双离合器变速箱工作原理详解.(DOC)

合集下载

双离合变速器工作原理

双离合变速器工作原理

双离合变速器工作原理
双离合变速器,简称DCT(Dual Clutch Transmission),是一
种现代化的汽车变速器。

它的工作原理和传统的手动变速器和自动变速器有所不同。

DCT由两个离合器和两个独立的变速器组成,分别为第一离
合器、第二离合器、第一变速器和第二变速器。

第一离合器和第一变速器负责驱动车辆的奇数挡和倒挡,而第二离合器和第二变速器负责偶数挡。

在行驶过程中,当车辆起步或低速行驶时,第一离合器会关闭,同时让第二离合器打开。

发动机的动力通过第二离合器传递给第二变速器,并通过此变速器将动力传递给车轮,实现行驶。

因为第一离合器关闭,所以第一变速器不会传输动力。

当车辆需要换挡时,比如从一挡换到二挡,DCT会先让第一
离合器关闭,同时让第二离合器打开。

这样,第一变速器和第二变速器就可以同时接受动力,保证换挡时的平稳过渡。

然后,第一离合器打开,第二离合器关闭,此时第一变速器和第二变速器切换功能,即可实现换挡。

DCT的工作原理可以做到快速的换挡,因为在换挡时,不需
要切断发动机的动力输出,只需要关闭和打开相应的离合器即可。

这样,车辆就能保持较高的动力输出,提高了加速性能和燃油经济性。

总结来说,双离合变速器的工作原理是通过两个独立的离合器
和变速器来实现换挡功能,能够在不中断动力输出的情况下,快速平稳地完成换挡操作,提高了驾驶的舒适性和性能。

汽车智能技术专业《双离合器变速箱工作原理详解3》

汽车智能技术专业《双离合器变速箱工作原理详解3》

双离合器变速箱工作原理详解离合器位于发动机与变速器之间,是发动机与变速器动力传递的“开关〞,它是一种既能传递动力,又能切断动力的传动机构。

它的作用主要是保证汽车能平稳起步,变速换挡时减轻变速齿轮的冲击载荷并防止传动系过载。

在一般汽车上,汽车换档时通过离合器别离与接合实现,在别离与接合之间就有动力传递暂时中断的现象。

这在普通汽车上没有什么影响,但在争分夺秒的赛车上,如果离合器掌握不好动力跟不上,车速就会变慢,影响成绩。

为了解决这个问题,早在上世纪80年代,汽车工程界就弄出了一个双离合系统变速器,简称DSG〔英文全称:Direct Shift Gearbo〕,装配在赛车上,能消除换档离合时的动力传递停滞现象。

例如/h缩短到了秒,相比手动变速箱快了秒,百公里油耗减少到。

宝马M3 Couission〕三菱的跑车的运动性向来比拟剧烈。

对于双离合变速箱这种高性能的设备,日本人自然不会轻易放过。

2021年7月,三菱在东京也发布了自己研发的双离合变速箱——SST〔Sission〕。

2021年6月,搭载这一变速箱的第十代EVO已经引入,售价高达万元。

SST给驾驶者提供了三种模式分别为正常、运动及超级运动,以满足各种路面的需求。

双离合变速箱在满足消费者对驾驶运动感和车辆节油的双重要求,为那些酷爱手动变速箱的驾驶者们提供了最正确选择,让更多车主的驾驶激情从此不再间断。

附:双离合变速箱的诞生及重大历史事件1940年,Darmstadt大学教授Rudolission,作为汽车重要的组成局部,是承当放大发动机扭矩,配合引擎功扭特性,实现理想动力传递,从而适应各种路况实现汽车行驶的主要装置。

