初中几何中的折叠问题.ppt
合集下载
【中考数学考点复习】微专题图形的折叠课件

微专题 图形的折叠 折法一 折痕为对角线
1.图,在矩形 ABCD 中,AB=12,AD=18,将矩形沿对角线 AC 折叠, 点 D 的对应点为 D′,AD′交 BC 于点 E,则 (1)BE 的长为 5 ; (2)△CD′E 的面积为 30 .
第1题图
微专题 图形的折叠 如图,点 P 是矩形 ABCD 边 AD 上一点,当点 P 与点 D 重合时,将△ABP 沿 BP 折叠得到△EBP,BE 交 CD 于点 H.
图⑤
微专题 图形的折叠
结论: 图④,连接 BE,△ABE≌△A′B′E;过点 E 作 EG⊥BC, 则△EFG∽△BB′C;四边形 BEB′F 为菱形; 图⑤,过点 E 作 EG⊥BC,则△EFG∽△BB′C; △A ′ E P∽△DB′ P∽△CF B ′ .
图④
图⑤
结论:△BCH≌△DEH,PH=BH,DE2+EH2=DH2.
微专题 图形的折叠 折法二 折痕的一端过顶点
2.已知矩形 ABCD,AB=6,AD=8,点 E 是 BC 上一点,P 是 CD 上一 点. (1)如图①,将△DCE 沿 DE 折叠得到△DC′E,若点 C′恰好落在对角 线 BD 上,则 DE 的长为 3 5 ;
图③ 第2题图
微专题 图形的折叠
(4)如图④,将△PBC 沿 PB 折叠得到△PBC′,若点 C 落在 AD 上的点 C′ 处,连接 CC′,则 CC′的长为 4 7-4 ;
图④ 第2题图
微专题 图形的折叠
(5)如图⑤,F 为线段 AB 上一点,将矩形 ABCD 沿 DF 翻折,点 B、C 的
对应点分别为点 B′、C′.若 B′C′恰好经过点 A,连接 C′F,则线段
第 2 题图⑦
微专题 图形的折叠 如图①,点 P 是矩形 ABCD 边 AD 上一点,将△ABP 沿 BP 折叠得到 △EBP,点 E 恰好在 CD 边上.
矩形折叠问题ppt课件

(1)若∠ADE=20°,求∠EBD的度数。
(2)若AB=4,BC=8,求AF。
(3)在(2)的条件下,试求 E
重叠部分△DBF的面积。
A F
D
B
C
12
1、 如图,已知矩形ABCD,将△BCD沿对角 线BD折叠,点C落在点E处,BE交AD于点F。 (1)若∠ADE=20°,求∠EBD的度数。
E
A F
C
16
3.如图,矩形纸片ABCD中,AB=6cm,AD =8cm,在BC上找一点F,沿DF折叠矩形AB 使C点落在对角线BD上的点E处, 此时折痕DF的长是多少?
A
D
6
4x
6
B
8-x
xC
17
1.把一张长方形的纸片按如图所示的方式
折叠,EM、FM 为折痕,折叠后的C点落 在MB′或MB′的延长线上,那么∠EMF的
D
EC
AG
B
6
二、一条对角线的顶点折叠重合
例2、如图,矩形纸片ABCD的长AD=9cm, 宽AB=3cm,将其折叠,使点D与点B重合,那 么折叠后DE的长和折痕EF的长分别是多少?
A
E
D
O
B
F
C
7
三、将一个顶点折到一边上
例3、四边形ABCD是一块矩形纸片,E是AB上一点,
且BE:EA=5:3,EC=15 5 ,将△BCE沿
4≤A′C≤8
分析:根据点E、F分别在 AB、AD上移动,可画出两 个极端位置时的图形。
6
4
(E)
6
F
8
E
10 6
10
(F) 27
3、如图,把一张矩形的纸片ABCD沿对角 线BD折叠,使点C落在点E处,BE与AD的 交于点F。
中考数学专题复习图形的折叠型题PPT课件

(2)请你通过操作和猜想,将第3、第4和第n次裁剪后
所得扇形的总个数(S)填入下表.
等分圆及扇形面的次数(n) 1 2 3 4 **** n
所得扇形的总个数(S)
47
***
(3)请你推断,能不能按上述操作过程,将本来的圆形 纸板剪成33个扇形?为什么?
