课件光学第三章习题解答

合集下载

《光学教程》课后习题解答

《光学教程》课后习题解答
解:对方位,的第二个次最大位
对 的第三个次最大位
即:
9、波长为的平行光垂直地射在宽的缝上,若将焦距为的透镜紧贴于缝的后面,并使光聚焦到屏上,问衍射图样的中央到⑴第一最小值;⑵第一最大值;⑶第三最小值的距离分别为多少?
解:⑴第一最小值的方位角为:
⑵第一最大值的方位角为:
⑶第3最小值的方位角为:
10、钠光通过宽的狭缝后,投射到与缝相距的照相底片上。所得的第一最小值与第二最小值间的距离为,问钠光的波长为多少?若改用X射线()做此实验,问底片上这两个最小值之间的距离是多少?
解:

⑵级光谱对应的衍射角为:
即在单缝图样中央宽度内能看到条(级)光谱
⑶由多缝干涉最小值位置决定公式:
第3xx 几何光学的基本原理
1、证明反射定律符合费马原理
证明:
设A点坐标为,B点坐标为
入射点C的坐标为
光程ACB为:

即:
*2、根据费马原理可以导出近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等。由此导出薄透镜的物像公式。
另一个气泡
, 即气泡离球心
13、直径为的球形鱼缸的中心处有一条小鱼,若玻璃缸壁的影响可忽略不计,求缸外观察者所看到的小鱼的表观位置和横向放大率。
解:由球面折射成像公式:
解得 ,在原处
14、玻璃棒一端成半球形,其曲率半径为。将它水平地浸入折射率为的水中,沿着棒的轴线离球面顶点处的水中有一物体,利用计算和作图法求像的位置及横向放大率,并作光路图。
解:
由球面折射成像公式:
15、有两块玻璃薄透镜的两表面均各为凸球面及凹球面,其曲率半径为。一物点在主轴上距镜处,若物和镜均浸入水中,分别用作图法和计算法求像点的位置。设玻璃的折射率为,水的折射率为。

工程光学第三章课后习题及答案郁道银

工程光学第三章课后习题及答案郁道银

第三章习题及答案
1.人照镜子时,要想看到自己的全身,问镜子要多长?人离镜子的距离有没有关系?
解:
镜子的高度为1/2 人身高,和前后距离无关。

2.设平行光管物镜L 的焦距f ' =1000mm,顶杆与光轴的距离a=10 mm,如果推动顶杆使平面镜倾斜,物镜焦点F 的自准直像相对于F 产生了y=2 mm 的位移,问平面镜的倾角为多少?顶杆的移动量为多少?
解:
3.一光学系统由一透镜和平面镜组成,如图3-1所示,平面镜MM 与透镜光轴垂直交于D 点,透镜前方离平面镜600 mm 有一物体AB,经透镜和平面镜后,所成虚像A"B"至平面镜的距离为150 mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。

图3-1习题3图
解:平面镜成β=1 的像,且分别在镜子两侧,物像虚实相反。

4.用焦距=450mm 的翻拍物镜拍摄文件,文件上压一块折射率n=1.5,厚度d=15mm
的玻璃平板,若拍摄倍率,试求物镜后主面到平板玻璃第一面的距离。

解:
此为平板平移后的像。

5.棱镜折射角,C 光的最小偏向角,试求棱镜光学材料的折射率。

解:
6.白光经过顶角
的色散棱镜,n=1.51 的色光处于最小偏向角,试求其
最小偏向角值及n=1.52 的色光相对于n=1.51 的色光间的交角。

解:。

光学课件全部习题

光学课件全部习题

解:三列平面波的复振幅分别为
选z=0平面
~ E1 = A1e i ( − k sin θx + k cosθz ) = A1e − ik sin θx ~ ikz E2 = A2 e = 2 A1
~ E3 = A3e i ( k sin θx + k cosθz ) = A1e ik sin θx
~ ~* ~ ~ ~ ~* ~* ~* I = EE = ( E1 + E2 + E3 )( E1 + E2 + E3 )
wwwwenku1comview9c970f097eb60a1分布a2sinkz221有三列在xz平面内传播的同频率单色平面波其振幅分别为a1a2a3传播方向如图求xy平面上的光强分布可设三列波在坐标原点初相均为0
第二章部分典型习题答案
2h1 +
λ1
2
= m1λ1
2h1 +
λ2
2
= m2 λ2
2h2 + 2h2 +
λ1
2
kλ1 = (k + 1)λ2
= (m1 + k )λ1 = (m2 + k + 1)λ2
980λ1 = 981λ2
λ2
2
λ1 = 589.6nm λ1 = 589nm
第四章部分典型习题答案
4.10 单色平面波垂直照射图示的衍射屏,图中标出的是该处到轴上场点 的光程,屏中心到场点的光程为ro,阴影区为不透光区.试用矢量图解 法求场点的光强与波自由传播时该场点的光强的比值.
2
2
I = 5I F
r0 + λ r0 + λ / 4
1 A= 2 AF 4