人们所熟知的变速箱一般有手动变速箱和自动变速箱。

传统的变速箱利用不同的齿轮搭配实现了上述目的,而齿轮搭配的变换就只有靠脚踩离合手拉挡杆来实现,这就是所谓的手动变速箱。

为实现轻松换挡,取消离合脚踏和手动挂挡的ATAutomatic Transmission变速箱出现了,它主要利用液力变扭器配合传统机械齿轮箱实现换挡功能。

双离合器变速箱的工作原理

双离合器变速箱的工作原理

双离合器变速箱的工作原理?双离合自动变速器(简称DCT)基于手动变速箱基础之上。

而与手动变速箱所不同的是,DCT中的两幅离合器与二根输入轴相连,换挡和离合操作都是通过一集成电子和液压元件的机械电子模块来实现。

而不再通过离合器踏板操作。

就像tiptronic液力自动变速器一样,驾驶员可以手动换挡或将变速杆处于全自动D挡(舒适型,在发动机低速运行时换挡)或S挡(任务型,在发动机高速运行时换挡)模式。

此种模式下的换挡通常由挡位和离合执行器实现。

两幅离合器各自与不同的输入轴相连。

如果离合器1通过实心轴与挡位1、3、5相连,那么离合器2则通过空心轴与挡位2、4、6和倒挡相连。

发动机的输入轴通过缓冲器与两幅离合器外片相连。

发动机启动后自动挂1挡。

由于离合器1处于打开状态,因而没有扭矩传到驱动轮。

当离合器1关闭时,离合器1的外片逐渐贴合内片并开始通过第一挡的实心轴、齿轮组和同步器传动发动机扭矩至差速器,最终至驱动轮。

同时,由于离合器2此时并不传递扭矩,因此第二挡已被预先选定。

从第一挡换到第二挡时,由于第一挡的解除和第二挡的挂挡在同一速度,车辆有足够的前冲力。

当第离合器2完全接合后,第三挡已被预先选定,因为此时离合器1没有接合,不传导扭矩,挂挡原理依次类推。

此时驾驶员仅感觉到离合器转换。

对快速换挡操作来说,换下一挡即意味着与之相连的离合器开放,但此挡位预先选定。

通过变速箱控制软件的复杂算法,根据驾驶员各自的需要调整换挡类型和换挡速度确保了选定正确挡位。

通过设计,双离合变速器中的最大差速小于传统的液力自动离合器,该类离合器操作起来简便快速,与传统的液力自动离合器相比,其舒适感也更高,或不低于液力自动变速器。

通过简单的控制软件即可实现从运动型到高舒适型驾乘体验的改变,因此可有效的控制成本以满足不同层次市场、客户的需求。

双离合变速箱原理双离合自动变速箱产品背景及发展历程汽车变速箱发展经历了100多年,从最初采用侧链传动到手动变速箱,及至液力自动变速箱和电控机械式自动变速箱,再到现在无级自动变速箱的普及,在汽车工业技术不断前进的同时,变速箱也向着更平顺、更省油、更富驾驶乐趣的方向不断发展。

