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.22.如图,在直角梯形纸片ABCD中,AB∥DC,∠A=90°,CD>AD,将纸片沿过点D的直线折叠,使点A落在边CD上的点E处,折痕为DF.连接EF并展开纸片.求证:四边形ADEF是正方形.23.在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.参考答案1-10 DBBDA ACCCB11.1512.答案不唯一,如AF=CE13.1314.415.1316.617.证明∵四边形ABCD是平行四边形,∴AB=CD且AB∥CD,∴∠EAF=∠ADC,又∵AF=AB,BE=AD,∴AF=CD,AE=DF,在△AEF和△DFC中,∴△AEF≌△DFC.18.(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDE=∠AED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠ADE=∠AED,∴AE=AD,同理,CF=CB,又AD=CB,AB=CD,∴AE=CF,∴DF=BE,∴四边形DEBF是平行四边形,∴DE=BF.(2)△ADE≌△CBF,△DFE≌△BEF.19.证明∵四边形ABCD是矩形,∴AB=CD,AD∥BC,∠B=90°.∵DF⊥AE,∴∠AFD=∠B=90°.∵AD∥BC,∴∠DAE=∠AEB,又∵AD=AE,∴△ADF≌△EAB,∴DF=AB,∴DF=DC.20.证明(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∴△ABF≌△DCE(SSS).(2)∵△ABF≌△DCE,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴四边形ABCD是矩形.21.(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵∠AOD=90°,∴▱AODE是矩形.(2)∵四边形ABCD是菱形,∴AO=OC=AC,BO=OD,AB=BC,AB∥CD,∴∠ABC+∠BCD=180°,∵∠BCD=120°,∴∠ABC=60°,∴△ABC是等边三角形.∴AC=AB=6,∴OA=3.在Rt△ABO中,由勾股定理得BO=3,∴DO=3,∴S矩形AODE=AO·DO=3×3=9.22.证明∵△DEF由△DAF折叠得到,∴∠DEF=∠A=90°,DA=DE,∵AB∥CD,∴∠ADE=180°-∠A=90°.∵∠DEF=∠A=∠ADE=90°,∴四边形ADEF是矩形.又∵DA=DE,∴四边形ADEF是正方形.23.证明(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵在△ADE和△CBF中,∴△ADE≌△CBF(SAS).(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴EB=DF,又∵DF∥EB,∴四边形DEBF是平行四边形,又∵DF=BF,∴四边形DEBF为菱形.人教版八年级下册第十八章平行四边形单元测试含答案一、选择题1、下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形 B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形 D.四个角都相等的四边形是矩形2、如图,在平行四边形ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是A.1 B. 2 C.3 D.43、如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BAF = 60°,则∠DAE = ()(A)15°(B)30°(C)45°(D)60°4、在□ABCD中,AB=3,BC=4,当□ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③ B.①②④ C.②③④ D.①③④5、四边形ABCD的对角线AC、BD相交于点O.下列条件中,能判断四边形ABCD是平行四边形的是()A.AD=BC,AB∥CD B.AO=CO,AD=BCC.AD∥BC,∠ADC=∠ABC D.AD=BC,∠ABD=∠CDB6、如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点E作垂线交BC于点F,已知BC=10,△ABD的面积为12,则EF的长为( )A.4.8 B.3.6 C.2.4 D.1.27、如图,在矩形COED中,点D的坐标是(1,2),则CE的长是()A. B.2 C. D.8、如图,正方形ABCD的边长为1,则正方形ACEF的面积为()A. 2B. 3C. 4D. 5二、填空题9、已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x= .10、如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE 的周长为 ______ .11、如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于cm.12、如图,矩形中,、交于点,,平分交于点,连接,则。
特殊的平行四边形试题及参考答案

第一章特殊平行四边形检测题一、 选择题(每小题3分,共30分)1.下列四边形中,对角线一定不相等的是(D )A.正方形B.矩形C.等腰梯形D.直角梯形3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是(D ) ①平行四边形;②菱形;③等腰梯形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④4.已知一矩形的两边长分别为10 cm 和15 cm ,其中一个内角的平分线分长边为两部分,这两部分的长为(B )A.6 cm 和9 cmB.5 cm 和10 cmC.4 cm 和11 cmD.7 cm 和8 cm5.如图,在矩形中,分别为边的中点.若,,则图中阴影部分的面积为(B )A .3B .4C .6D.86.如图,在菱形中,,∠,则对角线等于(D )A .20B .15C .10D .57.若正方形的对角线长为2 cm ,则这个正方形的面积为(B )A.4B .2C .D .8.矩形、菱形、正方形都具有的性质是( C )A .每一条对角线平分一组对角B .对角线相等C .对角线互相平分D .对角线互相垂直A. B . C . D .(1) (2)一、 填空题(每小题3分,共24分)11.已知菱形的边长为6,一个内角为60°,则菱形的较短对角线的长是___6______.13.如图,四边形ABCD 是正方形,延长AB 到点E ,使,则∠BCE 的度数是22.5°.14.如图,矩形的两条对角线交于点,过点作的垂线,分别交,于点,,连接,已知△的周长为24 cm ,则矩形的周长是48cm.15.已知,在四边形ABCD 中,90A B C ∠=∠=∠=︒,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是____________. 16.已知菱形的周长为,一条对角线长为,则这个菱形的面积为____96_____.17.如图,在矩形ABCD 中,对角线与相交于点O ,且,则BD 的长为____4____cm ,BC 的长为_______cm.三、解答题(共66分)19.(8分)如图,在△ABC 中,AB =AC ,AD 是△ABC 外角的平分线,已知∠BAC =∠ACD .(1)求证:△ABC ≌△CDA ;(2)若∠B =60°,求证:四边形ABCD 是菱形.证明:(1)∵AB =AC ,∴∠B =∠ACB ,∴∠FAC =∠B +∠ACB =2∠BCA .第5题图 第6题图∵AD平分∠FAC,∴∠FAC=2∠CAD,∴∠CAD=∠ACB.