几何图形的折叠问题

合集下载

立体几何中的折叠问题

立体几何中的折叠问题

链接高考:
(09 浙江)17.如图,在长方形 ABCD 中,AB 2 ,BC 1,E 为 DC 的
中点, F 为线段 EC (端点除外)上一动点.现将AFD 沿 AF 折起,
使平面 ABD 平面 ABC .在平面 ABD 内过点 D 作 DK AB , K 为垂
足.设 AK t ,则 t 的取值范围是
(3)AD与面BDM所成的角固定吗?(M为AC中点)
(4)二面角A-DB-C固定吗?
你能不用求解看出它的范围吗?
考向二:通过翻折得到一个不确定的几何体, 研究其点线面的位置关系
策略:明确不变量、紧抓关键量
C B
课本中翻折:
如图:边长为2的正方形ABCD中, (1)点E、F分别是边BC和CD的中点,将△ABE, △AFD分别沿AE,AF折起,使两点重合于P点,
归结为一个条件与结论明朗化的立几问题。 (3)将不变的条件集中到几何体图形中,将问题归结为一个条件与结论明朗化的立几问题。
研究其点线面的位置关系 求解翻折问题的基本方法: (4)二面角A-DB-C固定吗? 问题2、AD与BC会垂直吗? 温一模(16题) 图形的翻折问题在历年高考中时常出现,浙江省近几年就出现了四次,因为它是一个由直观到抽象的过程,所以每次的出现的题号都 偏后,同学们的答题情况也不太理想。
(1)AD与BC所成的角固定吗? 如图:边长为2的正方形ABCD中,
【总结规律】 你能不用求解看出它的范围吗?
问题6、二面角D-AC-B固定吗?范围为? 研究其点线面的位置关系。 如图:边长为2的正方形ABCD中,将△ACD沿对角线AC折起,连接BD,得到一个新的三棱锥D-ABC 问题5、AD与面BDM所成的角固定吗?(M为AC中点)
(2)求AD与面DBC所成角的正弦值 如图:边长为2的正方形ABCD中,将△ACD沿对角线AC折起,连接BD,得到一个新的三棱锥D-ABC (1)根据题中条件画出立体图形

七年级折叠问题解题技巧

七年级折叠问题解题技巧

七年级折叠问题解题技巧一、折叠问题中的基本性质与关系1. 折叠性质在折叠过程中,折叠前后的图形全等。

这意味着对应边相等,对应角相等。

例如,将一个三角形沿着某条直线折叠,折叠后的三角形与原三角形的对应边长度不变,对应角的大小也不变。

折痕是对应点连线的垂直平分线。

比如将矩形ABCD沿着EF折叠,使得点A与点C重合,那么EF就是AC的垂直平分线。

2. 常见的几何图形中的折叠三角形折叠例1:在△ABC中,∠C = 90°,将△ABC沿着直线DE折叠,使点A与点B 重合,若AC = 6,BC = 8,求折痕DE的长。