例26、如图,若把边长为1的正方形ABCD的四个
例25、如图,⊙O表示一圆形纸板,根
O
据要求,需通过多次剪裁,把它剪成若 干个扇形面,操作过程如下:第1次剪,
第25题图
将圆形纸板等分为4个扇形;第2次剪裁,将上次得的
扇形面中的一个再等分成4个扇形;以后按第2次剪裁
的作法进行下去.(1)请你在⊙O中,用尺规作出第2次
剪裁后得到的7个扇形(保留痕迹不写作法).
角(阴影部分)剪掉,得一四边形A1B1C1D1.试问怎 样剪,才能使剩下的图形仍为正方形,且剩下图
形的面积为原正方形面积的 5 ,请说明理由(写
出证明及计算过程).
9
E
A M DA M
例22、电脑CPU蕊片由一种叫“单晶硅”的材料制
成,未切割前的单晶硅材料是一种薄型圆片,叫 “晶圆片”。现为了生产某种CPU蕊片,需要长、 宽都是1cm 的正方形小硅片若干。如果晶圆片的直 径为10.05cm。问一张这种晶圆片能否切割出所需尺 寸的小硅片66张?请说明你的方法和理由。(不计 切割损耗)
典例精析
一.折叠后求度数 例1、将一张长方形纸片按如图所示的方式折 叠,BC、BD为折痕,则∠CBD的度数为( ) A.600 B.750 C.900 D.950
例2、如图,把一个长方形纸片沿EF折叠后,点D、C
分别落在D′、C′的位置,若∠EFB=65°,则 ∠AED′等于( ) A.50° B.55° C.60° D.65°
初三数学中考专题复习课折叠问题》ppt课件讲义

OE 4 5
k 1
H
O
探究型问题之“折叠问题”
例4:已知扇形 AOB 的半径为︵ 6,圆心角为 90°,E E 是半径 OA 上一点,F 是AB 上一点.将扇形 A AOB 沿 EF 对折,使得折叠后的图形恰好与半径 OB 相切于点 G.
求:点 E 可移动的最大距离是多少? 3
O(G) O
G B
探究型问题之“折叠问题”
将边长为2a的正方形ABCD折叠,使顶点C与AB边 上的点P重合,折痕交BC于E,交AD于F, 边CD折叠 后与AD边交于点H.
(1)如果P为AB边的中点,探究△ PBE的三边之比.
解x得 3a,所2a 以 x5a
4
4
可得△ PBE的三边之比3:4:5.
2ax
a
x 2ax
探究型问题之“折叠问题”
2.点的对称性:对称点连线被对称轴(折痕)垂直平分.
探究型问题之“折叠问题”
例1:已知:在矩形AOBC中,OB=4,OA=3.分别以OB,OA
所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是
边BC上的一个动点(不与B,C重合),过F点的反y比例k 函(k数 0)
的图象与AC边交于点E.
x
请探索:是否存在这样的点
O
OE 15
4
E A
G M
N
B
F
O'
探究型问题之“折叠问题”
变式3:已知扇形 AOB 的︵ 半径为 6,圆心角为 90°,E 是半径 OA 上一点,F 是AB 上一点.将扇形 AOB 沿 EF 对折,使得折叠后的图形恰好与半径 OB 相切于点 G. (3)若 G 是 OB 中点,求 OE 和折痕 EF 的长;
x 2a y
k 1
H
O
探究型问题之“折叠问题”
例4:已知扇形 AOB 的半径为︵ 6,圆心角为 90°,E E 是半径 OA 上一点,F 是AB 上一点.将扇形 A AOB 沿 EF 对折,使得折叠后的图形恰好与半径 OB 相切于点 G.
求:点 E 可移动的最大距离是多少? 3
O(G) O
G B
探究型问题之“折叠问题”
将边长为2a的正方形ABCD折叠,使顶点C与AB边 上的点P重合,折痕交BC于E,交AD于F, 边CD折叠 后与AD边交于点H.
(1)如果P为AB边的中点,探究△ PBE的三边之比.
解x得 3a,所2a 以 x5a
4
4
可得△ PBE的三边之比3:4:5.
