数据结构实验 - 图的储存与遍历
数据结构实验五---图的遍历及其应用实现

数据结构实验五---图的遍历及其应用实现实验五图的遍历及其应用实现一、实验目的1.熟悉图常用的存储结构。
2.掌握在图的邻接矩阵和邻接表两种结构上实现图的两种遍历方法实现。
3.会用图的遍历解决简单的实际问题。
二、实验内容[题目] :从键盘上输入图的顶点和边的信息,建立图的邻接表存储结构,然后以深度优先搜索和广度优先搜索遍历该图,并输出起对应的遍历序列. 试设计程序实现上述图的类型定义和基本操作,完成上述功能。
该程序包括图类型以及每一种操作的具体的函数定义和主函数。
三、实验步骤(一)、数据结构与核心算法的设计描述:本实验主要在于图的基本操作,关键是图的两种遍历,仔细分析图的遍历的特点,不难发现,其符合递归的特点,因此可以采用递归的方法遍历。
本实验图的存储结构主要采用邻接表,总共分为四个模块:图的创建、位置的查找、深度优先遍历、广度优先遍历。
以下是头文件中数据结构的设计和相关函数的声明:#include#include#include#nclude#define OVERFLOW -2#define MAX_VERTEX_NUM 50 //最大顶点数#define MAXQSIZE 100# define OK 1typedef int VRType;typedef int InfoType;typedef int QElemType;typedef enum{DG,DN,UDG,UDN}GraphKind;typedef struct ArcNode // 弧结点{int adjvex; //邻接点域,存放与Vi邻接的点在表头数组中的位置struct ArcNode *nextarc; //链域指向vi的下一条边或弧的结点,InfoType *info; //定义与弧相关的权值,无权则为0 }ArcNode;typedef struct VNode //表头结点{char vexdata; //存放顶点信息struct ArcNode *firstarc; //指示第一个邻接点}VNode,AdjList[MAX_VERTEX_NUM];typedef struct{ //图的结构定义AdjList vertices; //顶点向量int vexnum, arcnum; //vexnum为顶点数arcnum为弧或边的个数GraphKind kind; // 图的种类标志}MGraph;typedef struct Queue //构建循环队列{QElemType *base;int front;int rear;}Queue;void CreateGraph(MGraph &G); //图的创建void DFSTraverse(MGraph &G) ; //深度优先遍历void BFSTraverse(MGraph &G); //广度优先遍历int LocateVex(MGraph &G, char &v);//查找顶点v的位置(二)、函数调用及主函数设计void main(){int x;MGraph G;CreateGraph(G);cout<<"创建图成功!"<<endl;< p="">cout<<"1 深度优先搜索"<<endl<<"2 p="" 广度优先搜索"<<endl;<="">cin>>x;if(x==1){DFSTraverse(G);cout<<"深度优先搜索结束!"<<endl;< p="">}else if(x==2){BFSTraverse(G);cout<<"广度优先搜索结束!"<<endl;< p="">}elsecout<<"输入有误!"<<endl<<"再见!"<<endl;< p="">}(三)、实验总结由于图的基本操作在图这一章节中起着很主要的作用,所以在实验前就对实验做了充分的准备,实验的成功核心在于两种遍历的实现,因此只有充分理解遍历算法的精髓,才能更好的做好实验。
数据结构实验报告图的遍历

数据结构实验报告图的遍历一、实验目的本实验旨在通过实践的方式学习图的遍历算法,掌握图的深度优先搜索(DFS)和广度优先搜索(BFS)的实现方法,加深对数据结构中图的理解。
二、实验步骤1. 创建图的数据结构首先,我们需要创建一个图的数据结构,以方便后续的操作。
图可以使用邻接矩阵或邻接表来表示,这里我们选择使用邻接矩阵。
class Graph:def__init__(self, num_vertices):self.num_vertices = num_verticesself.adj_matrix = [[0] * num_vertices for _ in range(num_vertic es)]def add_edge(self, v1, v2):self.adj_matrix[v1][v2] =1self.adj_matrix[v2][v1] =1def get_adjacent_vertices(self, v):adjacent_vertices = []for i in range(self.num_vertices):if self.adj_matrix[v][i] ==1:adjacent_vertices.append(i)return adjacent_vertices2. 深度优先搜索(DFS)DFS是一种遍历图的算法,其基本思想是从图的某一顶点开始,沿着一条路径一直走到最后,然后返回尚未访问过的顶点继续遍历,直到所有顶点都被访问过为止。
