铸造工艺中液态金属凝固成形的关键问题
铸件中常见缺陷

铸件中常见的主要缺陷有:1.气孔这是金属凝固过程中未能逸出的气体留在金属内部形成的小空洞,其内壁光滑,内含气体,对超声波具有较高的反射率,但是又因为其基本上呈球状或椭球状,亦即为点状缺陷,影响其反射波幅。
钢锭中的气孔经过锻造或轧制后被压扁成面积型缺陷而有利于被超声检测所发现,如图2.2所示。
2.缩孔与疏松铸件或钢锭冷却凝固时,体积要收缩,在最后凝固的部分因为得不到液态金属的补充而会形成空洞状的缺陷。
大而集中的空洞称为缩孔,细小而分散的空隙则称为疏松,它们一般位于钢锭或铸件中心最后凝固的部分,其内壁粗糙,周围多伴有许多杂质和细小的气孔。
由于热胀冷缩的规律,缩孔是必然存在的,只是随加工工艺处理方法不同而有不同的形态、尺寸和位置,当其延伸到铸件或钢锭本体时就成为缺陷。
钢锭在开坯锻造时如果没有把缩孔切除干净而带入锻件中就成为残余缩孔(缩孔残余、残余缩管),如图2.3、2.4、2.5所示。
如果铸件的型模设计不当、浇注工艺不当等,也会在铸件与型模接触的部位产生疏松,如图2.28所示。
断口照片中的黑色部分即为疏松部位,其呈现黑色是因为该工件已经过退火处理,使得疏松部位被氧化和渗入机油所致。
图2.28 W18钢铸件-用作铣刀齿,采用超声纵波垂直入射多次底波衰减法发现的疏松断口照片3.夹渣熔炼过程中的熔渣或熔炉炉体上的耐火材料剥落进入液态金属中,在浇注时被卷入铸件或钢锭本体内,就形成了夹渣缺陷。
夹渣通常不会单一存在,往往呈密集状态或在不同深度上分散存在,它类似体积型缺陷然而又往往有一定线度。
4.夹杂熔炼过程中的反应生成物(如氧化物、硫化物等)-非金属夹杂,如图2.1和2.6,或金属成分中某些成分的添加料未完全熔化而残留下来形成金属夹杂,如高密度、高熔点成分-钨、钼等,如图2.29,也有如图2.24所示钛合金棒材中的纯钛偏析。
(a)(b)(c)(d)(e)图2.29 BT9钛合金锻制饼坯中的钼夹杂:(a)剖面低倍照片;(b)X射线照相底片;(c)C扫描显示(图中四个白色点状显示为同一个缺陷,是使用水浸点聚焦探头以不同灵敏度检测的结果,其他分散细小的白色点状为与该缺陷无关的杂波显示);(d)B扫描显示;(e)3D显示5.偏析铸件或钢锭中的偏析主要指冶炼过程中或金属的熔化过程中因为成分分布不均而形成的成分偏析,有偏析存在的区域其力学性能有别于整个金属基体的力学性能,差异超出允许标准范围就成为缺陷,如图2.23和2.24、2.27所示。
材料加工第2章作业参考答案

第2章作业参考答案1. 液态金属成形的一般工艺过程是怎样的?结合其工艺特点分析该类工艺的优点、缺点和和适用范围。
液态金属成形是将液态金属注入铸型中使之冷却、凝固而形成零件的方法,一般工艺过程包括模样制造、铸型制造、金属熔化与充型、凝固等关键步骤。
铸造为液体成形具有不受零件大小/薄厚/复杂程度限制、可制造各种合金铸件、相对焊接和塑性成形而言尺寸精度高、成本低等优点;但需要造型、浇注等步骤,工艺相对繁琐,工件承载能力不如锻件,同时工作环境差,粉尘多。
铸造适用于绝大部分零件,适用范围广。
(工艺过程三点明确。
明确分析优点、缺点和适用范围,同时结合其工艺特点)2.铸造合金流动性差对铸件质量有何影响?浇注时金属液过热温度及其他工艺条件相同的情况下,初步判断一下HT350和HT200两种合金,哪个流动性好,为什么?什么是液态金属的充型性能?它与那些因素有关?流动性差,金属充型能力差,铸件成形质量降低;液态金属中的气体夹杂物不易浮出,易产生气孔、夹杂;对缩孔和裂纹的充填和愈合作用减弱,易产生缩孔、裂纹等缺陷。