解析:因为点A与点B重合,所以DE是AB的垂直平分线。

先根据勾股定理求出AB=公式。

设AB中点为F,则AF=公式。

由于△ADE和△BDE全等,所以AD = BD。

设BD = x,则AD = x,CD = 8 x。

在Rt△ACD中,根据勾股定理公式,即公式,解得公式。

再根据相似三角形,△ADE∽△ABC,公式,即公式,解得DE=公式。

矩形折叠例2:矩形ABCD中,AB = 3,BC = 4,将矩形沿对角线AC折叠,求重叠部分(△AEC)的面积。

解析:因为矩形沿对角线AC折叠,所以△ADC≌△AEC。

设AE = x,则BE = 4 x。

在Rt△ABE中,根据勾股定理公式,即公式,解得公式。

所以公式。

二、解题步骤与技巧1. 步骤第一步:根据折叠性质确定相等的边和角。

这是解决折叠问题的基础,只有明确了这些关系,才能进一步进行计算。

第二步:设未知数。

通常根据所求的量或者与所求量相关的线段设未知数,然后利用勾股定理、相似三角形等知识建立方程。

第三步:求解方程。

通过解方程得到未知数的值,从而求出最终答案。

2. 技巧利用勾股定理在直角三角形中,折叠后常常会形成新的直角三角形,此时可以利用勾股定理建立方程求解。

如上述矩形折叠的例子中,在Rt△ABE中利用勾股定理求出AE的长度。

利用相似三角形当折叠后的图形与原图形存在相似关系时,利用相似三角形的对应边成比例来求解。

初中几何折叠问题的三种解法

初中几何折叠问题的三种解法

初中几何折叠问题的三种解法初中几何折叠问题的三种解法初中几何是数学中的一个重要分支,而折叠问题则是初中几何中常见的一种问题。

在这里,我们将介绍三种不同的方法来解决初中几何折叠问题。

方法一:手工模拟法手工模拟法是一种简单直观的方法。

它通过将纸张折叠成所需形状来解决问题。

步骤:1. 根据题目给出的图形,画出所需大小和比例的图形。

2. 将纸张按照比例剪成相应大小。

3. 按照题目要求,将纸张进行折叠,直到得到所需形状。

4. 计算所需参数并得出答案。

优点:手工模拟法操作简单易懂,适合初学者使用。

同时也能够帮助学生更好地理解折叠问题的本质。

缺点:手工模拟法需要较长时间完成,并且需要精确测量和折叠。

同时也容易出现误差和偏差。

方法二:平面几何法平面几何法是一种基于平面几何知识来解决问题的方法。

它通过利用图形相似性和对称性来计算所需参数。

步骤:1. 根据题目给出的图形,画出所需大小和比例的图形。

2. 根据平面几何知识,计算所需参数,如角度、长度等。

3. 得出答案。

优点:平面几何法具有计算速度快、精度高等特点。

同时也能够帮助学生更好地理解平面几何知识的应用。

缺点:平面几何法需要学生具备一定的数学基础,并且需要对图形相似性和对称性有深入理解。

同时也容易出现计算错误和漏算情况。

方法三:三维几何法三维几何法是一种基于立体几何知识来解决问题的方法。

它通过利用立体图形的投影和相似性来计算所需参数。

步骤:1. 根据题目给出的图形,画出所需大小和比例的图形。

2. 利用三维几何知识,将立体图形投影到二维平面上,并计算所需参数,如角度、长度等。

3. 得出答案。

优点:三维几何法具有计算速度快、精度高等特点。

同时也能够帮助学生更好地理解立体几何知识的应用。

缺点:三维几何法需要学生具备一定的数学基础,并且需要对立体图形的投影和相似性有深入理解。

同时也容易出现计算错误和漏算情况。

结论:初中几何折叠问题可以通过多种方法来解决,其中手工模拟法、平面几何法和三维几何法是常见的三种方法。

(完整版)中考数学中的折叠问题

(完整版)中考数学中的折叠问题

DE中考数学中的折叠问题为了考查学生的数、形结合的数学思想方法和空间想象能力,近几年来中考中常出现折叠问题。

几何图形的折叠问题,实际是轴对称问题。

处理这类问题的关键是根据轴对称图形的性质,搞清折叠前后哪些量变了,哪些量没变,折叠后有哪些条件可利用。

所以一定要注意折叠前后的两个图形是全等的。

即对应角相等,对应线段相等。

有时可能还会出现平分线段、平分角等条件。

这一类问题,把握住了关键点,并不难解决。

例1 (成都市中考题)把一张长方形的纸片按如图所示的方式折叠, EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( )A 、85°B 、90°C 、95°D 、100°分析与解答:本题考查了有关折叠的知识。

由题意可知:∠BME=∠'EMC ,∠CMF=∠'FMC ,''180BMC CMC ∠+∠=°,又'C M 与'B M 重合,则∠EMF=∠'EMC +∠'FMC =''11()18022BMC CMC ∠+∠=⨯°= 90°,故选B 。

例2 (武汉市实验区中考题)将五边形ABCDE 纸片按如图的方式折叠,折痕为AF, 点E 、D 分别落在'E 、'D 。

已知∠AFC=76°,则'CFD ∠等于( )A 、31°B 、28°C 、24°D 、22°分析与解答:本题同样是考查了折叠的知识。

根据题意得:'AFD AFD ∠=∠=180°-76°=104°,则'CFD ∠=104°-76°=28°,故选B 。

例3(河南省实验区中考题)如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y 轴上,连结OB ,将纸片OABC 沿OB 折叠,使点A 落在点'A 的位置,若1tan 2BOC ∠=,则点'A 的坐标为 。