def dfs(graph, start_vertex):visited = [False] * graph.num_verticesstack = [start_vertex]while stack:vertex = stack.pop()if not visited[vertex]:print(vertex)visited[vertex] =Truefor neighbor in graph.get_adjacent_vertices(vertex):if not visited[neighbor]:stack.append(neighbor)3. 广度优先搜索(BFS)BFS同样是一种遍历图的算法,其基本思想是从图的某一顶点开始,首先访问其所有邻接点,然后再依次访问邻接点的邻接点,直到所有顶点都被访问过为止。
数据结构课程设计报告样本(图的存储与遍历)

这是最后提交的文档资料格式,必须包含几个部分完成要求不少于50页。
《数据结构》课程设计题目图的存储与遍历学生姓名指导教师学院专业班级完成时间目录(要求自动生成)第一章课程设计目的 (2)第二章课程设计内容和要求 (2)第三章课程设计分析 (3)第四章算法描述 (4)第五章源代码 (8)第六章运行结果分析 (13)第七章结束语 (15)第八章参考文献 (15)第一章课程设计目的本学期我们对《数据结构》这门课程进行了学习。
这门课程是一门实践性非常强的课程,为了让大家更好地理解与运用所学知识,提高动手能力,我们进行了此次课程设计实习。
这次课程设计不但要求实习者掌握《数据结构》中的各方面知识,还要求实习者具备一定的C语言基础和编程能力。
具体说来,这次课程设计主要有两大方面目的。
一是让实习者通过实习掌握《数据结构》中的知识。
对于《图的存储与遍历》这一课题来说,所要求掌握的数据结构知识主要有:图的邻接表存贮结构、队列的基本运算实现、邻接表的算法实现、图的广度优先搜索周游算法实现、图的深度优先搜索周游算法实现。
二是通过实习巩固并提高实习者的C语言知识,并初步了解Visual C++的知识,提高其编程能力与专业水平。
第二章课程设计内容和要求2.1课程设计内容该课题要求以邻接表的方式存储图,输出邻接表,并要求实现图的深度、广度两种遍历。
2.1.1图的邻接表的建立与输出对任意给定的图(顶点数和边数自定),并且对有向图与无向图都应进行讨论,根据邻接表的存储结构建立图的邻接表并输出之。
尽量用图形化的方式输出邻接表。
2.1.2 图的遍历的实现图的遍历包括图的广度优先遍历与深度优先遍历。
对于广度优先遍历应利用队列的五种基本运算(置空队列、进队、出队、取队头元素、判队空)来实现。
首先建立一空队列,从初始点出发进行访问,当被访问时入队,访问完出队。
并以队列是否为空作为循环控制条件。
对于深度优先遍历则采用递归或非递归算法来实现。
数据结构-实验6图的存储和遍历

实验6.1实现图的存储和遍历一,实验目的掌握图的邻接矩阵和邻接表存储以及图的邻接矩阵存储的递归遍历。
二,实验内容6.1实现图的邻接矩阵和邻接表存储编写一个程序,实现图的相关运算,并在此基础上设计一个主程序,完成如下功能:(1)建立如教材图7.9所示的有向图G的邻接矩阵,并输出。
(2)由有向图G的邻接矩阵产生邻接表,并输出。
(3)再由(2)的邻接表产生对应的邻接矩阵,并输出。
6.2 实现图的遍历算法(4)在图G的邻接矩阵存储表示基础上,输出从顶点V1开始的深度优先遍历序列(递归算法)。
(5)利用非递归算法重解任务(4)。
(6)在图G的邻接表存储表示基础上,输出从顶点V1开始的广度优先遍历序列。
三,源代码及结果截图#include<stdio.h>#include<stdlib.h>#include<string.h>#include<iostream.h>#include<malloc.h>#define MAX_VERTEX_NUM 20typedef char VRType;typedef int InfoType; // 存放网的权值typedef char VertexType; // 字符串类型typedef enum{DG,DN,AG,AN}GraphKind; // {有向图,有向网,无向图,无向网}/*建立有向图的邻接矩阵*/typedef struct ArcCell{VRType adj;//VRType是顶点关系类型,对无权图用1或0表示是否相邻;对带权图则为权值类型InfoType *info; //该弧相关信息的指针(可无)}ArcCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];typedef struct{VertexType vexs[MAX_VERTEX_NUM];//顶点向量AdjMatrix arcs;//邻接矩阵int vexnum,arcnum;;//图的当前顶点数和弧数GraphKind kind;//图的种类标志}MGraph;/* 顶点在顶点向量中的定位*/int LocateVex(MGraph &M,VRType v1){int i;for(i=0;i<M.vexnum;i++)if(v1==M.vexs[i])return