HT200流动性好,HT200碳含量在3.0~3.6%,HT350在2.7~3.2%,因HT200成分更靠近共晶点,固-液区间小,熔点较低,故流动性好(固液两相区越大,结晶温度范围越大,枝晶越发达,流动性越差)。
(流动性影响,判断及理由)充型能力:指液态金属充满型腔,获得形状完整、轮廓清晰健全铸件的能力。
充型能力首先取决于合金的流动性,同时又受到铸型性质(如铸型蓄热系数、铸型温度、铸型中的气体)、浇注条件(如浇注温度、充型压头、浇注系统结构)以及铸件结构(如模数、复杂程度等)的影响。
(充型能力定义,四个影响方面)3. 缩孔、缩松的区别是什么?什么样的合金容易出现疏松缺陷?生产中如何采取措施防止缩孔、缩松缺陷的产生?缩孔缩松的区别在形态,而取决于凝固方式,当铸件以逐层凝固方式凝固时,液态金属的流动使收缩集中到铸件最后凝固部分形成集中孔,即缩孔;而铸件以体积凝固方式凝固时,枝晶间隙的液体得不到补缩而形成小的孔洞,即缩松。
材料科学基础A习题答案第5章[1]解析
![材料科学基础A习题答案第5章[1]解析](https://img.taocdn.com/s3/m/5ef3bfa0d0d233d4b14e698a.png)
材料科学基础A习题第五章材料的变形与再结晶1、某金属轴类零件在使用过程中发生了过量的弹性变形,为减小该零件的弹性变形,拟采取以下措施:(1)增加该零件的轴径。
(2)通过热处理提高其屈服强度。
(3)用弹性模量更大的金属制作该零件。
问哪一种措施可解决该问题,为什么?答:增加该零件的轴径,或用弹性模量更大的金属制作该零件。
产生过量的弹性变形是因为该金属轴的刚度太低,增加该零件的轴径可减小其承受的应力,故可减小其弹性变形;用弹性模量更大的金属制作该零件可增加其抵抗弹性变形的能力,也可减小其弹性变形。
2、有铜、铝、铁三种金属,现无法通过实验或查阅资料直接获知他们的弹性模量,但关于这几种金属的其他各种数据可以查阅到。
请通过查阅这几种金属的其他数据确定铜、铝、铁三种金属弹性模量大小的顺序(从大到小排列),并说明其理由。
答:金属的弹性模量主要取决于其原子间作用力,而熔点高低反映了原子间作用力的大小,因而可通过查阅这些金属的熔点高低来间接确定其弹性模量的大小。
据熔点高低顺序,此几种金属的弹性模量从大到小依次为铁、铜、铝。
3、下图为两种合金A、B各自的交变加载-卸载应力应变曲线(分别为实线和虚线),试问那一种合金作为减振材料更为合适,为什么?答:B合金作为减振材料更为合适。
因为其应变滞后于应力的变化更为明显,交变加载-卸载应力应变回线包含的面积更大,即其对振动能的衰减更大。
4、对比晶体发生塑性变形时可以发生交滑移和不可以发生交滑移,哪一种情形下更易塑性变形,为什么?答:发生交滑移时更易塑性变形。
因为发生交滑移可使位错绕过障碍继续滑移,故更易塑性变形。
5、当一种单晶体分别以单滑移和多系滑移发生塑性变形时,其应力应变曲线如下图,问A、B中哪一条曲线为多系滑移变形曲线,为什么?应力滑移可导致不同滑移面上的位错相遇,通过位错反应形成不动位错,或产生交割形成阻碍位错运动的割阶,从而阻碍位错滑移,因此其应力-应变曲线的加工硬化率较单滑移高。
铸造常见缺陷及控制措施研究

铸造常见缺陷及控制措施研究作者:张传龙来源:《中国科技博览》2014年第36期[摘要]本文主要分析了低压铸造常见缺陷及预防控制措施,希望对相关人员具有参考价值。
[关键词]铸造;缺陷;预防中图分类号:O77+1 文献标识码:A 文章编号:1009-914X(2014)36-0034-01前言铸造工艺过程复杂,影响铸件质量的因素很多,往往由于原材料控制不严,工艺方案不合理,生产操作不当,管理制度不完善等原因,会使铸件产生各种铸造缺陷,对于这些缺陷,需要采取正确的防控措施。