2ax
a
x 2ax
探究型问题之“折叠问题”
2.点的对称性:对称点连线被对称轴(折痕)垂直平分.
探究型问题之“折叠问题”
例1:已知:在矩形AOBC中,OB=4,OA=3.分别以OB,OA
所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是
边BC上的一个动点(不与B,C重合),过F点的反y比例k 函(k数 0)
的图象与AC边交于点E.
x
请探索:是否存在这样的点
O
OE 15
4
E A
G M
N
B
F
O'
探究型问题之“折叠问题”
变式3:已知扇形 AOB 的︵ 半径为 6,圆心角为 90°,E 是半径 OA 上一点,F 是AB 上一点.将扇形 AOB 沿 EF 对折,使得折叠后的图形恰好与半径 OB 相切于点 G. (3)若 G 是 OB 中点,求 OE 和折痕 EF 的长;
x 2a y
中考复习专题-折叠问题 课件(共13张PPT)

____
反思 求边长的常用方法
1.等面积法 2.勾股定理 3.相似 4.三角函数 转化(思想)
F
3
考点一:折叠求线段的长
变式
2、如图,矩形ABCD中,点E在边AB上, 将矩形ABCD沿直线DE折叠,点A恰好落 在边BC的点F处.若AE=5,BF=3,则CD 的长是___
反思
常见解题思路的熟练应用是提高效率的关键
②当x取何值时,重叠部分的面积等于矩形面积的一半?
Q
D
C
P
R
A
B
D
C
D
C
A
B
A
B
(备用图1)
(备用图2)
11
六、课下作业
1、讲过的题整理完整 2、未处理的题目做完整 3、强化求边长,求角的方法
12
加油,2018中考必胜!!!
13
.
2.如图,在折纸活动中,小明制作了一张△ABC纸片, 点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平, A与A′重合,若∠A=75°,则∠1+∠2 = ( )
A.150° B.210° C.105° D.75°
8
四、达标测试
3.如图所示,矩形纸片ABCD中,AB=6cm,BC=8 cm,现将 其沿EF 对折,使得点C与点A重合,则AF长为____
9
五、中考链接
4.(2017西安)D是AB边上的中点,将 △ABC沿过D的直线折叠,使点A落在BC 上F处,∠B=50°,则∠BDF=____度.
10
五、中考链接
(15浙江宿迁)
如图,在矩形ABCD中,AB=9,AD=3 3 ,点P是边BC上的动点(点P不与点B,点 C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折, 点C的对应点是R点,设CP的长度为x,与矩形重叠部分的面积为y. (1)求∠CQP的度数; (2)当x取何值时,点R落在矩形的边AB上? (3)①求y与x之间的函数关系式;
反思 求边长的常用方法
1.等面积法 2.勾股定理 3.相似 4.三角函数 转化(思想)
F
3
考点一:折叠求线段的长
变式
2、如图,矩形ABCD中,点E在边AB上, 将矩形ABCD沿直线DE折叠,点A恰好落 在边BC的点F处.若AE=5,BF=3,则CD 的长是___
反思
常见解题思路的熟练应用是提高效率的关键
②当x取何值时,重叠部分的面积等于矩形面积的一半?
Q
D
C
P
R
A
B
D
C
D
C
A
B
A
B
(备用图1)
(备用图2)
11
六、课下作业
1、讲过的题整理完整 2、未处理的题目做完整 3、强化求边长,求角的方法
12
加油,2018中考必胜!!!
13
.
2.如图,在折纸活动中,小明制作了一张△ABC纸片, 点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平, A与A′重合,若∠A=75°,则∠1+∠2 = ( )
A.150° B.210° C.105° D.75°
8
四、达标测试
3.如图所示,矩形纸片ABCD中,AB=6cm,BC=8 cm,现将 其沿EF 对折,使得点C与点A重合,则AF长为____
9
五、中考链接
4.(2017西安)D是AB边上的中点,将 △ABC沿过D的直线折叠,使点A落在BC 上F处,∠B=50°,则∠BDF=____度.