i;return -1;}void CreateGraph(MGraph &M)//建立有向图的邻接矩阵{int i,j,k,w;VRType v1,v2;M.kind=DN;printf("构造有向网:\n");printf("\n输入图的顶点数和边数(以空格作为间隔):");scanf("%d%d",&M.vexnum,&M.arcnum);printf("输入%d个顶点的值(字符):",M.vexnum);getchar();for(i=0;i<M.vexnum;i++) //输入顶点向量{scanf("%c",&M.vexs[i]);}printf("建立邻接矩阵:\n");for(i=0;i<M.vexnum;i++)for(j=0;j<M.vexnum;j++){M.arcs[i][j].adj=0;M.arcs[i][j].info=NULL;}printf("请顺序输入每条弧(边)的权值、弧尾和弧头(以空格作为间隔):\n");for(k=0;k<M.arcnum;++k)// 构造表结点链表{cin>>w>>v1>>v2;i=LocateVex(M,v1);j=LocateVex(M,v2);M.arcs[i][j].adj=w;}}//按邻接矩阵方式输出有向图void PrintGraph(MGraph M){int i,j;printf("\n输出邻接矩阵:\n");for(i=0; i<M.vexnum; i++){printf("%10c",M.vexs[i]);for(j=0; j<M.vexnum; j++)printf("%2d",M.arcs[i][j].adj);printf("\n");}}// 图的邻接表存储表示typedef struct ArcNode{int adjvex; // 该弧所指向的顶点的位置struct ArcNode *nextarc; // 指向下一条弧的指针InfoType *info; // 网的权值指针)}ArcNode; // 表结点typedef struct VNode{VertexType data; // 顶点信息ArcNode *firstarc; // 第一个表结点的地址,指向第一条依附该顶点的弧的指针}VNode,AdjList[MAX_VERTEX_NUM];// 头结点typedef struct{AdjList vertices;int vexnum,arcnum; // 图的当前顶点数和弧数int kind; // 图的种类标志}ALGraph;void CreateMGtoDN(ALGraph &G,MGraph &M){//由有向图M的邻接矩阵产生邻接表int i,j;ArcNode *p;G.kind=M.kind;G.vexnum=M.vexnum;G.arcnum=M.arcnum;for(i=0;i<G.vexnum;++i){//构造表头向量G.vertices[i].data=M.vexs[i];G.vertices[i].firstarc=NULL;//初始化指针}for(i=0;i<G.vexnum;++i)for(j=0;j<G.vexnum;++j)if(M.arcs[i][j].adj){p=(ArcNode*)malloc(sizeof(ArcNode));p->adjvex=j;p->nextarc=G.vertices[i].firstarc;p->info=M.arcs[i][j].info;G.vertices[i].firstarc=p;}}void CreateDNtoMG(MGraph &M,ALGraph &G){ //由邻接表产生对应的邻接矩阵int i,j;ArcNode *p;M.kind=GraphKind(G.kind);M.vexnum=G.vexnum;M.arcnum=G.arcnum;for(i=0;i<M.vexnum;++i)M.vexs[i]=G.vertices[i].data;for(i=0;i<M.vexnum;++i){p=G.vertices[i].firstarc;while(p){M.arcs[i][p->adjvex].adj=1;p=p->nextarc;}//whilefor(j=0;j<M.vexnum;++j)if(M.arcs[i][j].adj!=1)M.arcs[i][j].adj=0;}//for}//输出邻接表void PrintDN(ALGraph G){int i;ArcNode *p;printf("\n输出邻接表:\n");printf("顶点:\n");for(i=0;i<G.vexnum;++i)printf("%2c",G.vertices[i].data);printf("\n弧:\n");for(i=0;i<G.vexnum;++i){p=G.vertices[i].firstarc;while(p){printf("%c→%c(%d)\t",G.vertices[i].data,G.vertices[p->adjvex].data,p->info);p=p->nextarc;}printf("\n");}//for}int visited[MAX_VERTEX_NUM]; // 访问标志数组(全局量)void(*VisitFunc)(char* v); // 函数变量(全局量)// 从第v个顶点出发递归地深度优先遍历图G。