物理光学第3章习题解答

物理光学第3章习题解答

式中Z1 ka,Z 2 kb。对于衍射场中心,Z1 Z 2 0,
相应的强度为
a 4 b 4 a 2b 2 2 2 2 ( I r )0 4C C (a b ) 2 4 4
2
当 b a / 2时
2 a (1) ( I r )0 C a 2
a J1 (ka ) 2
利用贝塞尔函数表解上式,得到
ka Z1 3.144
因此,第一个零点的角半径为
3.144 0.51 2 a a
a 左图中,实线表示的是b 的圆环的衍射强度曲线。 2
半径为a的圆孔的强度曲线如虚线所示。
18.一台显微镜的数值孔径为0.85,问: (1)它用于波长 400nm 时的最小分辨距离是多少? (2)若利用油浸物镜使数值孔径增大到1.45,分辨率提高了多少倍? (3)显微镜的放大率应设计成多大?(设人眼的最小分辨率为1 ) 【解】
【解】
为使波长600nm的二级谱线的衍射角 30 ,光栅栅距d 必须满足
m 2 600 106 mm d 2.4 103 mm sin sin 30
据(2),应选择d 尽量小,故
d 2.4 103 mm
据(3),光栅缝宽
d 2.4 103 mm 0.8 103 mm 3 3
(1) P点的亮暗取决于圆孔包含的波带数是奇数还是偶数 (假设波带数目不大)。当平行光入射时,波带数
2 D / 2 (1.3mm) 2 j 3 r0 r0 (563.3 106 mm)(103 mm)
2
故P点是亮点。
(2)当P点向前移近圆孔时,相应的波带数增加;波带数增大 为4时,P点变为暗点。

光学教程第3章_参考答案

光学教程第3章_参考答案

13.1 证明反射定律符合费马原理。

证明:证明:设两个均匀介质的分界面是平面,设两个均匀介质的分界面是平面,设两个均匀介质的分界面是平面,它们的折射率为它们的折射率为n 1和n 2。

光线通过第一介质中指定的A 点后到达同一介质中指定的B 点。

为了确定实际光线的路径,通过A,B 两点作平面垂直于界面,'OO 是它们的交线,则实际光线在界面上的反射点C 就可由费马原理来确定,如下图所示。

(1)反证法:如果有一点'C 位于线外,则对应于'C ,必可在'OO 线上找到它的垂足''C .由于''AC 'AC >,''BC 'BC >,故光线B AC'总是大于光程B ''AC 而非极小值,这就违背了费马原理,故入射面和反射面在同一平面内得证。

面内得证。

(2)在图中建立坐XOY 坐标系,则指定点A,B 的坐标分别为(x1,y1)和(x2,y2),未知点C 的坐标为(x ,0)。

C 点是在'A 、'B 之间的,光程必小于C 点在''B A 以外的相应光程,以外的相应光程,即即21vx x <<,于是光程ACB 为 yx x n y x x n CB n AC n ACB n 2211221221111)()(+-++-=+=根据费马原理,它应取极小值,即0)(1=ACB n dx d0)sin (sin )()()()()()(21112222211212111=-=¢-¢=+---+--=i i n CB B C AC C A n y x x x x n y x x x x n ACB n dx d 所以当11'i i =,取的是极值,符合费马原理。