10
五、中考链接
(15浙江宿迁)
如图,在矩形ABCD中,AB=9,AD=3 3 ,点P是边BC上的动点(点P不与点B,点 C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折, 点C的对应点是R点,设CP的长度为x,与矩形重叠部分的面积为y. (1)求∠CQP的度数; (2)当x取何值时,点R落在矩形的边AB上? (3)①求y与x之间的函数关系式;
专题:勾股定理折叠问题 PPT课件

∴Rt△EAD和Rt△EB′D ∴B′D=AD=6. 分析:当∠BFE=∠EFD,点B′在FD上时,根据三角形的 三边关系,此时B′D的值最小,易证△AED≌△B′ED, B′D=AD=6. 点评:本题主要考查了折叠的性质、全等三角形的判定与
性质、两点之间线段最短的综合运用,确定点B′在何位置时, B′D的值最小,是解决问题的关键.
(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x, OC=y,试写出y关于x的函数解析式,并确定y的取值 范围;
如图(2),折叠后点B落在OA边上的点为B′连接B′C,B′D, 则△B′CD≌△BCD, 由题设OB′=x,OC=y, 则B′C=BC=OB-OC=4-y, 在Rt△B′OC中,由勾股定理, 得B′C2=OC2+OB′2,
3、某班甲、乙、丙三位同学进行了一次用正方形纸片折叠探究相关数学问题的课题学习活动. 活动情境:
如图2,将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处, FN与DC交于点M处,连接BF与EG交于点P. 所得结论:
当点F与AD的中点重合时:(如图1)甲、乙、丙三位同学各得到如下一个正确结论(或结果): 甲:△AEF的边AE= cm,EF= cm; 乙:△FDM的周长为16 cm; 丙:EG=BF. 你的任务:
5、动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,
使点A落在BC边上的E处,折痕为PQ,当点E在BC边上移动时,折痕的
端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点E
在BC边上可移动的最大距离为
.
BE
C
P
A
QD
6、把图一的矩形纸片ABCD折叠,B,C两点恰好重合落 在AD边上的点P处(如图二),已知∠MPN=90°,PM=3, PN=4,那么矩形纸片ABCD的面积为_______。
性质、两点之间线段最短的综合运用,确定点B′在何位置时, B′D的值最小,是解决问题的关键.
(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x, OC=y,试写出y关于x的函数解析式,并确定y的取值 范围;
如图(2),折叠后点B落在OA边上的点为B′连接B′C,B′D, 则△B′CD≌△BCD, 由题设OB′=x,OC=y, 则B′C=BC=OB-OC=4-y, 在Rt△B′OC中,由勾股定理, 得B′C2=OC2+OB′2,
3、某班甲、乙、丙三位同学进行了一次用正方形纸片折叠探究相关数学问题的课题学习活动. 活动情境:
如图2,将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处, FN与DC交于点M处,连接BF与EG交于点P. 所得结论:
当点F与AD的中点重合时:(如图1)甲、乙、丙三位同学各得到如下一个正确结论(或结果): 甲:△AEF的边AE= cm,EF= cm; 乙:△FDM的周长为16 cm; 丙:EG=BF. 你的任务:
5、动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,
使点A落在BC边上的E处,折痕为PQ,当点E在BC边上移动时,折痕的
端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点E
在BC边上可移动的最大距离为
.
BE
C
P
A
QD
6、把图一的矩形纸片ABCD折叠,B,C两点恰好重合落 在AD边上的点P处(如图二),已知∠MPN=90°,PM=3, PN=4,那么矩形纸片ABCD的面积为_______。
专题:勾股定理折叠问题 PPT课件

的第一、二个步骤是:①先裁下了一张长BC 20cm宽,AB 16cm
的矩形纸片ABCD,②将纸片沿着直线AE折叠,点D恰好落
在BC边上的F处,…… 请你根据①②步骤解答下列问题:
(1)找出图中∠FEC的余角;
A
D
(2)计算EC的长.
E
B
FC
3.如图,矩形纸片ABCD中,AB=4cm,BC=8cm,现将A、
二、矩形的折叠
1.如图,折叠矩形纸片ABCD,先折出折痕(对角线)BD, 再折叠,使AD落在对角线BD上,得折痕DG,若AB = 2,BC = 1, 求AG。
D
C
• A´
AG
B
2.为了向建国六十周年献礼,某校各班都在开展丰富多彩的
庆祝活动,八年级(3)班开展了手工制作竞赛,每个同学都
在规定时间内完成一件手工作品.陈莉同学在制作手工作品
5、动ห้องสมุดไป่ตู้操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,
使点A落在BC边上的E处,折痕为PQ,当点E在BC边上移动时,折痕的
端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点E
在BC边上可移动的最大距离为
.