图的两种存储和遍历.doc

图的两种存储和遍历实验7图的两种存储和遍历一、实验内容:(1)键盘输入数据,分别建立有向图和无向图邻接表。
(2)输出邻接表。
(3)基于有向图的邻接表计算每个顶点的度,并输出。
(4)利用邻接表存储实现无向图的深度优先遍历。
(5)利用邻接表存储实现无向图的广度优先遍历。
(6)在主功能中设计一个简单的菜单,分别调试上述算法。
第二,源代码:#包含#包含#定义最大顶点数20 #定义确定1 #定义错误0 #定义溢出0 int访问[最大顶点数];//表节点typedef结构ArcNode { int adjvex构造ArcNode * nextarcchar * info} ArcNode//头节点typedef结构VNode {char数据;弧节点*首弧;}虚拟节点,列出[最大顶点数];//图结构typedef结构{AdjList顶点;int vexnum,arcnum} ALGraph//用于BFS遍历的附加链队列节点结构typedefstructqcode {intdata};结构QNode *下一步;}QNode,* QueuePtr//链队列typedef结构{QueuePtr前端;队列后部;}链接队列;//初始化链组intinitqueue(link queue q){ q . front=q . reason=(queue ptr)malloc(sizeof(qcode));如果(!Q.front)出口(OVERFLOW);问:前线-一、实验内容:(1)键盘输入数据,分别建立有向图和无向图邻接表。
(2)输出邻接表。
(3)基于有向图的邻接表计算每个顶点的度,并输出。
(4)利用邻接表存储实现无向图的深度优先遍历。
(5)利用邻接表存储实现无向图的广度优先遍历。
(6)在主功能中设计一个简单的菜单,分别调试上述算法。
第二,源代码:#包含#包含#定义最大顶点数20 #定义确定1 #定义错误0 #定义溢出0 int访问[最大顶点数];//表节点typedef结构ArcNode { int adjvex构造ArcNode * nextarcchar * info} ArcNode//头节点typedef结构VNode {char数据;弧节点*首弧;}虚拟节点,列出[最大顶点数];//图结构typedef结构{AdjList顶点;int vexnum,arcnum} ALGraph//用于BFS遍历的附加链队列节点结构typedefstructqcode {intdata};结构QNode *下一步;}QNode,* QueuePtr//链队列typedef结构{QueuePtr前端;队列后部;}链接队列;//初始化链组intinitqueue(link queue q){ q . front=q . reason=(queue ptr)malloc(sizeof(qcode));如果(!Q.front)出口(OVERFLOW);q . front:wordfan div;I)。
数据结构实验报告-图的遍历

数据结构实验报告实验:图的遍历一、实验目的:1、理解并掌握图的逻辑结构和物理结构——邻接矩阵、邻接表2、掌握图的构造方法3、掌握图的邻接矩阵、邻接表存储方式下基本操作的实现算法4、掌握图的深度优先遍历和广度优先原理二、实验内容:1、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接矩阵存储改图。
2、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接表存储该图3、深度优先遍历第一步中构造的图G,输出得到的节点序列4、广度优先遍历第一部中构造的图G,输出得到的节点序列三、实验要求:1、无向图中的相关信息要从终端以正确的方式输入;2、具体的输入和输出格式不限;3、算法要具有较好的健壮性,对错误操作要做适当处理;4、程序算法作简短的文字注释。
四、程序实现及结果:1、邻接矩阵:#include <stdio.h>#include <malloc.h>#define VERTEX_MAX 30#define MAXSIZE 20typedef struct{intarcs[VERTEX_MAX][VERTEX_MAX] ;int vexnum,arcnum;} MGraph; void creat_MGraph1(MGraph *g) { int i,j,k;int n,m;printf("请输入顶点数和边数:");scanf("%d%d",&n,&m);g->vexnum=n;g->arcnum=m;for (i=0;i<n;i++)for (j=0;j<n;j++)g->arcs[i][j]=0;while(1){printf("请输入一条边的两个顶点:\n");scanf("%d%d",&i,&j);if(i==-1 || j==-1)break;else if(i==j || i>=n || j>=n){printf("输入错误,请重新输入!