1.气孔1.1 气孔缺陷的特征(1)气孔:铸件内部由气体形成的孔洞类缺陷。
其表面一般比较光滑,主要呈梨形、圆形或椭圆形。
一般不在铸件表面露出,大孔常孤立存在,小孔则成群出现。
(2)皮下气孔:位于铸件表皮下的分散性气孔。
为金属液与砂型(铸型、湿芯、涂料、表面不干净的冷铁)之间发生化学反应产生的反应性气孔。
形状有针状、蝌蚪状、球状、梨状等。
大小不一,深度不等。
通常在机械加工或热处理后才能发现。
(3)气窝:铸件表面凹进去一块较平滑的气孔。
(4)气缩孔:分散性气孔与缩孔和缩松合并而成的孔洞类铸造缺陷。
(5)针孔:一般为针头大小分布在铸件截面上的析出性气孔。
铝合金铸件中常出现这类气孔,对铸件性能危害很大。
(6)表面针孔:成群分布在铸件表层的分散性气孔。
其特征和形成原因与皮下气孔相同,通常暴露在铸件表面,机械加工1~2mm后即可去掉。
(7)呛孔:浇注过程中产生的大量气体不能顺利排出,在金属液内发生沸腾,导致在铸件内产生大量气孔,甚至出现铸件不完整的缺陷。
1.2 气孔的防治措施(1)严格执行熔炼操作规程,避免金属液吸气,并认真除气。
(2)尽量减少涂料、砂芯、金属型(芯)等的发气量。
选择质量好的发气量小的涂料,铸型和型芯涂料后要充分烘干。
(3)改善铸型和型芯的排气条件。
可根据铸件的特点,综合考虑铸件的充型情况,选择合理的排气位置及不同的排气措施:排气槽、排气片、排气针、排气塞、排气孔等进行排气。
金属液态成形

材料成形技术基础第一章 金属液态成形金属液态成形(铸造):将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件的方法。
液态成形的优点:(1)适应性广,工艺灵活性大(材料、大小、形状几乎不受限制)(2)最适合形状复杂的箱体、机架、阀体、泵体、缸体等(3)成本较低(铸件与最终零件的形状相似、尺寸相近)主要问题:组织疏松、晶粒粗大,铸件内部常有缩孔、缩松、气孔等缺陷产生,导致铸件力学性能,特别是冲击性能较低。
分类:铸造从造型方法来分,可分为砂型铸造和特种铸造两大类。
其中砂型铸造工艺如图1-1所示。
图1-1 砂型铸造工艺流程图第一节金属液态成形工艺基础一、熔融合金的流动性及充型液态合金充满型腔是获得形状完整、轮廓清晰合格铸件的保证,铸件的很多缺陷都是在此阶段形成的。
(一)熔融合金的流动性1.流动性 液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力,称为液态合金的流动性。
流动性差:铸件易产生浇不到、冷隔、气孔和夹杂等缺陷。
流动性好:易于充满型腔,有利于气体和非金属夹杂物上浮和对铸件进行补缩。
螺旋形流动性试样衡量合金流动性,如图1-2所示。
在常用铸造合金中,灰铸铁、硅黄铜的流动性最好,铸钢的流动性最差。
常用合金的流动性数值见表1-1。
表1-1 常用合金的流动性(砂型,试样截面8㎜×8㎜)2. 影响合金流动性的因素(1) 化学成份 纯金属和共晶成分的合金,由于是在恒温下进行结晶,液态合金从表层逐渐向中心凝固,固液界面比较光滑,对液态合金的流动阻力较小,同时,共晶成分合金的凝固温度最低,可获得较大的过热度,推迟了合金的凝固,故流动性最好;其它成分的合金是在一定温度范围内结晶的,由于初生树枝状晶体与液体金属两相共存,粗糙的固液界面使合金的流动阻力加大,合金的流动性大大下降,合金的结晶温度区间越宽,流动性越差。
Fe-C合金的流动性与含碳量之间的关系如图1-3所示。
再生铝合金铸造工艺中的常见问题及解决方案

再生铝合金铸造工艺中的常见问题及解决方案随着环境保护意识的提高和对资源利用的要求,再生铝合金铸造工艺在现代制造业中变得越来越重要。