在△ABC和△CDA中,∠BAC=∠DCA,AC=AC,∠DAC=∠ACB,∴△ABC≌△CDA.(2)∵∠FAC=2∠ACB,∠FAC=2∠DAC,∴∠DAC=∠ACB,∴AD∥BC.∵∠BAC=∠ACD,∴AB∥CD,∴四边形ABCD是平行四边形.∵∠B=60°,AB=AC,∴△ABC是等边三角形,∴AB=BC,∴平行四边形ABCD是菱形.20.(8分)如图,在□ABCD中,E为BC边上的一点,连接AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.证明:(1)在□ABCD中,AD∥BC,∴∠AEB=∠EAD.∵AE=AB,∴∠ABE=∠AEB,∴∠ABE=∠EAD.(2)∵AD∥BC,∴∠ADB=∠DBE.∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB,∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB,∴AB=AD.又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.22.(8分)如图,正方形ABCD的边长为3,E,F分别是AB,BC边上的点,且∠EDF=45°.将△DAE 绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.(1)证明:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F,C,M三点共线,DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°.∵∠EDF=45°,∴∠FDM=∠EDF=45°.在△DEF和△DMF中,DE=DM,∠EDF=∠MDF,DF=DF,∴△DEF≌△DMF(SAS),∴EF=MF.(2)解:设EF=MF=x,∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM-MF=BM-EF=4-x.∵EB=AB-AE=3-1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4-x)2=x2,解得:x=,即EF=.23.(8分)如图,在矩形中,相交于点,平分,交于点.若,求∠的度数.解:因为平分,所以.又知,所以因为,所以△为等边三角形,所以因为,所以△为等腰直角三角形,所以.所以,,所以=75°24.(8分)如图所示,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=23,求AB的长.25.(8分)已知:如图,在四边形中,∥,平分∠,,为的中点.试说明:互相垂直平分.解:如图,连接∵AB⊥AC,∴∠BAC=90°.因为在Rt△中,是的中点,所以是R t△的斜边BC上的中线,所以,所以.因为平分,所以,所以所以∥.又AD∥BC,所以四边形是平行四边形.又,所以平行四边形是菱形,所以互相垂直平分.。
第一章 特殊平行四边形 单元测试(含答案)

第一章特殊平行四边形一、选择题1. 下列四边形对角线相等但不一定垂直的是( )A.平行四边形B.矩形C.菱形D.正方形2. 平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3. 如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为( )A.16B.24C.413D.8134. 如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( )D.34 A.5B.4C.3425. 如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为( )A.5 cm B.10 cm C.14 cm D.20 cm6. 如图,点P是矩形ABCD的边上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8B.5C.6D.7.27. 如图,点E是正方形ABCD中CD上的一点,把△ADE绕点A顺时针旋转90∘到△ABF的位置,若四边形AECF的面积为16,DE=1,则EF的长是( )A.4B.5C.217D.348. 如图,在矩形ABCD中,EG垂直平分BD于点G,若AB=4,BC=3,则线段EG的长度是( )A.32B.158C.52D.39. 如图,正方形ABCD的边长为2,点E,F分别为边AD,BC上的点,且EF=5,点G,H 分别边AB,CD上的点,连接GH交EF于点P.若∠EPH=45∘,则线段GH的长为( )A.5B.2103C.253D.710. 如图,在矩形ABCD中,AB=3,AD=4,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )A.732B.4C.5D.92二、填空题11. 菱形的对角线长为6和8,则菱形的高为.12. 如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加条件,就能保证四边形EFGH是矩形.13. 在菱形ABCD中,对角线AC,BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34∘,则∠ECA=.14. 如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为.15. 在矩形ABCD中,AB=4,BC=3,折叠矩形ABCD,使点B与点D重合,则BF的长为.16. 如图,菱形ABCD中,AB=2,∠BAD=60∘,点E是边AB的中点,点P在对角线AC上移动.则PB+PE的最小值是.三、解答题17. 已知如图,在菱形ABCD中,对角线AC,BD相交于点O,DE∥AC,AE∥BD.(1) 求证:四边形AODE是矩形.(2) 若AB=6,∠BCD=120∘,求四边形AODE的面积.18. 如图,在正方形ABCD中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1) 若正方形ABCD边长为3,DF=4,求CG的长.(2) 求证:EF+EG=2CE.19. 在平行四边形ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F.(1) 如图①,求证:OE=OF;(2) 如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.20. 回答下列问题.(1) 提出问题:如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH.(2) 类比探究:如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由.21. 如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1) 求证:四边形EGFH是平行四边形.(2) 当EG=EH时,连接AF.①求证:AF=FC.②若DC=8,AD=4,求AE的长.答案一、选择题1. B2. B3. C4. D5. D6. A7. D8. B9. B10. D二、填空题11. 24512. AC⊥BD13. 2214. 615. 25816. 3三、解答题17.(1) 因为DE∥AC,AE∥BD,所以四边形AODE是平行四边形,因为在菱形ABCD中,AC⊥BD,所以∠AOD=90∘,所以四边形AODE是矩形.(2) 因为∠BCD=120∘,AB∥CD,所以∠ABC=180∘−120∘=60∘,因为AB=BC,所以△ABC是等边三角形,所以OA=12×6=3,OB=32×6=33,因为四边形ABCD是菱形,所以OD=OB=33,所以四边形AODE的面积=OA⋅OD=3×33=93.18.