\n");}else{g->arcs[i][j]=1;g->arcs[j][i]=1;}}}void printMG(MGraph *g) {int i,j;for (i=0;i<g->vexnum;i++){for (j=0;j<g->vexnum;j++)printf(" %d",g->arcs[i][j]);printf("\n");}printf("\n");}main(){int i,j;int fg;MGraph *g1;g1=(MGraph*)malloc(sizeof(MGraph));printf("1:创建无向图的邻接矩阵\n\n");creat_MGraph1(g1);printf("\n此图的邻接矩阵为:\n"); printMG(g1);}2、邻接链表:#include<stdio.h>#include<malloc.h>#define MAX_SIZE 10typedef struct node{int vertex;struct node *next;}node,adjlist[MAX_SIZE];adjlist g;int visited[MAX_SIZE+1];int que[MAX_SIZE+1];void creat(){int n,e;int i;int start,end;node *p,*q,*pp,*qq;printf("输入无向图的顶点数和边数:");scanf("%d%d",&n,&e);for(i = 1; i <= n ; i++){visited[i] = 0;g[i].vertex = i;g[i].next = NULL;}printf("依次输入边:\n");for(i = 1; i <= e ; i++){scanf("%d%d",&start,&end);p=(node *)malloc(sizeof(node));p->vertex = end;p->next = NULL;q = &g[start];while(q->next)q = q->next;q->next = p;p1=(node*)malloc(sizeof(node));p1->vertex = start;p1->next = NULL;q1 = &g[end];while(qq->next)q1 = q1->next;q1->next = p1;}}void bfs(int vi){int front,rear,v;node *p;front =0;rear = 1;visited[vi] = 1;que[0] = vi;printf("%d ",vi);while(front != rear){v = que[front];p = g[v].next;while(p){if(!visited[p->vertex]){visited[p->vertex]= 1;printf("%d",p->vertex);que[rear++] = p->vertex;}p = p->next;}front++;}}int main(){creat();bfs(1);printf("\n");return 0;}五.实验心得与体会:(1)通过这次实验,使我基本上掌握了图的存储和遍历,让我弄清楚了如何用邻接矩阵和邻接链表对图进行存储(2)深度优先遍历和广度优先遍历都有着各自的优点,通过程序逐步调试,可以慢慢的理解这两种遍历方法的内涵和巧妙之处。
数据结构课程实验(图的存储与遍历)

实验五图的存储与遍历1、实验目的掌握图这种复杂的非线性结构的邻接矩阵和邻接表的存储表示,以及在此两种常用存储方式下深度优先遍历(dfs)和广度优先遍历(BFS)操作的实现。
2、实验预备知识(1)图的存储结构:邻接矩阵表示法和邻接表表示法。
邻接矩阵表示法除了要用一个二维数组存储用于表示顶点间相邻关系的邻接矩阵外,还需用一个一维数组来存储顶点信息,另外还有图的顶点数和边数。
邻接表表示法类似于树的孩子链表表示法。
(2)图的遍历方法有深度优先遍历(Depth-First Traersal)和广度优先遍历(Breadth-First Traversal),简称 DFS和BFS。
DFS对图遍历时尽可能先对纵深方向进行搜索;BFS是类似于树的按层次遍历。
3、实验内容题目1对以邻接矩阵为存储结构的图进行 DFS和 BFS遍历(1) 问题描述:以邻接矩阵为图的存储结构,实现图的DFS和BFS遍历。
(2) 基本要求:建立一个图的邻接矩阵表示,输出顶点的一种DFS和BFS序列。
(3) 测试数据:如图4.18所示。
(4) 实现提示:图的DFS遍历可通过递归调用或用栈来实现。
其思想是:只要当前结点未访问过,就访问该结点,沿着其一条分支深入下去,每深入一个未访问过的结点,就访问这个结点,然后从这个结点继续进行DFS遍历。
在这一过程中,若深入时遇到一个已访问过的结点,则查找是否有与这个结点相邻的下一个未访问过的结点。
若有则继续深人,否则将退回到这个结点的前一个结点,再找下一个相邻的本访问过的结点,……如此进行下去,直到所有的结点都被访问过。
BFS遍历可利用队列来帮助实现,也可以用栈。
实现方法与二叉树的层次遍历类似。
题目2对以邻接表为存储结构的图进行DFS和BFS遍历(1) 问题描述:以邻接表为存储结构,实现图的DFS和BFS遍历。
(2) 基本要求:建立一个图的邻接表存储,输出顶点的一种DFS和BFS序列。
(3) 测试数据:如图4.19所示:(4) 实现提示:以邻接表为存储结构的图的DFS和BFS算法的实现思想与以邻接矩阵为存储结构的实现是一样的。
图的存储与遍历