双离合器变速箱的工作原理

双离合器变速箱的工作原理

双离合器变速箱的工作原理当车辆启动时,主离合器闭合,并通过输入轴将发动机动力传递到副离合器。

在此过程中,变速箱中的第一组齿轮与输出轴相连,将动力传送到驱动轮,使车辆开始行驶。

当汽车需要换档时,双离合器变速箱的控制单元会根据当前车速、油门输入等参数来判断换档时机,并控制两个离合器的开闭状态。

换档时,主离合器断开,副离合器闭合。

此时,输入轴不再传递动力,而是通过主离合器与发动机分离。

同时,副离合器闭合,将输出轴与变速箱的下一组档位的齿轮相连,实现档位的切换。

当副离合器完全闭合后,主离合器再次闭合,与发动机重新连接。

此时,新的齿轮与输出轴相连,车辆继续行驶。

整个换档过程中,双离合器变速箱能够平滑地切换档位,几乎没有断流感。

这是因为在换档过程中,被断开的主离合器会提前预压下一组齿轮与输出轴,并利用液力传动器来平衡动力,保持驱动力的平稳传递。

当新的齿轮与输出轴连接后,液力传动器会解除并逐渐转化为直接传动,实现高效的动力传输。

双离合器变速箱的另一个优势是快速的换挡速度。

由于主离合器和副离合器分别控制两个离合器组件,它们可以分别准备下一组齿轮,并在换档时几乎同时操作。

这使得双离合器变速箱能够实现近乎无间断的档位切换,保持车辆在高速行驶过程中的动力输出。

总之,双离合器变速箱通过两个离合器分别控制两个离合器组件,实现了平稳的换档和高效的动力传输。

它的工作原理是通过主离合器和副离合器的开闭状态来切换不同的齿轮,并利用液力传动器来平衡动力,以保持驱动力的平稳传递。

同时,双离合器变速箱还能够快速换挡,保证了车辆在高速行驶过程中的行驶品质。

双离合变速器传动工作原理

双离合变速器传动工作原理

双离合变速器传动工作原理
双离合变速器是一种先进的自动变速器,其工作原理如下:
1. 主离合器:双离合变速器中的主离合器连接发动机和变速器的输入轴。

当主离合器闭合时,发动机的扭矩传递到变速器,使车辆能够移动。

2. 第一离合器:在主离合器的输出轴上,有一个额外的离合器与变速器输入轴相连。

当第一离合器闭合时,变速器的输入轴与主离合器的输出轴相连,以实现与发动机的传动。

3. 多个齿轮组:变速器内部有多个齿轮组,其中包括各种的齿轮和同步器。

不同的齿轮组可提供不同的传动比,以实现加速和高速行驶等不同工况下的优化性能。

4. 液压控制单元:双离合变速器中有一个液压控制单元,用于控制离合器的接合和分离。

通过控制液压系统,可以对不同的离合器进行独立控制,以实现平稳的换挡操作。

5. 双离合操作:在换挡过程中,双离合变速器会同时预先选择下一个理想的传动比,并预先准备好该传动比所需的离合器状态。

当需要进行换挡时,只需切换离合器的状态,以完成换挡操作。

这种双离合的操作方式能够实现无间断的换挡,提供更加平顺的驾驶体验。

总的来说,双离合变速器利用两个独立的离合器,使得可以在两个齿轮组之间实现快速、平滑的换档,从而提高了换挡的效
率和平顺性。

这种设计可以同时兼顾经济性和性能,并提供更加舒适的驾驶体验。

双离合结构和原理

双离合结构和原理

双离合结构和原理双离合器变速器的工作原理如下:1.主离合器:位于发动机和变速器输出轴之间,负责连接和断开发动机与变速器的动力传输。

主离合器包含两个同心分别与发动机曲轴和输入轴相连的离合器盘,当主离合器连接时,发动机动力会传输到输入轴。

2.从离合器:位于输入轴和输出轴之间,负责实现两个离合器之间的换挡操作。

从离合器也包含两个同心分别与输入轴和输出轴相连的离合器盘,当从离合器连接时,动力会从输入轴传输到输出轴。

3.齿轮组:位于输入轴和输出轴之间,齿轮组中包含多个齿轮,通过主离合器和从离合器的连接和断开,来实现不同的挡位切换。

工作过程如下:1.当车辆启动时,主离合器连接,动力传输到变速器。

2.当车辆需要换挡时,从离合器断开主离合器并连接到下一个挡位。

在换挡过程中,离合器已经预先准备好下一个挡位的离合器,以确保换挡时能够迅速地切换挡位,并实现平滑的过渡。

3.当车辆的当前挡位与新挡位匹配时,从离合器断开当前挡位的离合器并连接下一个挡位的离合器。

同时,主离合器连接,传输动力到输出轴。