(1) ∵四边形ABCD是正方形,∴∠BCG=∠DCB=∠DCF=90∘,BC=DC,∵BE⊥DF,∴∠CBG+∠F=∠CDF+∠F,∴∠CBG=∠CDF,在△CBG和△CDF中,{∠BCG=∠DCF=90∘,BC=CD,∠CBG=∠CDF,∴△CBG≌△CDF(ASA),∴BG=DF=4,∴在Rt△BCG中,CG2+BC2=BG2,∴CG=42−32=7.(2) 过点C作CM⊥CE交BE于点M,∵△CBG≌△CDF,∴CG=CF,∠F=∠CGB,∵∠MCG+∠DCE=∠ECF+∠DCE=90∘,∴∠MCG=∠ECF,在 △MCG 和 △ECF 中,{∠MCG =∠ECF,CG =CF,∠F =∠CGB,∴△MCG ≌△ECF (ASA),∴MG =EF ,CM =CE ,∴△CME 是等腰直角三角形,∴ME =2CE ,又 ∵ME =MG +EG =EF +EG , ∴EF +EG =2CE .19.(1) ∵ 四边形 ABCD 是平行四边形, ∴OB =OD ,AB ∥CD ,∴∠EBO =∠FDO ,在 △OBE 与 △ODF 中,{∠EBO =∠FDO,OB =OD,∠BOE =∠DOF, ∴△OBE ≌△ODF (ASA),∴OE =OF ;(2) ∵OB =OD ,OE =OF , ∴ 四边形 BEDF 是平行四边形, ∵EF ⊥BD ,∴ 四边形 BEDF 是菱形.20.(1) ∵ 四边形 ABCD 是正方形, ∴AB =DA ,∠ABE =90∘=∠DAH , ∴∠HAO +∠OAD =90∘,∵AE⊥DH,∴∠ADO+∠OAD=90∘,∴∠HAO=∠ADO,在△ABE和△DAH中,{∠BAE=∠HDA,AB=AD,∠B=∠HAD,∴△ABE≌△DAH(ASA),∴AE=DH.(2) EF=GH,理由:将PE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH,∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,∴EF=GH.21.(1) ∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,且CH=AG,∠FCH=∠EAG,∴△AEG≌△CFH(SAS),∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形.(2) ①连接AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF=AE.②设AE=x,则FC=AF=x,DF=8−x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8−x)2=x2,解得x=5,∴AE=5.。
强化训练鲁教版(五四制)八年级数学下册第六章特殊平行四边形专项练习试题(含答案解析)

鲁教版(五四制)八年级数学下册第六章特殊平行四边形专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列关于ABCD 的叙述,正确的是( )A .若AC BD =,则ABCD 是矩形B .若AB AD =,则ABCD 是正方形C .若AB BC ⊥,则ABCD 是菱形 D .若AC BD ⊥,则ABCD 是正方形2、如图,在△ABC 中,∠ABC =90°,BC =4,AB =8,P 为AC 边上的一个动点,D 为PB 上的一个动点,连接AD ,当∠CBP =∠BAD 时,线段CD 的最小值是( )A B .2 C .1 D .43、如图,等腰Rt ABC ∆中,90BAC ∠=︒,AD BC ⊥于D ,ABC ∠的平分线分别交AC 、AD 于点E 、F ,CAD ∠的平分线分别交BE 、BC 于点M 、N ,连接DM 、EN ,下列结论:①DF DN =;②AE CN =;③DMN ∆是等边三角形;④EN NC ⊥;⑤BE 垂直平分AN ,其中正确的结论个数是()A.2个B.3个C.4个D.5个4、如图,矩形ABCD的对角线AC,BD相交于点O,点P是AD边上的一个动点,过点P分别作PE⊥AC 于点E,PF⊥BD于点F.若AB=6,BC=8,则PE+PF的值为()A.10 B.9.6 C.4.8 D.2.45、已知,在平面直角坐标系xOy中,点A的坐标为(3,0),点B的坐标为(0,4),点C是线段AB的中点,则线段OC的长为()A.52B.3 C.4 D.56、下列命题中是真命题的选项是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直且相等的四边形是正方形C.对角线相等的平行四边形是矩形D.三条边都相等的四边形是菱形7、绿丝带是颜色丝带的一种,被用来象征许多事物,例如环境保护、大麻和解放农业等,同时绿丝带也代表健康,使人对健康的人生与生命的活力充满无限希望.某班同学在“做环保护航者”的主题班会课上制作象征“健康快乐”的绿丝带(丝带的对边平行且宽度相同),如图所示,丝带重叠部分形成的图形是()A.矩形B.菱形C.正方形D.等腰梯形8、已知,如图长方形ABCD中,AB=3,AD=9,将此长方形折叠,使点B与点D重合,折痕为EF,则BEF的面积为()A.6 B.7.5 C.12 D.159、如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为()A .6.5B .8C .10D .1210、已知:在△ABC 中,AC =BC ,点D 、E 分别是边AB 、AC 的中点,延长DE 至点F ,使得EF =DE ,那么四边形AFCD 一定是( )A .菱形B .矩形C .直角梯形D .等腰梯形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在菱形ABCD 中,∠A =60°,E 为AD 边上的一个动点,连接BE ,将AB 沿着BE 折叠得到A 'B ,A 的对应点为A ',连接A 'D ,当A ′B ⊥AD 时,∠A 'DE 的度数为 ______.2、如图,在ABC 中,90ACB ∠=︒,20A ∠=︒,CD 与CE 分别是斜边AB 上的高和中线,那么DCE ∠=_______度.3、如图,在长方形ABCD 中,20AB =,12BC =,E 、F 分别在边AB 、CD 上,且5CF =.现将四边形BCFE 沿EF 折叠,点B ,C 的对应点分别为点B ',C ',当点B '恰好落在边CD 上时,则EF 的长为______.4、如图,在矩形ABCD 中,6AB =,5BC =,E 、F 分别是边AB 、BC 上的动点,且4EF =,M 为EF 中点,P 是边AD 上的一个动点,则CP PM +的最小值是______.5、如图,在正方形ABCD 中,AB E ,F 分别为边AB ,BC 的中点,连接AF ,DE ,点N ,M 分别为AF ,DE 的中点,连接MN .则MN 的长为_________.三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形ABCD 中,点E 、F 分别在线段BC 、CD 上,连接AE 、AF ,且BE =DF .求证:AE =AF .2、如图,长方形ABCD 中,E 是AD 的中点,将ABE △沿BE 折叠后得到GBE ,且G 点在长方形ABCD 内部,延长BG 交DC 于点F .(1)求证:GE DE =;(2)若9DC =,DF 2CF =,求AD 的长;(3)若DC n DF =⋅,求22AD AB 的值. 3、尺规作图并回答问题:(保留作图痕迹)已知:如图,四边形ABCD 是平行四边形.求作:菱形AECF ,使点E ,F 分别在BC ,AD 上.请回答:在你的作法中,判定四边形AECF 是菱形的依据是 .4、如图,将△ABC 放在每个小正方形的边长为1的网格中,点A ,点B ,点C 均落在格点上.(1)计算AC2+BC2的值等于_____;(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)_____.5、在平面直角坐标系xOy中,若P,Q为某个菱形相邻的...