,取的是极值,符合费马原理。

3.2 根据费马原理可以导出在近轴条件下,从物点发出并会聚倒像点的所有光线的光程都相等。

蔡履中光学课后习题答案光学第三章课后题

蔡履中光学课后习题答案光学第三章课后题

d zm x λ='dzm x 2)12(λ+='dzd z 2132)132(λλ=+⨯nm 67.5086712==∴λλ极大值极小值解:53-mm d z e 45.0105.0103.3363=⨯⨯⨯==--λλm h n =-)1(λm d z x ='λz x d m '=zx d h n '=-∴)1(zh dx n '=+∴152.11001.03103.31073.41333=⨯⨯⨯⨯⨯=+=---n 条纹向上移动解:43-cms 40='5=βmmd d 152.0=⨯==∴βcms z 52210=++'=mmdze 26.0==∴λ,则由成像公式)若右移(cm 23方向垂直于21s s 21εαεαλ+=e 001.01022.0221=⨯==⋅==⋅f d f z dαεαεmmm e 25.0105.2002.01050049=⨯=⨯=∴--ε,带公式求的像距求亦可用成像2121s s s s S )直条纹(1解:63-间距为空间周期)条纹无变化(2x d z e =15= 5.11015==∴e nm z ed 58715.11045.05.15=⨯⨯==-λ解:33-86.21==dz e λnm400=λ93.32==z de λnm 550=λnm 700=λ53=e 解:23-4=d 5.1=z 1875.0==∴d z e λ由几何关系45.3=x 15.1='x 3.215.145.3=-='-=∆∴x x x 条取可观察:122.121875.03.2=解:113-60=l 18012060=+=z θλ⨯⨯-=60)1(2n ze rad31084.8-⨯=θ2.051==e mm x n 6.10)12(=-θ范围:解:103-rade 3100.1-⨯=5.0=l 25.15.0=+=z mml z e 1105.02250023=⨯⨯⨯==∴-θλl z l x d m-=5.12lx l m =θmm x m3=条3=e x m可观察∴解:93-)有由几何关系(见书上图7.2.3α201cos I =I β202cos I =I βαθ+=而)cos(cos cos cos cos 2)cos(cos cos cos cos 2cos 22222222121βαβαβαβαβαβαθ++=++=I +I I I =v 夹角21P P 后的通过21P P 00,2I P I 后为则透过设入射光强为解:73-cmf tg D 048.130=⋅=048.1=Nγ设hn n f λγN =N0则λγN =∴N n f 221.6106005.120102048.1923222=⨯⨯⨯⨯⨯==N ∴--N λγn f h个亮环可观察6∴解:273-i f e δ⋅=或用ndn n i λδ021=cme 671.0=i nh cos 2=∆光程差时)(010=i 331061025.122--⨯=⨯⨯⨯=nh m m 4391010610600⨯⨯=⨯=--hnN n f r λ.102=)(00=n 5.1=n CMF 20=10=N cmr 34.1067.02010210600105.11203910=⨯=⨯⨯⨯⨯=∴--cmr 4.107.02010210600115.12033911=⨯=⨯⨯⨯⨯=--)(cmr 27.120063.01021060095.120399=⨯=⨯⨯⨯⨯=--cm r 07.027.134.1=-=∆cmr 06.034.14.1=-=∆∴为明点∴无半波损失解:263-mmm d z b s3164.04.316102108.632139==⨯⨯⨯==--Mμλmmm b b p0791.01.7941===Mμ解:163-t C L C∆=s c l t c 982101031030--=⨯⨯==∆x f Hz t '=∆=∆9101ν()nmmm m x c 3912918221038.11038.11038.110108.643----⨯=⨯=⨯=⨯'⨯=∆=∆νλλ解:223-mmb z dm s2.1105.010600139=--⨯⨯⨯==λmm b z dm s4.2105.010600239--⨯⨯⨯==λ解:173-21h h h +=2)12(22λλ+=+=∆m h 2λm h =∴11212h R r =由几何关系22222hR R =222222121λm R r R r =+∴21r r =λm R R R R r 21212+=∴2121R R m R R r +=λ解373-2020=R 220,2=⋅=∴λλR Rm 2010231-⨯=λR 2010432-⨯=λR 3.589=λm R 34.01=∴mR 35.12=∴cmR R n f 543.074.094.22)35.1134.01(5.01)11)(1(121=+=+=--=∴解:353-mm r r 123=-2021rr -求m R r R e mλλ212==λmR r m=12323=-=-∴λλR R r r 1)23(=-λR )23(231+=-=λR mmR r r 346.0146.311.0)23)(2021()2021(2021=⨯=+-=-=-∴λ解333-αλn e 2=ad ne γλα5310876.310552.123.5892--⨯=⨯⨯⨯==∴解313-λλm nh =+22337.1=n m h 910380-⨯=910016.1)21(-⨯=-λm 时当1=m nm 20321=λ时2=m nm3.6772=λnm4.4063=λ时3=m λm nh =2时当1=m nm 1016=λ时2=m nm 5082=λnm3383=λ时3=m 时当nm h 38=<<9106.1012-⨯=nh 光干涉相长反射光干涉相消,透射远小于.λ解:303-nm nm 3.677064.4和最强光波长为∴透射光无半波损失波长的光最强508∴,则条纹移过一个每移动2λ1102423220.0=∴λnm 9.62810242322.0=⨯=λ:解40-321h h h +=2)12(22λλ+=+=∆m h 2211222hR h R r ==12212R R m R R r -=λ2222212λm R r R r =-∴1221R R m R R r -=∴λ解:同上题38-3λλm h =+222)12(λk m r -=亮环半径m r m 311006.13-⨯==时mrR 9988.052121==∴λm r m 321077.15-⨯==时nmr rr r r R 1.697952592921212221122222=⋅=⋅==∴λλλ解363-解:413-hn )1(2-了插入玻璃板后光程增加条纹移一条)每增加则条纹增加一条(厚度光程每增加2λλ120)1(2=-∴λh n λ10)1(=-∴h n nmm n h 41009.19.10110⨯==-=μλ解:433-nm 0013.0=∆λλλγ∆=∆∴2c γ∆=∆∴1t cmc L c88.312=∆=∆=∴λλγhh 2则光程增加镜子每移动最大光程差cL h =2cm L h c94.15288.312===∴λm h =个510476.2⨯==λhm 解:463-2)1(4R R F -=2r R =80)1(4)1(222=-=∴r rF 447.04)2(==∆Fδ05.142)3(=∆=σπϑF 9756.02993.012)4(2=+==+=F FR r V解:473-λ02m nh =1=n 41042⨯==λhm 第二十个环399802040000200=-=-=m m λm i h =cos 29995.010210500399802cos 29=⨯⨯⨯==∴--h m i λyad i 201016.381.1-⨯==变化。

