七年级数学上册期中综合测试卷习题课件新版新人教版

合集下载

人教版七年级上册数学习题课件:第三章 一元一次方程

人教版七年级上册数学习题课件:第三章  一元一次方程

a=
.
分析 因为两个方程的解相同, 先求出方程 2x= 的解, 再将其代入方程 3(x+a)=a-5x中, 从而 求出a的值.
章末复习
母题2 (教材P83习题3.1第5题) 列方程:某校七年级1班共有学生48人, 其中 女生人数比男生 人数的 多3人, 这个班有男生多少人?
章末复习
考点:列方程. 考情:列方程是中考常见考题, 常以选择题和填空题的形式出现. 策略:设未知数找相等关系列方程.
B.20x+60(x+2)=280
C.20(x+2)+60x=280
D.20(x-2)+60x=280
章末复习
分析 根据相等关系“买甲种药材的钱+买乙种药材的钱=280元”列出 方程.我们可以列出表格, 使题目中的数量关系更加明确, 列表如下:
章末复习
链接4 [枣庄中考]五一期间, 某电器按成本价提高30%后标价,
章末复习
素养提升
专题 数形结合思想
【要点指导】列方程解应用题时, 正确地列出方程是关键. 在分析 应用题中的数量关系时, 数形结合思想是行之有效的方法. 由数思 形, 由形思数, 把数与形结合起来, 可以很方便地展示题中的数量 关系.
章末复习
例 甲、乙两地相距40千米, 摩托车的速度是45千米/时, 货车的速 度 是35千米/时. (1)若两车分别从甲、乙两地同时开出, 相向而行, 几小时后两车 相遇? (2)若两车分别从甲、乙两地同时开出, 同向而行, 几小时后, 摩托 车追 上货车?(摩托车出发点在货车出发点的后面) (3)若两车都从甲地到乙地, 要使两车同时到达, 货车应先出发几 小时?
D.2
解析 将x=3代入2x-a=1,得2×3-a=1,解得a=5.

2022秋七年级数学上册第1章有理数1.4有理数的乘除法第3课时有理数的除法习题课件新人教版

2022秋七年级数学上册第1章有理数1.4有理数的乘除法第3课时有理数的除法习题课件新人教版
第一章 有理数
1.4 有理数的乘除法 第3课时 有理数的除法
提示:点击 进入习题
1 倒数;1b;≠0
6C
7D
答案显示
2 见习题 3 C 4 C 5 A 8 除法 9 不变 10 C
11 D
12 见习题 13 B
14 A
15 见习题
16 见习题 17 见习题 18 见习题 19 见习题 20 见习题
【点拨】A.3+(-2)=1,故A不符合题意; B.3-(-2)=3+2=5,故B不符合题意; C.3×(-2)=-6,故C符合题意; D.(-3)÷(-2)=1.5,故D不符合题意.
【答案】C
*7.(2019·广东)有理数 a,b 在数轴上的对应点的位置如图所示, 下列式子成立的是( )
A.a>b C.a+b>0
A.-ba=-ab=-ab
B.--ba=- -ab=ab
C.--ab=ab
D.若 a>b,ab<0,则 a<0
12.有理数的除法可以转换为乘法,所以有理数的乘除混合 运算可以统一成乘法运算,其步骤为:
(1)__将__所__有__除__数__转__化__为__其__倒__数__,__将__除__法__转__化__为__乘__法________; (2)__运__用__乘__法__法__则__计__算__,__能__简__算__的__运__用__运__算__律__简__化__运__算____.
3.(教材 P34 例 5 变式)(2020·山西)计算(-6)÷-13的结果是( C )
A.-18
B.2
C.18
D.-2
4.下列把除法转换为乘法的过程中,正确的是( C ) A.13÷(-4)=-13×4 B.(-3)÷(-6)=3×-16 C.1÷(-4)=1×-14 D.(-3)÷4=3×14

人教版(2024)七年级数学上册习题练课件:3.1 课时2 列代数式

人教版(2024)七年级数学上册习题练课件:3.1 课时2 列代数式
小明步行10 km多用的时间,即
10


10
+5
h.
10.[2024北京朝阳区期末]用含字母的式子表示:
(1)与的和乘3的积的倒数;