然而,与传统的铸造工艺相比,再生铝合金铸造也存在一些常见问题。
本文将重点介绍这些问题,并提供解决方案。
1. 气孔和气泡:气孔和气泡的出现是再生铝合金铸造中常见的质量问题。
它们会影响铸件的力学性能和表面质量。
这主要是由于废铝中存在的气体包裹在熔融金属中释放出来所导致的。
解决方案:为了减少气孔和气泡的产生,可以采取以下措施:- 精细处理废铝:通过精细处理废铝,可以减少其中悬浮的气体含量。
- 提高液体铝的温度:增加液体铝的温度可以促进气体的逸出,减少气孔和气泡的形成。
2. 夹杂物:再生铝合金中常常存在夹杂物,如金属硅、铁、碳化物等。
这些夹杂物会对铸件的力学性能和耐腐蚀性能造成负面影响。
解决方案:下面是减少夹杂物的几种方法:- 优化熔炼过程:通过合理的熔炼参数和熔炼工艺,可以减少夹杂物的生成。
- 采用过滤器:在铸造过程中使用过滤器可以有效去除液态金属中的杂质和夹杂物。
3. 织构和晶粒度:再生铝合金铸件的织构和晶粒度也是一个重要的质量指标。
不良的织构和晶粒度会降低铸件的力学性能和塑性变形能力。
解决方案:以下是改善织构和晶粒度的方法:- 优化冷却速度:通过调整冷却速度,可以控制再生铝合金的织构和晶粒度。
- 添加合适的合金元素:合适的合金元素能够有效地改善再生铝合金的织构和晶粒度。
4. 热裂纹:再生铝合金铸件在熔融和凝固过程中容易发生热裂纹。
这主要是由于铸件在冷却过程中产生的热应力导致的。
解决方案:下面是减少热裂纹的方法:- 优化冷却方式:通过合理的冷却方式和速度,可以减少再生铝合金铸件的热应力,从而降低热裂纹的发生。
- 控制铸造温度:合理控制铸造温度可以避免过高的热应力,减少热裂纹的形成。
5. 空振缺陷:再生铝合金铸件中常常出现空振缺陷,这是因为废铝中存在的气体在凝固过程中无法完全排出。
液态成形件的主要缺陷及质量控制

铸件热节处的缩孔与缩松
缩松的特点
• 缩松多出现于凝固温度范围较宽的合金中; • 显微缩松一般出现在枝晶间和分枝之间; • 常分布在缩孔附近或铸件厚壁的中心部位;
缩孔和缩松的危害: 铸件中存在的任何形态的缩孔和缩松,
都会减小铸件的受力面积,在缩孔和缩松的 尖角处产生应力集中,使铸件的力学性能显 著降低。此外,缩孔和缩松还会降低铸件的 气密性和物理化学性能。
——金属熔炼时,脱氧、脱硫、孕育和变质等处理过程, 产生大量的 MnO、SiO2、Al2O3等夹杂物。
——液态金属与炉衬、浇包的耐火材料及溶渣接触时,会 发生相互作用,产生大量的 MnO、Al2O3等夹杂物。
——在精炼后转包及浇注过程中,金属表面与空气接触形 成的表面氧化膜,被卷入金属后形成氧化夹杂物。
——按夹杂物形成时间,可分为初生夹杂物、次生夹杂物 和二次氧化夹杂物。
初生夹杂物:是在金属熔炼及炉前处理过程中产生的。 次生夹杂物:是在金属凝固过程中产生的。 二次氧化夹杂物:而在浇注过程中因氧化而产生的夹杂 物称为二次氧化夹杂物。
——按夹杂物形状,可分为球形、多面体、不规则多角形、 条状及薄板形、板形等。
3.反应性气孔 液态金属内部或与铸型之间发 生化学反应而产生的气孔,称为反应性气孔。
反应性气孔特征: 金属-铸型间反应性气孔常分 布在铸件表面皮下 1~3mm 处,通称为皮下气孔, 其形状有球状和梨状,孔径约 1~3mm。有些皮下 气孔呈细长状,垂直于铸件表面,深度可达 10mm 左右。气孔内主要是 H2、CO 和 N2等。
液态金属内部合金元素之间或与非金属夹杂物
发生化学反应产生的蜂窝状气孔,呈梨形或团球形 均匀分布。碳钢焊缝内因冶金反应生成的 CO 气孔, 则沿焊缝结晶方向呈条虫状分布。皮下气孔常出现 在熔点较高的合金(铸钢、铸铁及铜合金)铸件中。