(工程光学教学课件)第3章 平面与平面系统

(工程光学教学课件)第3章 平面与平面系统

半透半反膜
蓝光
红光
100%
50%
50%
分光棱镜
白光
ab
绿光
分色棱镜
转像棱镜
➢ 主要特点:出射光轴与入射光轴平行,实现完全倒像,并能折转很 长的光路在棱镜中。
➢ 应用:可用于望远镜光学系统中实现倒像。
x y
z
x
x z y
y z
y z
x x
yz
y z x
a) 普罗I型转像棱镜
b) 普罗II型转像棱镜
图 3-18 转像棱镜
将玻璃平板的出射平面及出射光路HA一起沿光轴平移l,则CD与EF重合,出射光线
在G点与入射光线重合,A与A重合。
PA
Байду номын сангаас
EC
这表明:光线经过玻璃平板的光路与无折射的通过 空气层ABEF的光路完全一样。这个空气层就称为 平行平板的等效空气平板。其厚度为:
Q
H
G
A
A
l
ddld/n
L
B d FD
d
例题:一个平行平板,折射率n=1.5,厚度d,一束会聚光入射,定点为M ,M距平行平板前表面的距离为60mm,若此光束经平行平板成像与M‘, 并且有M’与M相距10/8mm,求厚度d
l' d (1 1 ) n
n=1.5,Δl’=10/8
M M’ d
§3-3 反 射 棱 镜 B
一、反射棱镜的类型
O1
➢ 反射棱镜的概念:
Q
P
将一个或多个反射面磨制在同一块玻璃上
形成的光学元件称为反射棱镜。
➢ 反射棱镜的作用:
O2 A
折转光路、转像和扫描等。
R
➢ 反射棱镜的术语:

物理光学与应用光学第三章PPT课件

物理光学与应用光学第三章PPT课件

L1
A'
y2a
F'
A
H H'
a
a
2a
测杆 M
-f
xP
tabna) x a
yfta2na
y(2f/a)xKx 2f a
.
单平面镜的成像特性
1)平面镜能使整个空间任意物点理想成像;物点和像点 对平面镜而言是对称的;
2)实物成虚象,虚物成实像。物和像大小相等,但形状 不同;
3)奇次 镜面反射像被称为镜像;偶次反射成一致像。
设入射光线为同心光束并会聚于
E点(为虚物点)
光线折射后和光轴交于S′点
L 'B F F K dAF ( I1 c )tg
AF dt( gI1')
L'
d1
tgI1' tgI1
ΔL′因I1值不
U同1 而不同
同心光束经平行平面板后变为 非同心光束,成像是不完善的。
平行平板的厚度d 愈大,成像不
完善程度也愈大。 .
出射光线平行 于入射光线
平行平板的光焦度为零, 不会使物体放大或缩小
.
平行平板的出射光线
BS′相对于入射光线SA 产生侧向位移BD = T 平行平面板的厚度为d, 由ΔABD和ΔABC得
T A s B iI 1 n I 1 '
AB d cos(I1')
T
.
TdsinI1I1'
coIs1'
.
(二)简单棱镜
1、一次反射棱镜
成镜像
x

z
角 棱

y
使 光
线

x′

90°
(a)等腰直角棱镜
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

or又: or
:故又:又而2而112而s12in12s12ins221929ni990n00s20得i9n,202n证i即即2n,而=s得si。nin1n证is12=ii12ni。i得且3得n20,2s,光证i证2n,n3s束。。i012ni
1 r1

1 r2

1 f 2Biblioteka n n n

1 r1

1 r2

式中 n 1.33, f1 40厘米, f2 136 .8 厘米代入上面两式得
n 1 n f 2
n n
f1
n

n1 n
f2 f1

f2

1.331 136.8 40
1 r1

1 r2

1 s1

1 s

n
n n


1 r1

1 r2

1 1.50 1.33 1 1 20 1.33 10 10

s1

20 665 665 340

40.92
cm
1
f1
n
n n

f n r 1.33 2 n n 1.5 1.33
2.66 15.6厘米 0.17
f n r 1.5 2 n n 1.5 1.33
3 17.6 厘米 0.17
将 f , f , s 代入高斯公式得
s f s 17.6 (8) s f (8) (15.6)
n
1.54,
1 r1

1 r2


1 21.6
代入上式得
1 1.54 1.62 1
f 3
1.62
21.6

f 3

1.62 21.6 0.08

437 .4厘米
3.17 两片极薄的表玻璃,曲率半径分别为20及 25厘米,将两片的边缘胶合起来,形成内含空气的 双凸透镜,将它置于水中,求其焦距为多少?
O
n n n n s s r
s r
仍在原处(球心) 物像重合
n n n n n s1 r r r
即s1 r

2
) s1

r 2
n n n n 2n n n n n



s2
2
r
r
r
r
s2

nr n
n s
10 y 5
代入高斯公式得
s 2 cm
1 12 s s r
r 2 ss 2 2 (10) 5 cm
s s
2 (10)
(2)由r为正可知该面镜为凸的。
3.8 某观察者通过一块薄玻璃片去看在凸面镜中 他自己的像。他移动着玻璃片,使得在玻璃片中与
解:若薄透镜的两面均为凸面时,将 r1 10厘米, r2 10厘米, n 1.33, n 1.50, s 20 厘米代 入薄透镜的焦距公式和物象公式
1 s1
1 s
1 f1

n
n n

1 r1

1 r2


1 s1

1 s

n
n n

重合,故眼睛距玻璃片的距离x为
s s 24 cm
2
3.10 欲使由无穷远发出的近轴光线通过透明 球体并成像在右半球面的顶点处,问此透明体的 折射率为多少?
解: 由球面折射成象可知
当P 时 象方焦距为
n n´
f n n r n n

n f n
循着图示的路径传播,出射光线为r ,求证:

sin 1

n 2
,则θ
2

1,且光束i 与r 相互垂直。
i2 i2'
又即则而:而解即则若ssi1i:in:2n2=s11isi2即则若snsiii2nii22nn=2:=1222si1ns1得2i3ss1ini=si0ni9i2得i9=证nini20nn2=1=220ni2证 s1i32。21i=i=n0n32。s即=in0i而2ni122n2nss33ii0nn30i130i202i得 3122,0证12 。
i1