初中几何中的折叠问题

初中几何中的折叠问题
第5题图
4. 如图,矩形ABCD中,AB=5,BC=8,点P在AB上,AP=1.将矩形ABCD沿CP折叠, 点B落在点B′处.B′P、B′C分别与AD交于点E、F,则EF=________.
第6题图
折法3 如图矩形ABCD中,点E、F分别在AD、BC上,沿EF将四边形 ABFE折叠至四边形A′B′FE后,B′落在AD上,你能发现什么新的结论?
图①
图②
针对训练 1. 如图,将长16 cm,宽8 cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF 的长为________.
第7题图
2.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF, 若∠BAE=55°,则∠D1AD=________.
3. 如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点 D恰好落在BC边上的G点处,若矩形ABCD面积为4 3 ,且∠AFG=60°,GE=2BG, 则折痕EF的长为________.
边形、正六边形、圆等; 图形
与折叠有关的计算常用性质
1. 折叠问题的本质是全等变换,折叠前的部分与折叠后的部分是全等图形; ①线段相等:C′D=________,BC=________; ②角度相等:∠1=________,∠3=________; ③全等关系:△BC′D≌________. 2. 折痕可看作垂直平分线(对应的两点之间的连线被折痕垂直平分); 3. 折痕可看作角平分线(对应线段所在的直线与折痕的夹角相等).
针对训练
1如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将
△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于( )

几何图形的折叠问题

几何图形的折叠问题

纸艺制作
产品设计
通过折叠纸张或其他材料,制作各种纸艺 作品,如纸飞机、千纸鹤等。
在产品设计中,折叠结构可以用于节省空 间、便于携带和运输,如折叠家具、折叠 雨伞等。
建筑模型
数学教育
通过折叠纸张或其他材料,制作建筑模型 ,展示建筑的三维形态。
折叠问题在数学教育中用于培养学生的空 间想象能力和几何思维能力,帮助学生理 解平面与立体几何之间的关系。
应用拓展
探索几何图形折叠问题在建 筑、航空航天、生物医学等 领域的应用,以推动相关领 域的技术进步和创新。
感谢您的观看
THANKS
1 2
正方体折叠成三棱锥
将一个正方体的一个面朝下,然后将其顶点与正 方体的中心相连,可以得到一个三棱锥。
长方体折叠成三棱柱
将一个长方体的一个面朝下,然后将其顶点与长 方体的中心相连,可以得到一个三棱柱。
3
球体折叠成椭球体
将一个球体的赤道线何图形折叠实例
01
02
需要开发更有效的算法和软件 工具,以模拟和优化几何图形
的折叠过程。
未来发展方向
新材料与技术应用
探索新型材料和加工技术, 以提高几何图形折叠的效率 和精度。
智能化与自动化
利用人工智能和机器学习技 术,实现几何图形折叠过程 的智能化和自动化。
多学科交叉研究
加强数学、物理学、工程学 等多个学科在几何图形折叠 问题上的交叉研究,以推动 理论和实践的深入发展。
02
几何图形的折叠问题解析
平面几何图形的折叠
定义
平面几何图形的折叠问题是指将 一个平面图形沿着一条或几条折 痕进行折叠,使其从一个平面状
态变为立体状态的过程。
常见类型
如正方形、三角形、圆形等平面图 形的折叠问题,以及由这些基本图 形组合形成的复杂图形的折叠问题。