解:
+
.
(2),两数的平方差;
− .
(3),两数和的平方的2倍.
+ .
11.[2024合肥包河区一模]某公司今年2月份的利润为万元,3月份比2月份
配送车按照系统预设线路自动上路行驶,并将邮件投送到指定快递自提点.
已知某天甲配送车投送快递件,乙配送车比甲配送车多投送6件,丙配
1
送车比乙配送车投送的件数的 多2,则丙配送车这天投送快递(
2
1
A.[
2
1
C.[
2
− 6 − 2]件
+ 6 − 2]件
1
B.[
2

1
D.[
2
− 6 + 2]件
个两位正整数可表示为10 + .
7.[2024张掖甘州中学期末]一次知识竞赛共有24道选择题,规定:答对一
道得3分,不答或答错一道扣1分,如果某位学生答对了道题,则用代数
式表示他的成绩(单位:分)为( D )
A.3 − 24 +
B.100 − 24 −
C.3
D.3 − 24 −
个篮球共需( C )
A.5元
B.6元
C. 3 + 2 元
D. 2 + 3 元
3.教材P72例3变式[2024忻州地区期末]超市出售某商品,先在原标价元
的基础上提价20%,再打八折,则商品现在的售价(单位:元)为( C )

人教版2024-2025学年七年级数学上册习题5.3(课件)

人教版2024-2025学年七年级数学上册习题5.3(课件)
习题 5.3
人教版·七年级上册
复习巩固
1. 结合本节内容体会例 2 后归纳的框图.
解:将实际问题转化为数学问题(列一元一次方程),
再通过解方程得到数学问题的解(x = a),最后将
得到的解代回原方程检验,得到实际问题的答案.
2. 制作一张桌子要用 1 个桌面和 4 条桌腿,1 m3 木材可制作 20 个桌面,或者制作 400 条桌腿. 现有 12 m3 木材,应怎样 计划用料才能制作尽可能多的桌子?
根据题意,得 4x 20 6x 20
4
5
.解得 x = 45.
答:此月人均定额是 45 件.
(2)如果甲组工人此月人均实际完成的工作量比乙组的多 2 件, 那么此月人均定额是多少件?
设此月人均定额是 y 件.
根据题意,得 4 y 20 6 y 20 2 .
4
5
解得 y = 35.
答:此月人均定额是 35 件.
(2)实验进行多长时间的温度是 34 ℃?
设实验开始 x min 后的温度是 34 ℃.
根据题意,得
10
+Leabharlann 25510
x = 34. 解得 x = 8.
答:实验进行 8 min 的温度是 34 ℃.
8. 某糕点厂中秋节前要制作一批盒装月饼,每盒中装 2 块大月饼 和 4 块小月饼. 制作 1 块大月饼要用 0.05 kg 面粉,制作 1 块小月 饼要用 0.02 kg 面粉. 现有面粉 4500 kg,应各用多少千克面粉制 作两种月饼,才能生产最多的盒装月饼?
4
怎样安排参与整理数据的具体人数?
解:设先安排 x 人整理 2 h.
根据题意,得 2x 8(5 + x) 3 .

2024年秋新人教版七年级上册数学教学课件 第四章 整式的加减 复习题 4

2024年秋新人教版七年级上册数学教学课件 第四章 整式的加减 复习题 4
第四章 整式的加减
复习题 4
R ·七 年 级 数 学 上 册
复习巩固
1. 下列整式中哪些是单项式?哪些是多项式?是 单项式的指出系数和次数,是多项式的指出项和
次数:
1 a2b, m4n2 , x2 y2 1, x,3x2 y 3xy2 x4 1,32t 3,2x y. 27
解: 1 a2b是单项式,系数为 1 ,次数为3;
原式= 1 mn 2 12
(4) 5x4+3x2y-8-3x2y-x4-2 原式=4x4-10
(5) 7ab-3a2b2+7+8ab2+2a2b2-3-5ab 原式=-a2b2+8ab2+2ab+4
4. 计算: (1) (4a3b-10b3)+(-3a2b2+10b3) 解:原式= 4a3b-10b3-3a2b2+10b3
解:(1) 5x2+4-3x2-5x-2x2-5+6x =(5-3-2)x2+(6-5)x+(4-5) =x-1.
当x=-3时,原式=-3-1=-4.
(2)
2
a2b
1 2
ab2
3
a2b 1
2ab2 1,
其中a=-2,b=2.
(2)
2
a2b
1 2
ab2
3
a2b 1
2ab2 1
1.从教材习题中选取. 2.完成练习册本课时的习题.
同学们,通过这节课的学习, 你有什么收获呢?
谢谢 大家
= 2a2b+ab2-3a2b+3-2ab2-1
= -a2b-ab2+2
当a=-2,b=2时,原式= -(-2)2×2-(-2)×22+2=2.