0
2
A

4616 2
60

538
(3) 令
i10

2
时所对应的入射角为
i10
则根据公式
sin i10 n sin i2
sin i2

sin i10 n
1 1.6
i2

arcsin 1 1.6

3841
而 i2 A i2 2119 sin i10 n sin i2
3.16 一凸透镜在空气中时焦距为40厘米,在水中 时 焦 距 为 136.8 厘 米 , 问 此 透 镜 的 折 射 率 为 多 少 ?
(水的折射率为1.33)。若将此透镜置于CS2中(CS2
的折射率为1.62),其焦距又为多少?
解:(1)透镜在空气中和水中的焦距分别为
1 f1
(n

1)
解:(1)P152页公式推导得
f nR 2(n 1)
1.5 4 6 (cm) 2(1.5 1)
按题意,物离物方主点Hs1的 距1s 离f1为 得 (6 4) cm 。
1 1 1 得 s s f
1 1 1 1 1 53 1 s s f 6 10 30 15
3.3 眼睛E和物体PQ之间有一块折射率为1.5的玻 璃平板,平板的厚度d为30cm。求物体PQ的像 PQ与 物体PQ之间的距离d2为多少?
解:由P121例3.1的结果
PP h(1 1) n
d2

d (1
1) n
30(1 1 ) 10cm 1.5
3.4 玻璃棱镜的折射棱角A为60°,对某一波长 的光其折射率n为1.6。试计算(1)最小偏向角;(2) 此时的入射角;(3)能使光线从A角两侧透过棱镜 的最小入射角。
n

nD 2(n
n)
1.57 20 6.05 (cm) 2 (1.53 1)
另一个气泡在离球心 10 - 6.05 = 3.95cm
3.13 直径为1米的球形鱼缸的中心处有一条小鱼, 水的折射率为1.33。若玻璃缸壁的影响忽略不计, 求缸外观察者所到的小鱼的表观位置和横向放大率。
解:将r 50 cm ,s 50 cm ,n 1, n 1.33 代入 球面折射的物象公式 得
n n n n s s r
s

n
n n
n

1 1 1.33
1.33

50cm
r s 50 50
(鱼的表观位置仍在原处)
由横向放大率公式得
n s 1.33 (50) 1.33
解:(1)将A= 60°,n =1.6代入公式得
n sin A sin 0 A 得最小偏向角
2
2
0

2 arcsin n sin
A 2

A

2 arcsin
4 5

60
2 538 60 4616
(2)将最小偏向角及A代入公式得 0 2i1 A
在凸面镜中所看到的他眼睛的象重合在一起。镜的
焦距为10厘米,眼睛距凸面镜顶点的距离为40厘米,
问玻璃片距观察者眼睛的距离为多少?
M
解:由物象公式 得
1 1 1 1 1 s f s 10 40 s 8厘米
.
Q -x
.O Q´ F´ f´
-P
由于经凸面镜所成的虚象和玻璃反射所成的虚象
1 r1

1 r2

665 39.12 cm 17
若薄透镜的两面均为凹面时,将 r1 10厘米, r2 10厘米 n 1.33, n 1.50, s 20厘米,代入薄透镜的焦距公式
和物象公式。
1 s2
1 s

1 f 2

n
n n

1 r1
f r
f 2r, n 1 代入上式得
n
f n
2rn

2n 2
n n n n
s s
f r 2r r
3.11 有一折射率为1.5,半径为4cm的玻璃球, 物体在距球表面6cm处,求:(1)物所成的像到球 心之间的距离;(2)像的横向放大率。
s1( 21s)
1 f

1s 6s

1160154 5s303115.5(c11m5)
3.12 一个折射率为1.53、 直径为20cm的玻璃球
内有两个小气泡。看上去一个恰好在球心,另一个
从离观察者最近的方向看去,好像在表面与球心连
线的中点,求两气泡的实际位置。
解:(1) n' n n n s s r
17.6 8 18.5厘米 7.6
横向放大率公式
n s 1.33 (18 5) 2
n s 1.50 (8)
n



S
C
3.15 由两块玻璃薄透镜的两面均为凸球面及凹 球面,曲率半径均为10厘米。一物点在主轴上距镜 20厘米处,若物和镜均浸在水中,分别用作图和计 算求象点的位置。设玻璃的折射率为1.50,水的折 射率为1.33。
相关文档
最新文档