题型四 几何图形的折叠与动点问题

题型四  几何图形的折叠与动点问题

题型四几何图形的折叠与动点问题试题演练1. 如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原,则x的取值范围是__________.2. 如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF长的最小值是________.3. (’15洛阳模拟)如图,在边长为4的正方形ABCD中,M为BC的中点,E、F分别为AB、CD边上的动点.在点E、F运动的过程中始终保持△EMF为直角三角形,其中∠EMF =90°.则直角三角形的斜边EF的取值范围是________.4. 如图,在边长为2的菱形ABCD中,∠A=60°,点P为射线AB上一个动点,过点P作PE⊥AB交射线AD于点E,将△AEP沿直线PE折叠,点A的对应点为F,连接FD、FC,若△FDC为直角三角形时,AP的长为________.5. 如图,正方形ABCD的边长为2,∠DAC的平分线AE交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为________.6. 如图,在矩形ABCD中,AD=3,AB=4,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在矩形的对角线上时,DE的长为________.7. 如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上,对应点为点E,若BG=10,则折痕FG的长为________.8. 如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=8,AD是∠BAC的平分线,点E是斜边AC上的一点,且AE=AB,沿△DEC的一个内角平分线折叠,使点C落在DE所在直线上,则折痕的长度为________.9. (’15商丘模拟)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB 上的点F处,当△BCF为等腰三角形时,AE的长为________.10. (’15郑州模拟)如图,在矩形ABCD中,AD=6,CD=4,AD的中点为E,点F是AB边上一点(不与A、B重合),连接EF,把∠A沿EF折叠,使点A落在点G处,连接CG.则线段CG的取值范围是________.11. (’15江西)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△P AB为直角三角形时,AP的长为________.12. 如图,在矩形ABCD中,AB=12,BC=8,点E是边BC上一动点,把△DCE沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为_____【答案】1. 1≤x≤3【解析】通过观察图形,可得当点E与点A重合时AP最小,则AP=EP=AD =1;当点P与点B重合时,AP最大,则AP=3,∴1<AP≤3,则x的取值范是1≤x≤3.2. 2【解析】由题意得:DF=DB,∴点F在以D为圆心,BD为半径的圆上,作⊙D,连接AD交⊙D于点F,此时AF值最小;∵点D是边BC的中点,∴CD=BD=3;而AC=4.由勾股定理得:AD2=AC2+CD2∴AD=5,而FD=3,∴F A=5-3=2,即线段AF长的最小值是2.3. 4≤EF≤5【解析】∵点M为BC的中点,正方形ABCD的边长为4,∴BM=CM=2,∵∠EMF=90°,∴∠BME+∠CMF=90°,∵∠CFM+∠CMF=90°,∴∠BME=∠CFM,又∵∠B=∠C=90°,∴△BME∽△CFM,∴BMCF=BECM,∴BE·CF=BM·CM=2×2=4,∵CF最大时为4,此时BE=1,BE最大时为4,此时CF=1,∴0≤|CF-BE|≤3,过点E 作EG⊥CD于点G,则EG=BC=4,在Rt△EFG中,EF2=EG2+FG2=16+(CF-BE)2,∴16≤EF2≤16+9,∴4≤EF≤5.4. 12或32 【解析】根据题意可得△FDC 为直角三角形时分三种情况考虑:(1)如解图①,当∠FDC =90°时,DF ⊥AB ,在△AFD 中,∠A =60°,AD =2,∴AF =1,AP =12;(2)如解图②,当∠DCF =90°时,CF ⊥AB ,在△CFB 中,∠CBF =60°,BC =2,∴BF =1,AF =3,AP =32;(3)当∠DFC =90°,不存在.