与传统的手动变速器相比,双离合器变速器具有以下优点:1.更快的换挡速度:双离合器变速器可以几乎同时连接和断开两个离合器,从而实现更快速的换挡。

这一特点使得双离合器变速器在运动性能和加速性能方面具有较大优势。

2.更高的燃油经济性:双离合器变速器可以减少传动损失,提高动力传输效率,从而实现更高的燃油经济性。

相较于传统的自动变速器,双离合器变速器可以使发动机在较低转速下运行,减少燃油消耗。

3.更平滑的换挡过程:双离合器变速器可以通过预先准备好下一个挡位的离合器,使换挡过程更平滑,减少动力中断的感觉。

4.更高的可靠性:双离合器变速器的设计使得传动部件承受的负载分散,从而降低了传动部件的磨损,提高了变速器的可靠性和寿命。

总之,双离合器变速器通过先进的设计和工作原理实现了更高效、更快速的换挡过程,提供了更好的操控性能和燃油经济性,因此在现代汽车中得到了广泛的应用。

双离合变速箱工作原理

双离合变速箱工作原理

双离合变速箱工作原理
1.双离合变速箱的概念
双离合变速箱(Dual-Clutch Transmission,简称DCT)是一种全自动机械式变速箱,也叫双离合器变速器、直接变速器,它采用一组离合器分别实现不同齿比的换挡,可以在0.1秒内实现换挡。

DCT的优点是支持自动和手动两种换挡方式,提供更快的加速响应和更高的燃油经济性。

2.双离合变速箱的结构
双离合变速箱的核心部件是两个离合器和多个齿轮,分别安装在主轴和副轴上。

离合器1、2分别负责控制齿轮轴1、2的转动,可以实现双涡轮效应,从而避免了传统变速箱在换挡时的能量浪费和动力中断的问题。

此外,DCT还包括控制器、传感器和电子部件等。

3.双离合变速箱的工作原理
DCT的工作原理可以分为三个部分:离合器、换挡和控制器。

在起步或低速行驶时,离合器1开启,离合器2关闭,功率通过主轴传递到副轴,驱动车辆前行。

随着车速的增加,控制器监测到达换挡转速点,此时离合器1关闭,离合器2开启,新齿轮加入传动系统,以实现不同齿比的换挡。

同时,控制器会检测转速、负载、油温等参数,根据算法实现最佳换挡。

4.双离合变速箱的优缺点
DCT的优点包括更快的换挡响应速度、更高的燃油经济性、更平稳的行驶和更佳的操控性。

缺点则是相对传统变速箱更昂贵和更复杂,维护和保养成本更高。

5.结论
双离合变速箱是一种高效、先进的变速器。

虽然相对传统变速箱更昂贵和更复杂,但其优秀的动力响应和经济性,越来越受到车主的青睐。

随着技术的进步,DCT的可靠性、操作性和性价比会逐步提高。

双离合变速器工作原理

双离合变速器工作原理

双离合变速器工作原理
双离合变速器(英文名称Dual-clutch Transmission,简称DCT)是一种匹配汽车动力传动系统的先进技术,它的实现需要把内置双离合器的平行连接的电液双离合器和传动箱组合在一起。

双离合变速器的工作原理是:双离合变速器的运动原理与传统的手自一体变速器的运动方式基本相同,但双离合器的实现过程中使用了两个离合器。

双离合变速器的第一个离合器交替连接发动机输出轴与变速箱输入轴,与之并行地,第二个离合器则控制由变速箱通过轴与离合器间连接的变速箱内部档位之间的转换。

当一个离合器处于离合状态时,另一个就处于开启状态,这样,此时正好又有一组档位接通,当机械弹簧使得转换比传动,进而实现变速的作用。

从性能上来说,双离合变速器的明显优势是它的变速速度快、可靠性高、变速坚固性好。

在有电液传动的一体技术的支持下,双离合变速器的变换特性已被提得十分精密,其变换的最大优点是在动力变换过程中没有滞后,使驾乘者在行车过程中由发动机提供动力顺≡畅平稳,降低了变速时候的异音和颠簸感,使操控性能得到大幅提高而发动机的输出功率由于损耗低,与普通变速器相比大大提高了汽车的燃油经济性。

另外,双离合变速器的操纵也较为便捷,用户可以使用挡位选择杆、换挡拨片或者方向盘上的操纵按钮,来完成变速及换挡,并且车辆完全静止即可完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双离合器变速箱工作原理详解2010年10月11日17:13腾讯汽车我要评论(1)字号:T|T离合器位于发动机与变速器之间,是发动机与变速器动力传递的“开关”,它是一种既能传递动力,又能切断动力的传动机构。