两个顶点,且该菱形的两条对角线分别与x 轴,y轴垂直,则称该菱形为点P,Q的“相关菱形”.图1为点P,Q的“相关菱形”的一个示意图.已知点A的坐标为(1,4),点B的坐标为(b,0),(1)若b=2,则R(1,-4),S(3,4),T(5,4)中能够成为点A,B的“相关菱形”顶点的是;(2)若点A,B的“相关菱形”为正方形,求b的值;(3)点C的坐标为(4,4).若在线段AC上存在点M,使点M,B的“相关菱形”为正方形,请直接写出b的取值范围.-参考答案-一、单选题1、A【解析】【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项A、B、D错误,C正确;即可得出结论.【详解】=,解:ABCD中,AC BD∴四边形ABCD是矩形,选项A符合题意;=,ABCD中,AB AD∴四边形ABCD是菱形,不一定是正方形,选项B不符合题意;⊥,ABCD中,AB BC∴四边形ABCD是矩形,不一定是菱形,选项C不符合题意;⊥,ABCD中,AC BD∴四边形ABCD是菱形,选项D不符合题意;故选:A.【点睛】本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.2、D【解析】【分析】如图,取AB的中点T,连接CT,DT.首先证明∠ADB=90°,求出CT,DT,根据CD≥CT-DT,可得结论.【详解】如图,取AB的中点T,连接CT,DT.∵∠ABC=90°,∴∠ABD+∠CBD=90°,∵∠BAD=∠CBD,∴∠ABD+∠BAD=90°,∴∠ADB=90°,∵AT=TB=4,AB=4,CT=∴DT=1∵CD≥CT-DT,∴CD≥,∴CD的最小值为,故选:D.【点睛】本题考查直角三角形斜边中线的性质,勾股定理等知识,解题的关键是求出CT ,DT 的长.3、C【解析】【分析】求出BD AD =,DBF DAN ∠=∠,BDF ADN ∠=∠,证ΔΔDFB DAN ≅,即可判断①,证ΔΔABF CAN ≅,推出CN AF AE ==,即可判断②;求出22.5ADM ∠=︒,即可判断⑤,根据三角形外角性质求出DNM ∠,求出MDN DNM ∠=∠,即可判断③,可证NE NC =,求得90ENC ∠=︒,可判断④.【详解】解:90BAC ∠=︒,AC AB =,AD BC ⊥,45ABC C ∴∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒,45BAD CAD ∠=︒=∠, BE 平分ABC ∠,122.52ABE CBE ABC ∴∠=∠=∠=︒, 9022.567.5BFD AEB ∴∠=∠=︒-︒=︒,67.5AFE BFD AEB ∴∠=∠=∠=︒,AF AE ∴=, M 为EF 的中点,AM BE ∴⊥,90AMF AME ∴∠=∠=︒,9067.522.5DAN MBN ∴∠=︒-︒=︒=∠,在ΔFBD 和ΔNAD 中FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ΔΔFBD NAD ASA ∴≅,DF DN ∴=,故①正确;∵AN 平分∠CAD , ∴122.52CAN DAN CAD ABF ∠=∠=∠=︒=∠,在AFB ∆和ΔCNA 中4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩, ()ΔΔAFB CAN ASA ∴≅,AF CN ∴=,AF AE =,AE CN ∴=,故②正确; =AE AF ,M 为EF 的中点,AM EF ∴⊥,90AMF ∴∠=︒,同理90ADB ∠=︒,BFD AFE ∠=∠, BE 平分ABC ∠,MBA MBN ∴∠=∠,AN BM ⊥,90AMB NMB ∴∠=∠=︒,1801809022.567.5BNM BAM AMB ABM ∴∠=∠=︒-∠-∠=︒-︒-︒=︒,BA BN ∴=,AM MN ∴=,BE ∴垂直平分AN ,故⑤正确;22.522.545DMN DAN ADM ∴∠=∠+∠=︒+︒=︒,45BMD ∴∠=︒,4522.567.5DNA C CAN ∠=∠+∠=︒+︒=︒,1804567.567.5MDN DNM ∴∠=︒-︒-︒=︒=∠,DM MN ∴=,ΔDMN ∴是等腰三角形,而67.5MND ∠=︒,ΔDMN ∴不是等边三角形,故③错误,AM MN =,AN BE ⊥,AE EN ∴=,NE NC ∴=,45NEC C ∴∠=∠=︒,90ENC ∴∠=︒,EN NC ∴⊥,故④正确;即正确的有4个,故选:C .【点睛】本题考查全等三角形的判定与性质、等腰三角形的判定与性质、角平分线的定义、线段垂直平分线的判定与性质、三角形外角性质、三角形内角和定理、直角三角形斜边上中线性质的应用,综合性强,难度适中,能正确证明推出两个三角形全等是解此题的关键,主要考查学生的推理能力.4、C【解析】【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OA=OD=5,然后由S△AOD=S△AOP+S△DOP求得答案.【详解】解:连接OP,∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD,AC,∴S△AOD=14S矩形ABCD=12,OA=OD=5,∴S △AOD =S △AOP +S △DOP =12OA •PE +12OD •PF =12OA (PE +PF )=12×5×(PE +PF )=12,∴PE +PF =245=4.8. 故选:C .【点睛】此题考查了矩形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.5、A【解析】【分析】根据勾股定理和直角三角形的性质即可得到结论.【详解】 解:点A 的坐标为(3,0),点B 的坐标为(0,4),3OA ∴=,4OB =,5AB OA =, 点C 是线段AB 的中点,1155222OC AB ∴==⨯=, 故选:A .【点睛】 本题考查了坐标与图形性质,勾股定理,直角三角形斜边边上的中线,解题的关键是正确的理解题意.6、∴OM =12CD =故选:C .【点睛】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质.注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.3.C【解析】【分析】利用平行四边形、矩形、菱形及正方形的判定方法分别判断后,即可确定正确的选项.【详解】解:A.一组对边平行且相等的四边形是平行四边形,原命题是假命题,不符合题意;B.对角线互相平分、垂直且相等的四边形是正方形,原命题是假命题,不符合题意;C.对角线相等的平行四边形是矩形,是真命题,符合题意;D.四条边都相等的四边形是菱形,原命题是假命题,不符合题意;故答案选:C.【点睛】考查了命题与定理的知识,解题的关键是了解平行四边形、矩形、菱形及正方形的判定方法,难度不大.7、B【解析】【分析】首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.【详解】解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又AE=AF.∴BC=CD,∴四边形ABCD是菱形.故选:B【点睛】此题考查了菱形的判定,平行四边形的面积公式以及平行四边形的判定与性质,利用了数形结合的数学思想,其中菱形的判定方法有:一组邻边相等的平行四边形为菱形;对角线互相垂直的平行四边形为菱形;四条边相等的四边形为菱形,根据题意作出两条高AE和AF,熟练掌握菱形的判定方法是解本题的关键8、B【解析】【分析】根据翻折的性质可得,BE=DE,设AE=x,则ED=BE=9−x,在直角△ABE中,根据勾股定理可得32+x2=(9−x)2,即可得到BE的长度,由翻折性质可得,∠BEF=∠FED,由矩形的性质可得∠FED=∠BFE,即可得出△BEF是等腰三角形,BE=BF,即可得出答案.