综上可知AP 的值为12或32.5. 2 【解析】如解图,作D 关于AE 的对称点D ′,则D ′落在对角线AC 上,过点D ′作 D ′P ′⊥AD 于点P ′,∴D ′P ′即为DQ +PQ 的最小值,∵DD ′⊥AE ,∴∠AFD =∠AFD ′,∵AF =AF ,∠DAF =∠D ′AF ,∴△DAF ≌△D ′AF ,∴AD =AD ′=2,∵四边形ABCD 是正方形,∴∠DAD ′=45°,∴AP ′=P ′D ′,∴在Rt △AP ′D ′中,P ′D ′2+AP ′2=AD ′2, AD ′2=4,∴P ′D ′=2,即DQ +PQ 的最小值为 2.6. 32或94【解析】分两种情况进行讨论,设DE =x .ⅰ)D ′落在AC 上,如解图1,在Rt △ED ′C 中,EC =4-x ,D ′C =AC -AD ′=5-3=2,ED ′=x ,根据ED ′2+D ′C 2=EC 2可得x 2+22=(4-x )2,解得x =32;ⅱ)D ′落 在BD 上,如解图2,设DD ′交AE 于F 根据轴对称性质可知AE 垂直平分DD ′.在Rt △DF A 中,sin ∠ADF =AF AD ,∵sin ∠ADF =sin ∠ADB =AB BD =45,∴AF AD =45,又∵AD =3,∴AF =125,∴DF =95,又∵∠DEF =∠ADF ,∴sin ∠DEF =sin ∠ADF =45,∴DF DE =45,即95DE =45,∴DE =95×54=94.综上DE 的长为32或94.7. 55或45 【解析】分两种情况讨论:(1)如解图①,过点G 作GH ⊥AD 于点H ,则四边形ABGH 为矩形,∴GH =AB =8,由图形折叠可知△BFG ≌ △EFG ,∴EG =BG =10,∠B =∠FEG =90°,∴EH =6,AE =4,∠AEF +∠HEG =90°,∵∠AEF +∠AFE =90°,∴∠HEG =∠AFE ,又∵∠A =∠EHG =90°,∴△EAF ∽△GHE ,∴EF EG =AE GH,∴EF =5,∴FG =102+52=55;(2)如解图②,由图形的折叠可知四边形ABGF ≌四边形HEGF ,∴BG =EG ,AB =EH ,∠BGF =∠EGF ,∵EF ∥BG ,∴∠BGF =∠EFG ,∴∠EFG =∠EGF ,∴EF =EG ,∴BG =EF ,∴四边形BGEF 为平行四边形,∵EF =EG ,∴平行四边形BGEF 为菱形,连接BE ,∴BE 、FG 互相垂直平分.在Rt △EFH 中,EF =BG =10,EH =AB =8,由勾股定理可得FH =AF =6,∴AE =AF +EF =16,∴BE =AE 2+AB 2=85,∴BO =45,∴OG =BG 2-BO 2=25,∵四边形BGEF 为菱形,∴FG =2OG =4 5.8. 1227或352【解析】在Rt △ABC 中,∠ABC =90°,AC =10,BC =8,∴AB =102-82=6,则AE =6,EC =AC -AE =10-6=4;∵AB =AE ,∠BAD =∠EAD ,AD =AD ,∴△ABD ≌△AED ,∴BD =DE ,∠B =∠AED =90°,设BD =x ,则DE =x ,CD =8-x ,∴x 2+42=(8-x )2,解得:x =3,∴CD =5,DE =3.(1)如解图①,若沿∠DEC 的角平分线EG 折叠,使点C 落在ED 延长线上F 点处,过G 分别作GM ⊥EC ,GN ⊥EF ,垂足分别为M 、N .∴GN=GM ,∵S △DEC =12×3×4=6,S △DEG =12×3·GN =32GN ,S △CEG =12×4·GM =2GM ,∴2GM +32GN =6,即2GN +32GN =6,解得:GN =127,故EG =1227;(2)如解图②,若沿∠EDC 的角平分线DG 折叠,使点C 落在DE 延长线上F 点处.∴CG =FG ,DC =DF =5,∵DE=3,∴EF =2,设CG =y ,则FG =y ,EG =4-y ,∴(4-y )2+22=y 2,解得:y =52,∴EG=4-52=32,∵DE =3,∴DG =(32)2+32=94+9=352. 