七年级数学上册第一章有理数单元综合测试卷(含解析)(新版)新人教版

七年级数学上册第一章有理数单元综合测试卷(含解析)(新版)新人教版

七年级数学上册第一章有理数单元综合测试卷(含解析)(新版)新人教版第一章 有理数考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________题号 一二三总分得分评卷人 得 分一.选择题(共10小题,满分40分,每小题4分)1.(4分)如果温度上升10℃记作+10℃,那么温度下降5℃记作( ) A .+10℃B .﹣10℃C .+5℃D .﹣5℃2.(4分)下列四个数中,是正整数的是( ) A .﹣1B .0C .21D .1 3.(4分)如图所示,数轴上A 、B 、C 三点表示的数分别为a 、b 、c ,下列说法正确的是( )A .a >0B .b >cC .b >aD .a >c 4.(4分)﹣8的相反数是( ) A .﹣8 B .81C .8D .﹣81 5.(4分)﹣2018的绝对值是( ) A .2018 B .﹣2018 C .20181 D .﹣201816.(4分)计算:0+(﹣2)=( ) A .﹣2 B .2C .0D .﹣207.(4分)已知a=(143﹣152)﹣161,b=143﹣(152﹣161),c=143﹣152﹣161,判断下列叙述何者正确?( )A .a=c ,b=cB .a=c ,b ≠cC .a ≠c ,b=cD .a ≠c ,b ≠c8.(4分)已知两个有理数a ,b ,如果ab <0且a+b >0,那么( ) A .a >0,b >0 B .a <0,b >0 C .a 、b 同号D .a 、b 异号,且正数的绝对值较大9.(4分)2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二.82.7万亿用科学记数法表示为( ) A .0.827×1014B .82.7×1012C .8.27×1013D .8.27×101410.(4分)如果四个互不相同的正整数m ,n ,p ,q ,满足(5﹣m )(5﹣n )(5﹣p )(5﹣q )=4,那么m+n+p+q=( )A .24B .21C .20D .22二.填空题(共4小题,满分20分,每小题5分)11.(5分)一只电子跳蚤从数轴原点出发,第一次向右跳一格,第二次向左跳两格,第三次向右跳三格,第四次向左跳四格…,按这样的规律跳100次,跳蚤所在的点为 . 12.(5分)如果|x|=6,则x= .13.(5分)某日的最高气温为5℃,最低气温为﹣5℃,则这一天的最高气温比最低气温高 ℃. 14.(5分)若a ≠b ,且a 、b 互为相反数,则ba= .三.解答题(共9小题,满分90分) 15.(8分)计算: (1)(32﹣43+61)÷121(2)﹣12×4﹣(﹣2)2÷216.(8分)①已知x 的相反数是﹣2,且2x+3a=5,求a 的值.②已知﹣[﹣(﹣a )]=8,求a 的相反数.17.(8分)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为5,求:x 3﹣x 2+(﹣cd )2017﹣(a+b )2018列的值18.(8分)已知a 的相反数是2,b 的绝对值是3,c 的倒数是﹣1. (1)写出a ,b ,c 的值;(2)求代数式3a (b+c )﹣b (3a ﹣2b )的值. 19.(10分)计算:﹣23+6÷3×32圆圆同学的计算过程如下: 原式=﹣6+6÷2=0÷2=0请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.20.(10分)奥运会期间,志愿者小王在奥运村一条东西向的道路上负责接送残疾运动员,如果规定向东为正,向西为负,某天上午的行车记录为(单位:千米):+8、﹣9、+4、+7、﹣2、﹣10、+6、﹣3、﹣7、+5.(1)最后一名残疾运动员的目的在小王出车地点什么方位、距离是多少? (2)若汽车耗油量为0.3升/千米,这天下午汽车共耗油多少升? 21.(12分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2. (1)直接写出a+b ,cd ,m 的值; (2)求m+cd+mba +的值. 22.(12分)探索规律:(1)计算并观察下列每组算式:⎩⎨⎧=⨯=⨯9788,⎩⎨⎧=⨯=⨯6455,⎩⎨⎧=⨯=⨯13111212;(2)已知25×25=625,那么24×26= ;(3)请用代数式把你从以上的过程中发现的规律表示出来. 23.(14分)(1)把左右两边计算结果相等的式子用线连接起来:(2)观察上面计算结果相等的各式之间的关系,可归纳得出:1﹣2n = (3)利用上述规律计算下式的值:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-222221001199114113112112018年秋七年级上学期 第一章 有理数 单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分) 1.