【详解】解:设AE=x,则ED=BE=9−x,根据勾股定理可得,32+x2=(9−x)2,解得:x=4,由翻折性质可得,∠BEF=∠FED,∵AD∥BC,∴∠FED=∠BFE,∴∠BEF=∠BFE,∴BE=BF=5,∴S△BFE=1×5×3=7.5.2故选:B.【点睛】本题主要考查了翻折的性质及矩形的性质,熟练应用相关知识进行求解是解决本题的关键.9、A【解析】【分析】由菱形的性质得出OA=OC=5,OB=OD=12,AC⊥BD,根据勾股定理求出AD=13,由直角三角形斜边上的中线等于斜边的一半求出OE=6.5,证出四边形EFOG是矩形,得到EO=GF即可得出答案.【详解】解:连接OE,∵四边形ABCD是菱形,∴OA=OC=5,OB=OD=12,AC⊥BD,在Rt△AOD中,AD,又∵E是边AD的中点,∴OE=12AD=12×13=6.5,∵EF⊥BD,EG⊥AC,AC⊥BD,∴∠EFO=90°,∠EGO=90°,∠GOF=90°,∴四边形EFOG为矩形,∴FG=OE=6.5.故选:A.【点睛】本题考查了菱形的性质、矩形的判定与性质、直角三角形斜边上中线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.10、B【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可.【详解】解:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE =12BC , ∴DF =BC ,∵CA =CB ,∴AC =DF ,∴四边形ADCF 是矩形;故选:B .【点睛】本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理;熟记对角线相等的平行四边形是矩形是解决问题的关键.二、填空题1、15°##15度【解析】【分析】由菱形的性质可得AB AD =,可证ABD ∆是等边三角形,由等边三角形的性质可得A B '垂直平分AD ,30ABA '∠=︒,由折叠的性质可得AB A B '=,可得75BAA '∠=︒,即可求解.【详解】解:如图,连接AA ',BD ,四边形ABCD 是菱形,AB AD ∴=,60A ∠=︒,ABD ∴∆是等边三角形,A B AD '⊥,A B '∴垂直平分AD ,30ABA '∠=︒,AA A D ''∴=,A AD A DA ''∴∠=∠,将AB 沿着BE 折叠得到A B ',AB A B '∴=,75BAA '∴∠=︒,15A AD A DA ''∴∠=∠=︒.故答案为:15︒.【点睛】本题考查了菱形的性质,折叠的性质,等边三角形的判定和性质,证明ABD ∆是等边三角形是解题的关键.2、50【解析】【分析】根据直角三角形中线的性质及互为余角的性质计算.【详解】解:20A ∠=︒,CD 为AB 边上的高,70ACD ∴∠=︒,90ACB ∠=︒,CE 是斜边AB 上的中线,CE AE ∴=,20ACE A ∴∠=∠=︒,DCE ∴∠的度数为702050︒-︒=︒.故答案为:50.【点睛】本题主要考查了直角三角形中线的性质及互为余角的性质,解题的关键是掌握三角形中线的性质.3、【解析】【分析】由勾股定理求出B 'F ,得到D B ',过点B '作B 'H ⊥AB 于H ,连接BF ,则四边形ADB H '是矩形,求出HE ,过点F 作FG ⊥AB 于G ,则四边形BCFG 是矩形,利用勾股定理求出EF 的长.【详解】解:在长方形ABCD 中,90,20,12B C CD AB AD BC ∠=∠=︒====,AB CD ∥,由折叠得90,90,12,B B C C B C BC C F CF '''''∠=∠=︒∠=∠=︒====5,∴13B F ',∴205DB CD CF B F ''=--=--13=2,过点B'作B'H⊥AB于H,连接BF,则四边形ADB H'是矩形,∴AH=D B'=2,∵∠B'EF=∠BEF,∠B'FE=∠BEF,∴∠B'EF=∠B'FE,∴B'E=B'F=13,∴HE=,过点F作FG⊥AB于G,则四边形BCFG是矩形,∴BG=FC=5,∴EG=13-5=8,∴EF故答案为【点睛】此题考查了矩形的性质,折叠的性质,勾股定理,正确引出辅助线利用推理论证进行求解是解题的关键.4、11【解析】【分析】作点C关于AD的对称点G,连接PG、GD、BM、GB,则当点P、M在线段BG上时,GP+PM+BM最小,从而CP+PM最小,在Rt△BCG中由勾股定理即可求得BG的长,从而求得最小值.【详解】如图,作点C关于AD的对称点G,连接PG、GD、BM、GB由对称的性质得:PC=PG,GD=CD∵GP+PM+BM≥BG∴CP+PM=GP+PM≥BG-BM则当点P、M在线段BG上时,CP+PM最小,且最小值为线段BG-BM∵四边形ABCD是矩形∴CD=AB=6,∠BCD=∠ABC=90°∴CG=2CD=12∵M为线段EF的中点,且EF=4∴1=22BM EF=在Rt△BCG中,由勾股定理得:13BG∴GM=BG-BM=13-2=11即CP+PM的最小值为11.【点睛】本题是求两条线段和的最小值问题,考查了矩形性质,折叠的性质,直角三角形斜边上中线的性质,两点间线段最短,勾股定理等知识,有一定的综合性,关键是作点C关于AD的对称点及连接BM,GP+PM+BM的最小值转化为线段CP+PM的最小值.5、1【解析】【分析】连接AM,延长AM交CD于G,连接FG,由正方形ABCD推出AB=CD=BC AB∥CD,∠C=90°,证得△AEM≌GDM,得到AM=MG,AE=DG=12AB,根据三角形中位线定理得到MN=12FG,由勾股定理求出FG即可得到MN.【详解】解:连接AM,延长AM交CD于G,连接FG,∵四边形ABCD是正方形,∴AB=CD=BC AB∥CD,∠C=90°,∴∠AEM=∠GDM,∠EAM=∠DGM,∵M为DE的中点,∴ME=MD,在△AEM和GDM中,EAM DGM AEM GDM ME MD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEM ≌△GDM (AAS ),∴AM =MG ,AE =DG =12AB =12CD , ∴CG =12CD∵点N 为AF 的中点,∴MN =12FG , ∵F 为BC 的中点,∴CF =12BC∴FG,∴MN =1,故答案为:1.【点睛】本题主要考查了正方形的性质,全等三角形的性质和判定,勾股定理,三角形的中位线定理,正确作出辅助线且证出AM =MG 是解决问题的关键.三、解答题1、见解析.【解析】【分析】利用正方形的性质可证明△ABE ≌△ADF ,可得AE =AF .【详解】证明:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠D =90°,∵BE =DF ,在Rt△ABE 与Rt△ADF 中,AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩, ∴Rt△ABE ≌Rt△ADF (SAS ),∴AE =AF .【点睛】本题考查了正方形的性质,全等三角形的性质与判定,掌握正方形的性质是解题的关键.2、 (1)见解析(2) (3)224AD AB n= 【解析】【分析】(1)由折叠得AE GE =,由中点得AE DE =,由此得到结论;(2)连接EF ,依据DF 2CF =,求出DF 、CF ,根据长方形的性质得到9AB DC ==,由△ABE ≌△GBE ,得到9BG AB ==, 证明Rt △EGF ≌Rt △EDF (HL ),得到6GF DF ==.由勾股定理求出BC 即可得到AD ;(3)设DF a =,则AB DC n DF na ==⋅=,得到()1BF BG GF na a n a =+=+=+,由勾股定理求出2BC ,再求出2224AD BC na ==,即可得到答案.(1)证明∵GBE 是由ABE △折叠而成,∴△ABE ≌△GBE ,∴AE GE =,∵E 是AD 的中点,∴AE DE =,∴GE DE =;(2)解:连接EF ,∵DF 2CF =, ∴229633DF DC ==⨯=, ∴963CF DC DF =-=-=.