9. 1或54或710【解析】本题考查三角形的折叠,等腰三角形的性质求线段的长.在Rt △ABC 中,AC =4,BC =3,由勾股定理得AB =AC 2+BC 2=5.由折叠性质得AE =EF ,在△BCF 中,当BF =BC 时,有BF =AB -AF =AB -2AE =3,则AE =1; 当BF =CF 时,过BC 中点作AC 的平行线,交AB 于点F ,此时F 点满足题意,且AF =BF =52,则AE =54; 当CF =CB 时,如解图,过C 作CN ⊥AB 于点N .由等面积法得CN =AC ·BC AB =125.由△BCN ∽△BAC ,得BN BC =BC AB ,则BN =95.由等腰三角形三线合一性质得FN =BN =95,则AE =12AF =12(AB -BF )=12×(5-185)=710. 10. 2537<CG <213 【解析】如解图所示,在Rt △ADC 中,AD =6,CD =4,∴AC =AD 2+CD 2=213,把∠A 沿EB 折叠,此时CG 最小,使点A 落在点G 处,连接AG ,DG ,∴∠EAG =∠EGA ,AE =EG ,∵AE =DE ,∴EG =ED ,∴∠ADG =∠EGD ,∴∠AGD =∠AGE +∠EGD =∠DAG +∠ADG =90°,∵AE =3,AB =4,∴BE =AE 2+AB 2=5,∵12AG ·BE =AE ·AB ,∴AG =245,在Rt △ADG 中,DG =AD 2-AG 2=62-(245)2=185,过G 点作MN ⊥AD ,∴∠AMG =∠AGD =90°,∵∠MAG =∠GAD ,∴△AMG ∽△AGD ,∴AM AG=MG DG =AG AD ,即:AM 245=MG 185=2456,∴AM =9625,MG =7225,∵BN =AM =9625,MN =CD =4,∴CN =6-9625=5425,GN =4-7225=2825,在Rt △CNG 中,CG =CN 2+GN 2=2537.在Rt △ABC 中,AC =AB 2+BC 2=213,∴线段CG 的取值范围是2537<CG <213.11. 2或23或27 【解析】由于点P 在射线CO 上运动,∴当△P AB 为直角三角形时,有三种情况:(1)当∠APB =90°时,①如解图①,当点P 在线段CO 上时,∵AB =BC =4,AO =BO ,∴AO =2,∴PO =AO =2,∵∠AOC =60°,∴△APO 是等边三角形,∴AP =AO =2;②如解图②所示,当点P 在CO 的延长线上时,∵AB =BC =4,AO =BO ,∠AOC =60°,∴OP =OA =OB =2,∵∠POB =∠AOC =60°,∴△POB 是等边三角形,即PB =OB =2,∴AP =AB 2-PB 2=42-22=23;(2)当∠ABP =90°时,如解图③所示,∵AB =BC =4,AO =BO ,∴AO =BO =2,又∵∠BOP =∠AOC =60°,∠ABP =90°,∴BP =23,在Rt △APB 中,AP =AB 2+PB 2=42+(23)2=27;∴AP 的长度为2或23或27.12. 92或4877【解析】∵四边形ABCD 是矩形,∴AD =BC =8,AB =DC =12,AD ∥BC ,∠C =90°.∵把△DCE 沿DE 折叠得△DFE ,∴DC =DF =12.∵AD ≠DF ,∴△AFD 为等腰三角形只有两种情况: (1)当AF =FD =12时,如解图①,过点F 作FM ⊥AD于点M ,∴AM =MD =4,在Rt △MDF 中,由勾股定理,得MF =122-42=82,∵AD ∥BC ,∴∠MDF =∠DPC .∵∠DMF =∠C =90°,∴△MDF ∽△CPD ,∴MF CD =FD PD ,即:8212=12PD,解得PD =92; (2)当AD =AF =8时,如解图②,DF 的延长线交CB 的延长线于点P ,过点A 作AN ⊥DF 于点N, ∴FN =ND =6,在Rt △AND 中,由勾股定理,得AN =82-62=27,∵AD ∥BC ,∴∠ADN =∠DPC ,∵∠AND =∠C =90°, ∴△AND ∽△DCP ,∴AN CD =AD PD ,即:2712=8PD ,解得PD =4877.综上所述,DP 的长为92或4877。