铸造可能遇到的问题和解决方案

铸造可能遇到的问题和解决方案标题,铸造中常见问题及解决方案。
在铸造过程中,常常会遇到一些问题,这些问题可能会影响产品的质量和生产效率。
以下是一些铸造中常见的问题以及可能的解决方案。
1. 气孔和气泡。
气孔和气泡是铸造中常见的质量问题,可能会导致产品强度不足或者外观质量不佳。
这可能是由于熔融金属中的气体未能完全排除所致。
解决方案,采取适当的浇注系统设计,确保熔融金属能够充分充填模具,同时使用合适的除气剂和浇口设计来减少气孔和气泡的产生。
2. 热裂纹。
热裂纹是由于金属在冷却过程中产生的应力超过了其承受能力
而引起的。
这可能会导致产品在使用过程中出现裂纹。
解决方案,通过合理的冷却控制和合适的金属合金选择,可以减少热裂纹的发生。
此外,预热模具和采用合适的退火工艺也可以有效减少热裂纹的产生。
3. 金属收缩。
金属在冷却过程中会收缩,如果不加以控制,可能会导致产品尺寸不准确甚至变形。
解决方案,通过合理的浇注系统设计和冷却控制,可以减少金属收缩对产品质量的影响。
此外,采用合适的模具设计和金属合金选择也可以减少金属收缩带来的问题。
总之,铸造过程中可能会遇到各种质量问题,但通过合理的工艺控制和技术手段,这些问题是可以得到解决的。
只有不断改进工艺和技术,才能确保铸造产品的质量和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铸造工艺中液态金属凝固成形的关键问题
液态金属通过冷却凝固最终获得合格的、满足各种使用要求的铸件。
山东伊莱特重工跟您一起探讨:以下的关键问题是在生产过程中应予以妥善解决的。
(一)结晶及凝固组织的形成与控制液体金属的结构,晶核的形成与长大,晶粒的大小、方向和形态等与铸件的凝固组织密切相关,它们以铸件的物理性能和力学性能有着重大的影响。
控制铸件的凝固组织的目的就是为了获得所希望的组织,欲控制凝固组织,就必须对其形成机理、形成过程和影响因素有全面的了解和深入研究。
目前山东伊莱特重工有限公司已建立的有效控制组织的方法有变质、孕育、动态结晶、顺序凝固、快速凝固等。
(二)铸件尺寸精度和表面粗糙度控制现代制造的许多领域,对铸件尺寸精度和外观质量的要求愈来愈高,技术改变着铸造只能提供毛坯的传统观念,其目的在于降低物耗、能耗、工耗,并且改善产品的内外质量,争取市场和高效益。
然而,铸件尺寸精度和表面粗糙度由于受到诸多因素(如铸型表面的作用、凝固热应力、凝固收缩等)的影响和制约,控制难度很大。
铸件是液态成形的,实现净形化具有独特的优越性,在结构方面铸件的内腔和外形用铸造方法一次成形,使其接近零件的最终形状,使加工和组装工序减至最少;在尺寸精度和表面质量方面,使铸件能接近产品的最终要求,做到无余量或小余量;另一方面,被保留的铸造原始表面有益于保持铸件的耐蚀和耐疲劳等优越性能,从而提高产品寿命。
努力提高铸件的尺寸精度和降
低表面粗糙度,推进铸件近净形技术的发展是未来的方向。
(三)铸造缺陷的防止与控制铸造缺陷是造成废品的主要原因,是对铸件质量的严重威胁。
由于方方面面的原因,存在于铸件的缺陷五花八门,由于凝固成形时条件的差异,缺陷的种类表现为形态和表现部位不尺相同。
如液态金属的凝固收缩会形成缩孔、缩松;凝固期间元素在固相和液相中的再分配会赞成偏析;冷却过程中热应力的集中会造成铸件裂纹和变形。
应根据产生的原因和出现的程度不同,采取相应措施加以控制,使之消除或降至最低程度。
此外,还有许多缺陷,如有夹杂物、气孔、冷隔等,出现在充填过程中,它们不仅与合金种类有关,而且还与具体成形工艺有关。
总之,防止、消除和控制各类。
更多问题请百度咨询山东伊莱特重工有限公司。