∵四边形ABCD 是长方形,∴AD BC =,9AB DC ==,90A C D ∠=∠=∠=︒.∵△ABE ≌△GBE ,∴9BG AB ==,90A BGE FGE ∠=∠=∠=︒.在Rt EGF 和Rt EDF 中,∵GE DE =,EF EF =∴Rt △EGF ≌Rt △EDF (HL ),∴6GF DF ==.∴9615BF BG GF =+=+=,在Rt BCF 中,∵15BF =,3CF =,∴BC∴AD BC ===.(3)解:设DF a =,则AB DC n DF na ==⋅=,∴()1CF DC DF na a n a =-=-=-,又∵BG AB na ==,GF DF a ==,∴()1BF BG GF na a n a =+=+=+,在Rt BCF 中,∵()1BF n a =+,()1CF n a =-,∴ ()()22222222114BC BF CF n a n a na =-=+--=,∴ 2224AD BC na ==, ∴2222244AD na AB n a n ==. 【点睛】此题考查了矩形与折叠,全等三角形的判定及性质,勾股定理求线段长,解题的关键是掌握各知识点,考查分析问题能力及推理论证能力.3、证明见解析;邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.【解析】【分析】根据邻边相等的平行四边形是菱形或对角线垂直的平行四边形是菱形证明即可.【详解】解:如图,四边形AECF 即为所求作.理由:四边形ABCD 是平行四边形,∴AE ∥CF ,∴∠EAO =∠FCO ,∵EF 垂直平分线段AC ,∴OA =OC ,在△AEO 和△CFO 中,EAO FCO AO OCAOE COF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△AEO ≌△CFO (ASA ),∴AE =CF ,∴四边形AECF 是平行四边形,∵EA=EC或AC⊥EF,∴四边形AECF是菱形.故答案为:邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.【点睛】本题考查作图-复杂作图,平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、 11 见解析【解析】【分析】(1)直接利用勾股定理求出即可;(2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.【详解】解:(1)AC2+BC2)2+32=11;故答案为:11;(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求,如图,【点睛】本题考查了勾股定理,无刻度直尺作图,平行四边形与矩形的性质,掌握勾股定理以及特殊四边形的性质是解题的关键.5、 (1)R,S(2)3-或5(3)3-≤b≤0或5≤b≤8【解析】【分析】(1)由A(1,4)、B(2,0)、R(1,-4)、S(3,4),可判断点B在AR的垂直平分线上,也在AS 的垂直平分线上,由“相关菱形”的定义,可判断点R、S能成为点A、B的“相关菱形”的顶点;(2)作点A关于x轴的对称点E,连接AE交x轴于点N,由“相关菱形”的定义和正方形的性质,可得BN=AN=4,然后按点B在AE左侧及点B在AE右侧,分点求出b的值;(3)分别作点A、C、M关于x轴的对称点A′、C′、F,连接AA′、CC′、AF分别交x轴于点G、H、Q,当点Q与点G重合时,b的值最小;当点Q与点H重合时,b的值最大;由“相关菱形”的定义和正方形的性质,可得BQ=MQ=4,按点B在AF左侧及点B在AF右侧分别列出不等式组求出b的取值范围.(1)解:当b=2时,则B(2,0).如图1、图2,连接AR、AS,∵A(1,4)、B(2,0)、R(1,-4)、T(3,4),∴点B在AR的垂直平分线上,点B也在AS的垂直平分线上,∴点R、S能成为点A、B的“相关菱形”的顶点.故答案为:R,S.(2)解:过点A作AH垂直x轴于H点.∵ 点A,B的“相关菱形”为正方形,∴ △ABH为等腰直角三角形.∵ A(1,4),∴ BH=AH=4.∴b =3-或5.(3)解:如图4,作分别作点A、C、M关于x轴的对称点A′、C′、F,连接AA′交x轴于点G,连接CC′交x轴于点H,则G(1,0)、H(4,0);连接MF交x轴于点Q,∵点M、B的“相关菱形”为正方形,∴BQ=MQ=4.当点B在MF左侧时,则Q(b+4,0),由题意,得1≤b+4≤4,解得-3≤b≤0;当点B在MF右侧时,则Q(b-4,0),由题意,得1≤b-4≤4,解得5≤b≤8.综上所述,b的取值范围是-3≤b≤0或5≤b≤8.3-≤b≤0或5≤b≤8.【点睛】此题考查菱形了的判定与性质、正方形的判定与性质、一元一次不等式组的应用、图形与坐标等知识,解题的关键是正确地画出图形并且能综合运用有关知识和方法;涉及求点的坐标及动点的坐标的取值范围,要分类讨论,求出所有符合条件的值和取值范围,以免丢解.。
特殊四边形练习题

特殊四边形练习题一、选择题1. 下列四边形中,哪一个是平行四边形?A. 两组对边分别平行的四边形B. 两组对边分别相等的四边形C. 对角线互相平分的四边形D. 一组对边相等且平行的四边形2. 菱形的对角线具有以下哪个性质?A. 垂直平分B. 互相垂直C. 互相平行D. 相等3. 矩形的四个角都是:A. 锐角B. 直角C. 钝角D. 平角4. 梯形中,上底和下底平行,且两腰相等的梯形是:A. 等腰梯形B. 直角梯形C. 等腰直角梯形D. 普通梯形5. 正方形的对角线具有以下哪个性质?A. 垂直平分B. 互相垂直C. 互相平行D. 相等且垂直二、填空题6. 平行四边形的对角线______,矩形的对角线______。
7. 菱形的四条边都______,且对角线______。
8. 等腰梯形的两腰相等,且上底和下底______。
9. 正方形的四条边都______,且四个角都是______。
10. 如果一个四边形的两组对边分别相等,那么这个四边形可能是______或______。
三、判断题11. 所有平行四边形都是矩形。
()12. 所有菱形都是平行四边形。
()13. 所有矩形都是正方形。
()14. 所有正方形都是菱形。
()15. 所有等腰梯形都是平行四边形。
()四、简答题16. 请简述平行四边形、矩形、菱形、正方形和梯形的定义。
17. 请说明为什么矩形的对角线相等,而菱形的对角线垂直。
18. 请解释等腰梯形的判定方法。
五、计算题19. 若一个平行四边形的两组对边分别是10cm和8cm,求其对角线的长度范围。
20. 已知一个矩形的长为15cm,宽为10cm,求其对角线的长度。
21. 如果一个菱形的边长为6cm,求其对角线的长度。
22. 已知一个正方形的边长为8cm,求其对角线的长度。
23. 若一个等腰梯形的上底为4cm,下底为10cm,高为3cm,求其两腰的长度。
六、证明题24. 证明:平行四边形的对角线互相平分。
特殊四边形测试题

特殊四边形测试题一、选择题1. 下列哪个选项不是特殊四边形的特点?A. 对角线互相平分B. 四边形的对角线垂直C. 四边形的对角线相等D. 四边形的对边相等2. 菱形的对角线具有以下哪个特点?A. 平行B. 垂直C. 相等D. 互相平分3. 矩形的对角线具有以下哪个特点?A. 平行B. 垂直C. 相等D. 互相垂直4. 梯形中,哪两个角相等?A. 相邻角B. 对角C. 同底角D. 没有角相等5. 以下哪个选项是平行四边形的判定条件?A. 对角线相等B. 对边相等C. 对角线互相垂直D. 对角线互相平分二、填空题6. 一个四边形的对角线互相垂直且平分,那么这个四边形是________。
7. 如果一个四边形的对边相等,且对角线互相平分,那么这个四边形是________。
8. 一个四边形的对角线相等,且对边平行,那么这个四边形是________。
9. 梯形中,如果有一个角是直角,那么这个梯形是________。