常见几何图形的折叠问题

常见几何图形的折叠问题

常见几何图形的折叠问题图形的折叠是图形变换的一种,折叠型问题的立意新颖,变化巧妙,是近几年中考中的热点问题,主要考察学生的探究能力,空间想象能力,抽象思维能力及逻辑推理能力。

体现的是教材中的轴对称问题,在解决这类问题中,运用的知识点比较多,综合性强,如轴对称性、全等思想、相似思想、勾股定理、代换思想等,是培养学生识图用图能力,灵活运用数学知识解决问题能力的一条非常有效的途径。

折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中“折”是过程,“叠”是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质。

折纸中所蕴含着的丰富数学知识备受中考命题者的青睐,设计了许多别具创意的折叠问题,现采撷其中较有代表性的试题,予以例析.一、三角形中的折叠例1 如图1,直角三角形纸片ABC ,∠C=90º,AC=6,BC=8,折叠△ABC 的一角,使点B 与A 点重合,展开得折痕DE ,求BD 的长.功能分析:此题主要运用勾股定理解决折叠问题,往往融方程与几何图形于一体,具有较强的综合性。

解法研究: 由折叠可知,△ADE ≌△BDE .所以AD=BD .于是,在Rt △ACD 中,由勾股定理建立方程,求出AD 的长即可.设BD=x ,则AD=x ,CD=8-x .在Rt △ACD 中,由勾股定理,得AC 2+CD 2= AD 2,所以62+(8-x)2= x 2,解得x=425.所以BD 的长为425. 二、特殊四边形中的折叠 1. 矩形中的折叠例2 如图2,将矩形ABCD 沿着直线BD 折叠,使点C 落在1C 处,B 1C 交AD 于E ,AD =8,AB =4,求△BED 的面积.功能分析:由折叠后的图形与原图形全等,从而可知△BCD ≌△B 1C D ,则易得BE =DE ..在Rt △ABE 中,用勾股定理先算出BE 的长,再在Rt △BEF 中,用勾股定理求出EF 的长,即可求出△BDE 的面积.折叠问题常结合全等三角形和等腰三角形来解决. 矩形的折叠常与直角三角形有关,选择一个直角三角形,运用勾股定理来解是常用的方法.解法研究:在矩形ABCD 中,AD ∥BC , ∴∠2=∠3.当矩形ABCD 沿着直线BD 折叠后,△B 1C D 与△BCD 关于直线BD 对称, ∴∠1=∠2, ∴∠3=∠1, ∴BE =ED .图2作EF ⊥BD 于F ,则BF =21BD ,BD =.544822=+ 设BE =x . ∵BE =ED , ∴AE =8- x .在Rt △ABE 中,,)(22284x x =-+ ∴x =5. 在Rt △BEF中,,)(,)(22222252552+=+=EF EF x∴EF =5,∴.1021=⋅=∆EF BD S BDE 例3 如图3(1),矩形纸片ABCD 的边长分别为()a b a b <,.将纸片任意翻折(如图3(2)),折痕为PQ .(P 在BC 上),使顶点C 落在四边形APCD 内一点C ',PC '的延长线交直线AD 于M ,再将纸片的另一部分翻折,使A 落在直线PM 上一点A ',且A M '所在直线与PM 所在直线重合(如图3(4))折痕为MN . 猜想两折痕PQ MN ,之间的位置关系,并加以证明.功能分析:解决本题的关键在于能否抓住互相重合部分的特点,这要求同学们掌握折痕是对称轴这一性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课外作业:
1.将一张矩形纸片ABCD沿着 对角线BD折叠,点C落在C1处, BC1交AD于E,已知AB=4, AD=8,求△BDE的面积. 2.如图,矩形中,,点F是边上 一点,连接AF,把沿AF折叠, 使点落在点处,当△CFB为直 角三角形时,BF的长为____.
谢谢各位老ห้องสมุดไป่ตู้! 谢谢各位学生! 再见!
小结: 翻折变换(折叠问题)实 质上就是轴对称变换。 折痕是对称轴,对应点的 连线被折痕垂直平分。 折叠前后的两部分图形全 等,对应角,对应线段,面 积都相等。
知识运用:
1.如图,将矩形纸片ABCD折叠,使 边AB、CB均落在对角线BD上,得 折痕BE、BF,则∠EBF=___. 2.如图,将矩形纸片ABCD折叠,使 点C与点A重合,然后展开,折痕为 EF,连接AE、CF。若AB=2,BC=4. 求CE的长。
几何图形的折叠问题
内乡实验初中
导入新课 出示目标
学习目标: 1.掌握几何图形折叠的性质。 2.运用三角形全等,相似, 勾股定理,锐角三角函数等知 识解决折叠问题。 3.体会方程、分类讨论的数 学思想和方法。
探究:
如图,将矩形纸片ABCD折叠, 使点C与点A重合,然后展开,折痕 为EF,连接AE、CF。 由折叠你能发现什么结论?
3.如图,四边形ABCD为矩形纸片,把 纸片ABCD折叠,使点B恰好落在CD的 中点E处,折痕为AF,若CD=6. 求:①∠EFA的度数。②AF的长。
拓展提升:
1.如图,将三角形纸片的一角折叠, 使点B落在AC边上的F处,折痕为DE, 已知AB=AC=6,BC=8,若以点 E,F,C为顶点的三角形与△ABC 相似.求BE的长。
2.在矩形纸片ABCD中,AB=3, AD=5.如图所示,折叠纸片, 使点A落在BC边上的A′处, 折痕为PQ,当点A′在BC边 上移动时,折痕的端点P 、 Q 也随之移动,若限定点P、Q分 别在线段AB、AD边上移动. 则BA′的取值范围为_______.
课堂小结: 1.折叠的性质 2.解决折叠问题用到什么数 学知识,数学思想和方法? 3.对学生个人和小组在本节 课的表现进行评价。
相关文档
最新文档