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负,直接得出结论即可.【解答】解:如果温度上升10℃记作+10℃,那么下降5℃记作﹣5℃; 故选:D .【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负. 2.【分析】正整数是指既是正数还是整数,由此即可判定求解. 【解答】解:A 、﹣1是负整数,故选项错误; B 、0是非正整数,故选项错误; C 、21是分数,不是整数,错误; D 、1是正整数,故选项正确. 故选:D .【点评】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单. 3.【分析】直接利用数轴上A ,B ,C 对应的位置,进而比较得出答案. 【解答】解:由数轴上A ,B ,C 对应的位置可得: a <0,故选项A 错误; b <c ,故选项B 错误; b >a ,故选项C 正确; a <c ,故选项D 错误;故选:C .【点评】此题主要考查了数轴,正确得出各项符号是解题关键. 4.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案. 【解答】解:﹣8的相反数是8, 故选:C .【点评】此题主要考查了相反数,关键是掌握相反数的定义. 5.【分析】根据绝对值的定义即可求得. 【解答】解:﹣2018的绝对值是2018. 故选:A .【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键. 6.【分析】直接利用有理数的加减运算法则计算得出答案. 【解答】解:0+(﹣2)=﹣2. 故选:A .【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键. 7.【分析】根据有理数的减法的运算方法,判断出a 、c ,b 、c 的关系即可. 【解答】解:∵a=(143﹣152)﹣161=143﹣152﹣161,b=143﹣(152﹣161)=143﹣152+161,c=143﹣152﹣161, ∴a=c ,b ≠c . 故选:B .【点评】此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:有理数减法法则:减去一个数,等于加上这个数的相反数.8.【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.【点评】此题主要考查了有理数的加法和乘法法则,熟记法则是解本题的关键.9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:82.7万亿=8.27×1013,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【分析】由题意确定出m,n,p,q的值,代入原式计算即可求出值.【解答】解:∵四个互不相同的正整数m,n,p,q,满足(5﹣m)(5﹣n)(5﹣p)(5﹣q)=4,∴满足题意可能为:5﹣m=1,5﹣n=﹣1,5﹣p=2,5﹣q=﹣2,解得:m=4,n=6,p=3,q=7,则m+n+p+q=20,故选:C.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二.填空题(共4小题,满分20分,每小题5分)11.【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可. 【解答】解:0+1﹣2+3﹣4+5﹣6+…+99﹣100=﹣50, 故答案是:﹣50.【点评】主要考查了数轴及图形的变化类问题,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 12.【分析】绝对值的逆向运算,因为|+6|=6,|﹣6|=6,且|x|=6,所以x=±6. 【解答】解:|x|=6,所以x=±6. 故本题的答案是±6.【点评】绝对值具有非负性,绝对值是正数的数有两个,且互为相反数. 13.【分析】直接利用有理数的加减运算法则计算得出答案. 【解答】解:∵某日的最高气温为5℃,最低气温为﹣5℃, ∴这一天的最高气温比最低气温高:5﹣(﹣5)=10(℃). 故答案为:10.【点评】此题主要考查了有理数的加减,正确掌握运算法则是解题关键. 14.【分析】由a 、b 互为相反数可知a=﹣b ,然后代入计算即可. 【解答】解:∵a 、b 互为相反数, ∴a=﹣b . ∴1-=-=bbb a . 故答案为:﹣1.【点评】本题主要考查的是相反数的定义、有理数的除法,根据相反数的定义得到a=﹣b 是解题的关键.三.解答题(共9小题,满分90分) 15.【分析】(1)原式利用除法法则变形,再利用乘法分配律计算即可求出值; (2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值. 