BE
C
P
A
QD
6、把图一的矩形纸片ABCD折叠,B,C两点恰好重合落 在AD边上的点P处(如图二),已知∠MPN=90°,PM=3, PN=4,那么矩形纸片ABCD的面积为_______。
C重合,使纸片折叠压平,设折痕为EF,
①求DF的长;
②求重叠部分△AEF的面积;
③求折痕EF的长。
D´
④着色部分的面积为多少? A
FD
BE
C
数学中考复习《图形的折叠问题》课件(17张ppt)

2
练习1 如图,有一块直角三角形 纸片,两直角边AC=6,BC=8,
A
现将直角边AC沿直线AD折叠,
E
使它落在斜边AB上,且与AE重 合,则CD等于( B )
C
D
B
(A)2 (B)3 (C )4 (D)5
例2 如图,折叠矩形的一边AD,点D落在BC边上点F
处,已知AB=8,BC=10,则EC的长是
C
若把ABE沿折痕BE上翻,使 A点恰好落在CD上,此时,
E
AE:ED=5:3,BE=55,求矩形
的长和宽。
A
B
答案:矩形的长为10,宽为8。
4、求线段与面积间的变化关系
例5 已知一三角形纸片ABC,面积为25,BC的长为 10,B和C都为锐角,M为AB上的一动点(M与A、B 不重合),过点M作MN∥BC,交AC于点N,设MN=x.
。
=½(x-a/2)2+3/8 a2 . ∴当x=a∕2 时,Smin=(3∕8 )a2.
二、在“位置”方面的应用
由于图形折叠后,点、线、面等相应的位置 发生变化,带来图形间的位置关系重新组合。
1、线段与线段的位置关系
例6 将长方形ABCD的纸片, A
FH D
沿EF折成如图所示,延长C`E 交AD于H,连结GH。求证:
M
折起的面积最小,并求出这最小值。
B
解: 如图,设MN为折痕,折起部
分为梯形EGNM,B、E关于MN对
AE
称,所以BE⊥MN,且BO=EO,设
AE=x,则BE= 。
MO
由Rt△MOB∽
,得:
,F
∴BM=
=
=
.B
D G N
C D G N C
练习1 如图,有一块直角三角形 纸片,两直角边AC=6,BC=8,
A
现将直角边AC沿直线AD折叠,
E
使它落在斜边AB上,且与AE重 合,则CD等于( B )
C
D
B
(A)2 (B)3 (C )4 (D)5
例2 如图,折叠矩形的一边AD,点D落在BC边上点F
处,已知AB=8,BC=10,则EC的长是
C
若把ABE沿折痕BE上翻,使 A点恰好落在CD上,此时,
E
AE:ED=5:3,BE=55,求矩形
的长和宽。
A
B
答案:矩形的长为10,宽为8。
4、求线段与面积间的变化关系
例5 已知一三角形纸片ABC,面积为25,BC的长为 10,B和C都为锐角,M为AB上的一动点(M与A、B 不重合),过点M作MN∥BC,交AC于点N,设MN=x.
。
=½(x-a/2)2+3/8 a2 . ∴当x=a∕2 时,Smin=(3∕8 )a2.
二、在“位置”方面的应用
由于图形折叠后,点、线、面等相应的位置 发生变化,带来图形间的位置关系重新组合。
1、线段与线段的位置关系
例6 将长方形ABCD的纸片, A
FH D
沿EF折成如图所示,延长C`E 交AD于H,连结GH。求证:
M
折起的面积最小,并求出这最小值。
B
解: 如图,设MN为折痕,折起部
分为梯形EGNM,B、E关于MN对
AE
称,所以BE⊥MN,且BO=EO,设
AE=x,则BE= 。
MO
由Rt△MOB∽
,得:
,F
∴BM=
=
=
.B
D G N
C D G N C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图①
图②
针对训练 1. 如图,将长16 cm,宽8 cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF 的长为________.