它的作用主要是保证汽车能平稳起步,变速换挡时减轻变速齿轮的冲击载荷并防止传动系过载。

在一般汽车上,汽车换档时通过离合器分离与接合实现,在分离与接合之间就有动力传递暂时中断的现象。

这在普通汽车上没有什么影响,但在争分夺秒的赛车上,如果离合器掌握不好动力跟不上,车速就会变慢,影响成绩。

为了解决这个问题,早在上世纪80年代,汽车工程界就弄出了一个双离合系统变速器,简称DSG(英文全称:Direct Shift Gearbox),装配在赛车上,能消除换档离合时的动力传递停滞现象。

例如布加迪EBl6.4 Veyron的新型7速变速器是装置了双离合器,从一个档位换到另一个档位,时间不会超过0.2秒。

现在,这种双离合器已经从赛车应用到一般跑车上。

奥迪汽车公司的新型奥迪TT跑车和新奥迪A3都已经装置了这种DSG。

这些汽车装配DSG的目的是可以比自动变速器更加平顺地换档,不会有迟滞现象。

奥迪这种双离合系统变速器是一个整体,有6个档位,离合器与变速器装配在同一机构内,两个离合器互相配合工作。

这好比喻一辆车有两套离合器,正司机控制一套,副司机控制另一套。

正司机挂上1档松开离合踏板起步时,这时副司机也预先挂上2档但踩住离合踏板;当车速上来准备换档,正司机踩住离合踏板的同时副司机即松开离合踏板,2档开始工作。

这样就省略了档位空置的一刹那,动力传递连续,有点象接力赛。

双离合系统两套离合器传动系统,通过电脑控制协调工作。

当汽车正常行驶的时候,一个离合器与变速器中某一档位相连,将发动机动力传递到驱动轮;电脑根据汽车速度和转速对驾驶者的换档意图做出判断,预见性地控制另一个离合器与另一个档位的齿轮组相连,但仅处于准备状态,尚未与发动机动力相连。

换档时第1个离合器断开,同时第2个离合器将所相连的齿轮组与发动机接合。

除了空档之外,一个离合器处于关闭状态,另一个离合器则处于打开状态。

两根传动轴分别由第一、第二离合器控制与发动机动力的连接与断开,分别负责1、3、5档和2、4、6档的档位变换。

考虑到零件使用寿命,设计人员选择了油槽膜片式离合器,离合器动作由液压系统来控制。

自动双离合器变速箱的换档控制方法一种用于对一个自动化的双离合器变速箱进行换档控制的方法,该双离合器变速箱包含一个第一分变速装置,其配有一个第一变速箱输入轴、一个第一发动机离合器和一个第一档组;该变速箱还包含一个第二分变速装置,其配有一个第二变速箱输入轴、一个第二发动机离合器和一个第二档组,利用此方法,在一个负载档和一个分配给同一分变速装置的目标档之间实现一个换档过程,为此利用一个分配给另一个分变速装置的中间档来作为多重换档,换档步骤是,S1:接入中间档;S2:从负载档的发动机离合器转换到中间档的发动机离合器的离合器变换;S3:解脱负载档;S4:接入目标档;S5:从中间档的发动机离合器到目标档的发动机离合器的离合器变换;利用此方法,将所配置的驱动发动机的发动机转速n↓[M]在换档过程结束时引导到目标档的同步转速n↓[MS],根据本发明如此设置:在换档过程开始时(t=t↓[0])预定出一个初始额定转速梯度(dn↓[M]/dt)↓[0],利用此额定转速梯度,发动机转速n↓[M]在一个估计的总换档时间Δt↓[s∑]’时在换档过程结束时便达到同步转速n↓[MS];驱动发动机的发动机转速n↓[M]在换档过程开始时首先按照预定的初始-额定转速梯度(dn↓[M]/dt)↓[0]加以改变;在换档过程中求得实际的换档进程,并将之与所估计的换档进程进行对比;使额定转速梯度dn↓[M]/dt在确定的换档进程偏差的情况下匹配于实际的换档进程。