【解答】解:(1)原式=(32﹣43+61)×12=8﹣9+2=1; (2)原式=﹣4﹣2=﹣6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.【分析】①直接利用相反数的定义得出x 的值,进而得出a 的值; ②直接去括号得出a 的值,进而得出答案. 【解答】解:①∵x 的相反数是﹣2,且2x+3a=5, ∴x=2, 故4+3a=5, 解得:a=31;②∵﹣[﹣(﹣a )]=8, ∴a=﹣8, ∴a 的相反数是8.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键. 17.【分析】根据题意得出a+b=0、cd=1、x=5或x=﹣5,再分情况列式计算可得. 【解答】解:根据题意知a+b=0、cd=1、x=5或﹣5, 当x=5时,原式=53﹣52+(﹣1)2017﹣02018=125﹣25﹣1﹣1 =98;当x=﹣5时,原式=(﹣5)3﹣(﹣5)2+(﹣1)2017﹣02018=﹣125﹣25﹣1﹣1=﹣152.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握相反数的性质、倒数的定义、绝对值的性质及有理数的混合运算顺序和运算法则. 18.【分析】(1)根据a 的相反数是2,b 的绝对值是3,c 的倒数是﹣1,可以求得a 、b 、c 的值; (2)先对题目中的式子化简,然后将(1)a 、b 、c 的值代入即可解答本题. 【解答】解:(1)∵a 的相反数是2,b 的绝对值是3,c 的倒数是﹣1, ∴a=﹣2,b=±3,c=﹣1; (2)3a (b+c )﹣b (3a ﹣2b ) =3ab+3ac ﹣3ab+2b 2=3ac+2b 2,∵a=﹣2,b=±3,c=﹣1, ∴b 2=9,∴原式=3×(﹣2)×(﹣1)+2×9=6+18=24.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 19.【分析】圆圆的计算过程错误,写出正确的解题过程即可. 【解答】解:圆圆的计算过程不正确,正确的计算过程为:原式=﹣8+34=﹣320. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 20.【分析】(1)根据有理数的加法运算,可得答案; (2)根据单位耗油量乘以行车距离,可得共耗油量.. 【解答】解:(1)+8﹣9+4+7﹣2﹣10+6﹣3﹣7+5=﹣1(km ). 答:最后一名残疾运动员的目的在小王出车地点的正西1km (2)8+9+4+7+2+10+6+3+7+5=61(km ).61×0.3=18.3升. 答:这天下午汽车共耗油18.3升.【点评】本题考查了正数和负数,利用了有理数的加法运算.21.【分析】(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.【解答】解:(1)∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+mb a +=2+1+0=3; 当m=﹣2时,m+cd+m b a +=﹣2+1+0=﹣1. 【点评】本题考查了倒数、相反数、绝对值,解决本题的关键是熟记倒数、相反数、绝对值的意义.22.【分析】(1)利用乘法法则计算即可求出所求;(2)原式变形后,利用平方差公式计算即可求出值;(3)根据以上等式得出规律,写出即可.【解答】解:(1)⎩⎨⎧=⨯=⨯63976488,⎩⎨⎧=⨯=⨯24642555,⎩⎨⎧=⨯=⨯143131********;(2)已知25×25=625,那么24×26=624;(3)根据题意得:n 2=(n+1)(n ﹣1)+1.故答案为:(2)624【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.23.【分析】(1)根据有理数的乘法和乘方运算分别计算结果可得;(2)根据以上表格中的计算结果可得;(3)根据以上规律,将原式裂项、约分即可得.【解答】解:(1)把左右两边计算结果相等的式子用线连接起来:(2)观察上面计算结果相等的各式之间的关系,可归纳得出:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-n n n 1111112, 故答案为:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+n n 1111;(3)原式2001011001012110010110099454334322321100111001199119911411411311311211211=⨯=⨯⨯⨯⨯⨯⨯⨯⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+= 【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的乘法和乘方运算法则及数字的变化规律.。