第7题图
2.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF, 若∠BAE=55°,则∠D1AD=________.
3. 如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点 D恰好落在BC边上的G点处,若矩形ABCD面积为4 3 ,且∠AFG=60°,GE=2BG, 则折痕EF的长为________.
第9题图
2.如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点 C落在点H处,已知∠DGH=30°,连接BG,则∠AGB= ________.
3. 如图,将长方形纸片ABCD折叠,折痕为EF,若AB=2,BC=3,则阴影部分的周 长为________.
第5题图
4. 如图,矩形ABCD中,AB=5,BC=8,点P在AB上,AP=1.将矩形ABCD沿CP折叠, 点B落在点B′处.B′P、B′C分别与AD交于点E、F,则EF=________.
第6题图
折法3 如图矩形ABCD中,点E、F分别在AD、BC上,沿EF将四边形 ABFE折叠至四边形A′B′FE后,B′落在AD上,你能发现什么新的结论?
几何图形中的折叠问题
(1)定义:折叠是轴对称变换,折痕所在的直线就是对称轴,折叠前后的图形全等. (2)性质:折叠前后的两部分图形全等且关于折痕成________图形,对应边、角、线 段、周长、面积相等;折叠前后,对应点的连线被________垂直平分.
轴对称
图形
轴对称
性质
作图 方法
(1)成轴对称的两个图形________; (2)成轴对称的两个图形只有一条对称轴; (3)对应点连线被对称轴________
针对训练 1. 如图,矩形ABCD中,AB=4,BC=8,如果将该矩形沿对角线BD折叠,那么图中 阴影部分的面积是__ __.
第1题图
2. 如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形 OABC沿OB折叠,点C落在点D处,则点D的坐标为_______________.
边形、正六边形、圆等; 图形
与折叠有关的计算常用性质
1. 折叠问题的本质是全等变换,折叠前的部分与折叠后的部分是全等图形; ①线段相等:C′D=________,BC=________; ②角度相等:∠1=________,∠3=________; ③全等关系:△BC′D≌________. 2. 折痕可看作垂直平分线(对应的两点之间的连线被折痕垂直平分); 3. 折痕可看作角平分线(对应线段所在的直线与折痕的夹角相等).
第2题图
折法2 如图,点P在AD上,将△ABP沿BP折叠至△EBP,点A落在CD边的点E处, 你能发现什么新的结论?
拓展类型 那么下面的3种折法还有什么新的结论吗?
图②
(点P为A练 1. 如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的点F处,若DE=5, AB=8,则S△ABF∶S△FCE=________.
(1)找出原图形的关键点(各顶点),作出它们关于对称轴(或对称中心)的对称点; (2)根据原图形依次连接各对称点即可
图形的对称
图形
轴对称图形
判断方法
(1)找对称轴; (2)图形沿________折叠;
(3)对称轴两边图形__________
等腰三角形、等边三角形、菱形、矩形、正方形、正五 常见的轴对称
第8题图
折法4 如图矩形ABCD中,点E、F分别在AD、BC上,沿EF将四边形ABFE 折叠至四边形A′B′FE后,B′落在DC上,你能发现什么新的结论?
拓展类型 那么下面的折法还有什么新的结论吗?
针对训练 1. 如图,在矩形ABCD中,AB=12,BC=10,点F,G分别是AB、CD上的两点,连接 FG,将矩形ABCD沿FG折叠,使点B恰好落在AD边上的中点E处,连接BE,则折痕 FG的长为________.
第3题图
2. 如图,矩形ABCD中,E在BC上,BE=2CE,将矩形沿DE折叠,点C恰好落 在对角线BD上的点F处,若AB=3,则BF的长为________.
第4题图
3. 如图,正方形ABCD中,AB=6,E是CD的中点,将△ADE沿AE翻折至△AFE,连 接CF,则CF的长度是________.
针对训练
1如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将
△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于( )
A. 120° B. 108° C. 72°
D. 36°
以矩形折叠为例,列举以下几种类型: 折法1 如图,点P为矩形ABCD边AD上一点,当点P与点D重合时,沿BP将 △ABP折叠至△EBP,BE交CD于点H,你能发现什么新的结论?