10. 如果一个四边形的一组对边平行,且另一组对边不平行,那么这个四边形是________。
三、简答题11. 描述矩形和正方形的相似之处和不同之处。
12. 解释为什么菱形的对角线互相垂直。
13. 根据题目给出的条件,如果一个四边形的对角线互相平分,且一边上的两个角都是直角,那么这个四边形是什么形状?四、计算题14. 已知一个平行四边形的两组对边长度分别为6cm和8cm,对角线长度分别为10cm和2x cm。
求x的值。
15. 如果一个梯形的上底长为5cm,下底长为10cm,且两底平行,求这个梯形的高,假设这个梯形是等腰梯形。
五、证明题16. 证明:如果一个四边形的对角线互相垂直且相等,那么这个四边形是正方形。
17. 证明:如果一个四边形的对角线互相平分,且一边上的两个角都是直角,那么这个四边形是矩形。
请注意,以上题目仅为示例,具体内容应根据实际教学大纲和学生水平进行调整。
特殊四边形练习题及答案

特殊四边形练习题及答案一、填空题1、已知正方形ABCD的对角线AC,BD相交于点O,以AB为边向外作等边三角形ABE,CE与BD相交于点F,则的值为1 2 32、如图,在△ABC中,点D是BC的中点,点E、F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是 (只填写序号).3、如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为 .4、我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形。
则矩形的中点四边形是 .5、如图,在正方形中,点,分别在边,上,若,,,则正方形的面积等于.5 6 7 86、如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.7、如图,菱形ABCD中,E、F分别是BC、CD的中点,过点E作EG⊥AD于G,连接GF.若∠A=80°,则∠DGF的度数为.8、如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是.二、简答题9、如图,在四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E.求证:AE=CE.10、如图,正方形ABCD的边长为4,点E是正方形边上的点,AE=5,BF⊥AE,垂足为点F,求BF的长.11、如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为G,求证:AE=BF.12、如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.13、如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.14、如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(4分)(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(4分)(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF会是正方形.不要写理由。
特殊平行四边形练习题(含答案)

特殊平行四边形专题练习一、基础知识点复习:(一)矩形:1、矩形的定义:__________________________的平行四边形叫矩形.2、矩形的性质:①.矩形的四个角都是______;矩形的对角线__________________________.②.矩形既是对称图形,又是图形,它有条对称轴.3、矩形的判定:①.有_____个是直角的四边形是矩形.②.对角线____________________________的平行四边形是矩形.③.对角线________________________________的四边形是矩形.4、练习:①矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,则矩形对角线AC长为______cm.②.四边形ABCD的对角线AC,BD相交于点O,能判断它为矩形的题设是()A.AO=CO,BO=DO B.AO=BO=CO=DOC.AB=BC,AO=CO D.AO=CO,BO=DO,AC⊥BD③.四边形ABCD中,ADBC,则四边形ABCD是 ___________,又对角线AC,BD交于点O,若∠1=∠2,则四边形ABCD是_______________.(二)菱形:1、菱形的定义:有一组_________________________相等的平行四边形叫菱形.2、菱形的性质:①.菱形的四条边______;菱形的对角线_____________,且每条对角线______________.②.菱形既是对称图形,又是图形,它有条对称轴.3、菱形的判定:①.__________________边都相等的四边形菱形.②.对角线_____________________________的平行四边形是菱形.③.对角线_____________________________________________的四边形是菱形.4、菱形的面积与两对角线的关系是________________________5、练习:①.如图,BD是菱形ABCD的一条对角线,若∠ABD=65°,则∠A=_____.②.一个菱形的两条对角线分别是6cm,8cm,则这个菱形的周长等于cm,面积=cm2③.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为(三)正方形:1、正方形的定义:的平行四边形叫正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.3 个
D.4 个
38.如图、F 分别在边 AB、CD、AD、
BC 上.小明认为:若 MN=EF,则 MN⊥EF;小亮认为:若 MN⊥EF,则 MN=EF.你
认为 ( )
A.仅小明对
B.仅小亮对
C.两人都对
D.两人都不对
第 38 题
第 39 题
(A)144° (B)126° (C)108° (D)72°
第 12 题
第 13 题
第 14 题
13. 如图,菱形 ABCD 中,∠B=60°,AB=2 ㎝,E、F 分别是 BC、CD 的中点,连结 AE、
EF、AF,则△AEF 的周长为( )
A. 2 3 ㎝
B. 3 3 ㎝
C. 4 3 ㎝
D.3 ㎝
A.4
B.3
C.2
D.1
第 33 题
第 34 题
第 35 题
34.如图,在三角形 ABC 中,AB>AC,D、E 分别是 AB、AC 上的点,△ADE 沿线段 DE
翻折,使点 A 落在边 BC 上,记为 A'.若四边形 ADA'E 是菱形,
则下列说法正确的是
(
)
A.DE 是△ABC 的中位线
B.AA'是 BC 边上的中线
11. 如图,四边形 ABCD 是正方形,E 是边 CD 上一点,若△AFB 经过逆时针旋转角θ后与
△AED 重合,则θ的取值可能为( )
A.90°
B.60° C.45° D.30°
12. 如图所示,把一长方形纸片沿 MN 折叠后,点 D,C 分别落在 D′,C′的位置.
若∠AMD′=36°,则∠NFD′等于( )
上的 B 处,点 A 对应点为 A ,且 BC =3,则 AM 的长是(
)
A.1.5
B.2
C.2.25
D.2.5
18.如图,菱形 ABCD 中,AB=15, ADC 120 °,则 B、D 两点之间的距离为( )。
A.15
15
B.
3
2
C.7.5
D.15 3
19. 下列对矩形的判定:“(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等
菱形的边循环运动,行走 2 010 厘米后停下,则这只蚂蚁停在______点.
5
44.如图,AB⊥BC,AB=BC=2 cm,弧 OA 与弧 OC 关于点 O 成中心对称,则 AB、BC、 弧 CO、弧 OA 所围成的面积是_______cm2.