人教版七年级上册数学习题课件-有理数的加减混合运算

人教版七年级上册数学习题课件-有理数的加减混合运算
【思路点拨】类比前三个等式中的裂项法进行裂项,即将加 数 1×12,2×13,…转化为 1-12,12-13,…,再进行求和运算.
C.分配律
D.加法交换律与加法结合律
13.下列各式运用加法结合律变形错.误.的是( C )
A.1+(-0.25)+(-0.75)=1+[(-0.25)+(-0.75)] B.1-2+3-4+5-6=(1-2)+(3-4)+(5-6) C. 34-12-16+23=43-12+61+23 D.(-8)+(-3)+6+2=[(-8)+(-3)]+(6+2)
2.把(-19)-(+31)+(-26)-(-7)改写成全部是加 法运算的算式为__(-__1_9_)_+__(_-__3_1_)+__(_-__2_6_)_+__7__.
3.把-21-26-31+17写成加法运算的形式是( B ) A.(-21)-(+26)-(+31)+17 B.(-21)+(-26)+(-31)+17 C.(-21)+(+26)+(+31)+17 D.(-21)+(-26)+(+31)+(-17)
答案显示
13 C
省略括号和加号;加
16 法交换律和加法结合
律;使计算简便.-18
计算过程中用到了加法交
14 换律和加法结合律 ,在第 17 a+b+d
一步运用了; 同号两数相加,
取相同的符号,并把绝对 值相加.
15 9.65; -4
18
92分,70分; 50%;80分
n
19 n+1
1.有理数的加减混合运算可以统一为__加__法____运算,即a+b -c=a+b+__(-__c_)___.
一步运用了. (2)写出第二步的加法运算法则. 解:第二步的加法运算法则是:同号两数相加,取相同

人教版七年级上册数学习题课件第2章全章热门考点整合应用

人教版七年级上册数学习题课件第2章全章热门考点整合应用

8 如果单项式2x2y2n+2与-3y2-nx2是同类项,那么n等
于( A )
A.0
B.-1 C.1
D.2
全章热门考点
【点拨】 因为单项式2x2y2n+2与-3y2-nx2是同类项,所以2ຫໍສະໝຸດ +2=2-n,解得n=0,故选A.
全章热门考点
9 下列计算中,正确的是( C ) A.7a+a=7a2 B.5y-3y=2 C.3x2y-2yx2=x2y D.3a+2b=5ab
全章热门考点
3 下列关于单项式-3x5y2的说法中,正确的是( D ) A.系数是-35,次数是 2 B.系数是35,次数是 2 C.系数是-3,次数是 3 D.系数是-35,次数是 3
全章热门考点
4 若关于x,y的单项式2xym与-ax2y2的系数、次数均相 同,试求a,m的值. 解:因为关于x,y的单项式2xym与-ax2y2的系数、次 数均相同, 所以-a=2,1+m=4,解得a=-2,m=3.
全章热门考点
7 把下列各式填在相应的大括号里:-53x2,2y,aa+bb,xy2,
m2-5m,54-x,0,-π.
(1)单项式:{ -53x2,xy2,0,-π, …}
(2)多项式:{
m2-5m,54-x, …}
(3)整式:{ -53x2,xy2,m2-5m,54-x,0,-π,…}
全章热门考点
全章热门考点
10 下列计算中,正确的是( A ) A.3a-(2a-c)=3a-2a+c B.3a+2(2b-3c)=3a+4b-3c C.6a+(-2b+5)=6a+2b-5 D.(5x-3y)-(2x-y)=5x+3y-2x+y
全章热门考点
【点拨】 3a-(2a-c)=3a-2a+c,故选项A正确;3a+
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档