双离合器式自动变速器控制系统的关键技术DCT由机械系统和控制系统组成,控制系统是的DCT关键部件,而起步控制策略的制定、综合智能换挡规律的制定和换挡品质的改善方法是控制系统的核心技术,对整车的起步性能、换挡品质、动力性和经济性等有着重要的影响。

1 DCT的起步控制技术1.1 DCT的起步控制技术的研究现状综合当前的研究成果,通过优化离合器的动力学模型、完善离合器接合的控制策略及提高离合器执行机构的跟踪品质,是提高车辆起步性能的主要途径。

离合器起步过程中的动力学模型是进行离合器控制策略研究的基础,包括离合器执行机构动力学模型、接合过程中转矩传递的模型及离合器接合过程的动力学模型。

杨树军等对电控液动湿式离合器执行机构动力学模型进行了研究,并建立了接合过程的动力学模型。

李焕松、张俊智、申水文和葛安林等对电控液动干式离合器执行机构的工作过程进行了详细分析,建立了相应的模型。

离合器接合速度的控制策略是优化起步性能的关键,总体可分为基于现代控制技术和基于智能控制技术的控制策略。

基于现代控制技术的控制策略车辆起步性能的评价指标中,冲击度与滑摩功是相互矛盾的,不可能使二者同时达到最优。

在满足各种约束条件的前提下,为了找出比较满意的综合最优解,基于约束条件的最优算法及最优控制方法,在离合器起步控制中得到了应用。

葛安林等基于离合器的动力学模型,以平均冲击能量和滑摩功为目标函数,进行多目标函数的综合优化,从而获得在不同操纵规律下,任一坡度、载荷和挡位下起步时的最佳接合规律。

孙承顺、张建武和秦大同等基于最小值和线性二次型的最优控制原理,综合考虑冲击度和滑摩功两项评价指标,以解析形式推导出离合器的最优接合轨线。

席军强、陈慧岩和丁华荣等根据离合器输出轴转速和发动机转速与离合器输出轴转速差,得到理想离合器输出轴加速度,并通过控制离合器驱动机构的行程增量,使得实际离合器输出轴加速度和理想相一致,实现了起步过程中的自适应控制。

基于智能控制技术的控制策略模糊控制等智能控制技术的最大优点,就是对非线性、大滞后及难以建立精确数学模型的控制对象,具有更好的适应性。

LUCAS等分析了40位驾驶员的起步操作数据,总结了相应的起步控制规则,为起步过程中模糊规则的制定奠定了基础。

TANAKA等基于驾驶员经验建立了模糊规则库,根据驾驶员踏板的操作过程,模糊推理出驾驶员的意图,实现了离合器的模糊起步控制。

与此同时,葛舜、王云成、申水文和汤霞清等国内学者也开展了离合器模糊起步控制技术的研究,并进行了实车测试,取得厂预期的效果。

提高离合器执行机构的跟踪品质,应研究鲁棒性强、跟踪品质好的执行机构控制器。

建立控制决策系统和硬件机构之间的良好接口,是精确实现离合器的控制策略、优化离合器起步性能的关键。

张俊智等采用预测控制的方法,有效地克服了液压控制系统对电磁阀开、关指令的滞后,实现了离合器接合的高精度控制,并提出了离合器的容错控制方法。

高炳钊、葛安林等将反馈信号由液压缸柱塞的速度转变为位移量,避开了液压系统的高度非线性和时变性的影响,实现了接合速度精确控制。

孙承顺、张建武等根据非线性控制理论和滑模控制原理,构造了等价线性系统滑模控制器,使之具有高精度的跟踪品质和较强的抗干扰能力。

何忠波等利用控制电动机正反向运转时间的办法,解决了执行电动机在低转速下匀速运动精度不高的问题,实现了离合器的精确控制,叶明等设计了基于模糊控制的速度环和基于PI控制的电流环双闭环控制系统,使伺服电动机具有良好的动态性能。