第 44 题
第 45 题
第 46 题
45.如图,在□ABCD 中,对角线 AC、BD 相交于点 O.如果 AC=14,BD=8,AB=x,那
C、5 个
D、6 个
20.下列性质中,菱形具有而矩形不一定具有的性质是(
)
A、对边平行且相等
B、对角线互相平分
C、内角和等于外角和
D、每一条对角线所在直线都是它的对称轴
21.下列条件中,能判定一个四边形为菱形的条件是(
)
A、对角线互相平分的四边形
B、对角线互相垂直且平分的四边形
C、对角线相等的四边形
【特殊四边形选择填空强化训练】
1. 如图,在平行四边形 ABCD 中,E 是 AD 边上的中点.若∠ABE=∠EBC,AB=2, 则平
行四边形 ABCD 的周长是
.
第 1 题
第2题
第3题
2. 如图,在 ABCD 中,分别以 AB、AD 为边向外作等边△ABE、△ADF,延长 CB 交
AE 于点 G,点 G 在点 A、E 之间,连结 CG、CF,则以下四个结论一定正确的是( )
D、对角线相等且互相垂直的四边形
22.已知四边形 ABCD 是平行四边形,下列结论中不一定正确的是(
)
A、AB=CD B、AC=BD C、当 AC⊥BD 时,它是菱形 D、当∠ABC=90°时,它是矩形
23.正方形具有而矩形不一定具有的性质是(
)。
A.四个角都是直角 B.对角线互相平分 C.对角线相等 D.对角线互相垂直
A.30°
B.35°
C.40°
D.50°
第 47 题
第 48 题
第 49 题
48.如图,三个正方形 A、B、C 如图放置,且正方形 A、C 的面积分别是 2 cm2 和 3 cm2,
则正方形 B 的面积等于______cm2.
49.如图:点 E、F 分别是菱形 ABCD 的边 BC、CD 上的点且∠EAF=∠D=60°,∠FAD=
24.正方形具有而菱形不一定具有的性质是(
)。
A、对角线相等 B、对角线互相垂直平分 C、四条边相等 D、一条对角线平分一组对角
25.下列条件中不能判定四边形是正方形的条件是(
)。
A、对角线互相垂直且相等的四边形 B、一条对角线平分一组对角的矩形
C、对角线相等的菱形
D、对角线互相垂直的矩形
26.已知四边形 ABCD 是平行四边形,下列结论不正确的是 ( )
的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有四个角是直角的四边形是矩
形;(5)四个角都相等的四边形是矩形;(6)对角线相等,且有一个直角的四边形是矩形;
(7)一组邻边垂直,一组对边平行且相等的四边形是矩形;(8)对角线相等且互相垂直的
四边形是矩形”中,正确的个数有(
)
A、3 个
B、4 个
C.AA'是 BC 边上的高
D.AA'是△ABC 的角平分线
35.正方形 ABCD、正方形 BEFG 和正方形 RKPF 的位置如图所示,点 G 在线段 DK 上,
正方形 BEFG 的边长为 4,则△DEK 的面积为
(
)
A.10
B.12
C.14
D.16
4
36.如图,P 是矩形 ABCD 的边 AD 上一个动点,矩形的两条边 AB、BC 的长分别为 3 和 4,
A.20
B.18
C.16
D.15
8. 已知:如图,在正方形 ABCD 外取一点 E ,连接 AE , BE , DE .过点 A 作 AE 的垂
线交 ED 于点 P .若 AE AP 1, PB 5 .下列结论:①△ APD ≌△ AEB ;②点
B 到 直 线 AE 的 距 离 为 2 ; ③ EB ED ; ④ SAPD SAPB 1 6 ;
A.2+ 10
B.2+2 10
C.12
D.18
29.顺次连接四边形四边中点所组成的四边形是菱形,则原四边形为 ( )
A.平行四边形
B.菱形
C.对角线相等的四边形 D.直角梯形
30. 在平面内,如果一个图形绕一个定点旋转一定的角度后与自身重合,那么就称这个图形
是旋转对称图形,转动的角度称为这个图形的一个旋转角,下列图形中,是旋转对称图
第 40 题
第 42 题
第 43 题
41.在四边形 ABCD 中,AB∥CD,要使四边形 ABCD 为平行四边形,则可添加的条件为
_______.(填一个即可)
42.如图,四边形 ABCD 是正方形,延长 AB 到 E,使 AE=AC,则∠BCE=______.
43.如图,两个全等菱形的边长为 1 厘米,一只蚂蚁由点 A 开始按 ABCDEFCGA 的顺序沿
为 4 2 和 10 2 ,则这个正方形的对角线长为 ( )
A.12
B. 6
C.2 6
D.6 2
33.如图,已知矩形纸片 ABCD,点 E 是 AB 的中点,点 G 是 BC 上的一点,∠BEG>60°,
现沿直线 EG 将纸片折叠,使点 B 落在纸片上的点 H 处,连接 AH,则与∠BEG 相等的
角的个数为 ( )
A. 2 2
B. 3
C. 2 D.1 2
2
16.如图,在正方形 ABCD 的外侧作等边△ADE,则∠AEB 的度数为( )
A.10°
B.12.5°
C.15°
D.20°
第 16 题
第 17 题
第 18 题
17. 如图,四边形 ABCD 是边长为 9 的正方形纸片,将其沿 MN 折叠,使点 B 落在 CD 边
①△CDF≌△EBC ②∠CDF=∠EAF ③△ECF 是等边三角形 ④CG⊥AE
A.只有①②
B.只有①②③
C.只有③④
D.①②③④
3. 如图,E 是□ABCD 的边 AD 的中点,CE 与 BA 的延长线交于点 F,若∠FCD=∠D,则
下列结论不成立的是(
)
A、AD=CF
B、BF=CF
C、AF=CD
45°,则∠CFE=______.
50.矩形的两条对角线的夹角为 60°,一条对角线与短边的和为 15,则长边的长为
51.正方形内有一点 A,到各边的距离从小到大依次是 1、2、3、4,则正方形的周长是______.
那么点 P 到矩形的两条对角线 AC 和 BD 的距离之和是 ( )
A. 12 5
B. 6 5
C. 24 5
D.不确定
第 36 题
第 37 题
37.如图,AC、BD 是矩形 ABCD 的对角线,过点 D 作 DE∥AC,交 BC 的延长线于 E,则
图中与△ABC 全等的三角形共有 ( )
A.1 个
B.2 个
39.如图,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在
对角线 AC 上有一点 P,使 PD+PE 的和最小,则这个最小值为 ( )
A. 12
B. 24
C.3
D. 6
40.如图,在△ABC 中,D、E、F 分别是 AB、BC、CA 的中点,若△ABC 的周长为 10 cm, 则△DEF 的周长是_______cm.