1.2 DCT起步控制技术的评价及发展动态应从提高离合器动力学模型的精度、完善离合器控制策略及提高执行机构的跟踪精度三方面来优化离合器的起步性能,离合器控制策略的完善最为关键,其各种方法的评价及发展动态如下。

最优控制等综合优化方法需要建立精确的离合器动力学模型,且不适应控制过程中参数变化引起的决策凋整。

建立完全精确的动力学模型十分困难,而且由于车辆起步时载荷、挡位等变化,使离合器传动系中参数具有不确定性,限制了最优控制的性能。

模糊参考自适应控制策略的稳定性、鲁棒性等方面的理论尚不完善,不易建立性能较好的自适应控制系统。

因此应从优化离合器动力学模型和完善自适应控制系统两个方面,来提高基于现代控制技术的离合器起步的性能,但难度较大。

包括模糊控制在内的智能控制可以利用人的知识和经验,达到模仿人的思维来控制车辆起步的目的,而且对难以建立数学模型、非线性和大滞后的控制对象,具有很好的适应性,非常适用于离合器起步控制领域,应用前景较好。

但模糊控制在其参数的模糊化过程中,受人为因素的影响较大,控制规则中参数特性与控制目标关系不明确,不易于参数的调整,获得较优的控制参数困难。

因此基于优秀驾驶员的起步操纵经验,不断丰富模糊控制规则的基础上,研究如何通过少量的调试次数,即可获取较优控制参数的方法,是目前急需解决的问题。

2 换挡规律的制定基于经验的换挡规律HAYASHI等利用模糊控制和神经网络方法,对优秀驾驶员的换挡规律进行辨识,建立了基于经验的换挡规律,提高了车辆在爬坡及制动工况时的性能。

实际工程应用方面,三菱汽车公司率先应用神经网络逻辑电路,成功开发了能最优选择变速挡位的INVECSⅡ型软件系统。

基于约束条件的换挡规律早期使用的单参数换挡规律目前应用较少。

彼得罗夫提出了以车速和油门作为控制参数的二参数换挡规律,二参数换挡规律引入了油门参数,实现了驾驶员的干预换挡,与单参数相比,整车的动力性、经济性和换挡品质有了较大的提高,当前被广泛采用;葛安林等在发动机动态试验数据的基础上,提出了以车速、油门开度和加速度为控制参数的动态三参数控制规律,试验结果表明,该规律优于静态的二参数换挡规律。

智能修正的换挡规律WEIL等提出了一个挡位决策的模糊专家系统模型,详细介绍了获取换挡控制规则的方法,并进行了仿真对比分析,证明了该方法的优点。

三菱汽车公司也开展了相应研究,并在上、下坡等特殊路段进行了对比测试。

国内学者也开展了智能修正换挡规律的研究。

申水文、葛安林等通过增加转向盘转角传感器和道路坡度传感器,引入坡道和弯道信息,采用模糊逻辑技术修正二参数换挡规律,减少了爬坡和弯道行驶时的换挡次数。

综合智能的换挡规律秦贵和等将路面和驾驶员意图分为良好路段、颠簸路段、加速和停车等典型工况。

首先求出各典型工况较佳的换挡规律。

然后利用易于测量的车辆的状态参数,依据模糊推理方法,形成一个描述路面特征、驾驶员意图和车辆状态的模糊集合,求出当前状态与各典型工况的贴近度,计算得到最终的挡位数值。

葛安林等在综合国内外对驾驶员类型、驾驶员意图和行驶环境路段、路况和路形实时识别研究成果的基础上,提出由路段和路况识别信息建立标准行驶工况的换挡规律,按照驾驶员的类型进行标准换挡规律的个性化处理,并依据路形、驾驶员意图识别的结果,进行局部信息占优再修正,获取最佳的换挡规律。

相关文档
最新文档