void BFSTraverse(Graph G)
{ //按广度优先非递归遍历图G。类似于树的层次遍历。 for (v=0; v<G.vexnum; ++v) visited[v]=0; //访问标志初始化 InitQueue(Q); //辅助队列Q for(v=0; v<G.vexnum; ++v)
}//while
例:下图采用邻接矩阵存储结构,给出从顶点A出发的 深度优先和广度优先遍历图的序列。
A B C E
深度优先遍历序列:A B E C D
D
if( !visited[v] ) //v尚未访问,从v出发广度优先遍历
{
}//BFSTraverse 下页显示
}//if
//从v出发广度优先遍历
visited[v]=1; Visit(v); EnQueue(Q, v); //访问v,并入队 while( !QueueEmpty(Q) )
{ //队不空时
i=LocateVex(G,v1); j=LocateVex(G,v2); G.arcs[i][j].adj=w ;//弧<v1,v2> 的权值 int LocateVex(MGraph G,char u) //若弧含有相关信息,则输入 { int i; if (IncInfo) Input ; for(*G.arcs[i][j].info) (i=0;i<G.vexnum;i++) if (G.vexs[i] = =u) return i; G.arcs[j][i]=G.arcs[i][j] ; } //置<v1,v2>的对称弧<v2,v1>
(2)仔细分析实验内容,给出生成图和遍历图的算 法思想和算法流程图; (3)实现图的邻接矩阵、邻接表存储,并分别进行 深度和广度优先遍历; (4)给出测试数据,并分析其结果;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的掌握图这种复杂的非线性结构的邻接矩阵和邻接表的存储表示,以及在此两种常用存储方式下深度优先遍历(DFS)和广度优先遍历(BFS)操作的实现。
二、实验内容与实验步骤题目1:对以邻接矩阵为存储结构的图进行DFS 和BFS 遍历问题描述:以邻接矩阵为图的存储结构,实现图的DFS 和BFS 遍历。
基本要求:建立一个图的邻接矩阵表示,输出顶点的一种DFS 和BFS 序列。
测试数据:如图所示题目2:对以邻接表为存储结构的图进行DFS 和BFS 遍历问题描述:以邻接表为图的存储结构,实现图的DFS 和BFS 遍历。
基本要求:建立一个图的邻接表存贮,输出顶点的一种DFS 和BFS 序列。
测试数据:如图所示三、附录:在此贴上调试好的程序。
#include<stdio.h>#include<malloc.h>#include<string.h>⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=010*******010101000100010A#define M 100typedef struct node{char vex[M][2];int edge[M ][ M ];int n,e;}Graph;int visited[M];Graph *Create_Graph(){ Graph *GA;int i,j,k,w;GA=(Graph*)malloc(sizeof(Graph));printf ("请输入矩阵的顶点数和边数(用逗号隔开):\n");scanf("%d,%d",&GA->n,&GA->e);printf ("请输入矩阵顶点信息:\n");for(i = 0;i<GA->n;i++)scanf("%s",&(GA->vex[i][0]),&(GA->vex[i][1]));for (i = 0;i<GA->n;i++)for (j = 0;j<GA->n;j++)GA->edge[i][j] = 0;for (k = 0;k<GA->e;k++){ printf ("请输入第%d条边的顶点位置(i,j)和权值(用逗号隔开):",k+1);scanf ("%d,%d,%d",&i,&j,&w);GA->edge[i][j] = w;}return(GA);}void dfs(Graph *GA, int v){ int i;printf("%c%c\n",GA->vex[v][0],GA->vex[v][1]);visited[v]=1;for(i=0; i<GA->n; i++)if (GA->edge[v][i]==1 && visited[i]==0) dfs(GA, i);}void traver(Graph *GA){ int i;for(i=0; i<GA->n; i++)visited[i]=0;for(i=0; i<GA->n;i++)if(visited[i]==0)dfs(GA, i);}void bfs( Graph *GA, int v){ int j,k,front=-1,rear=-1;int Q[M];printf("%c%c\n",GA->vex[v][0],GA->vex[v][1]); visited[v]=1;rear=rear+1;Q[rear]=v;while (front!=rear){ front=front+1;k=Q[front];for (j=0; j<GA->n; j++)if (GA->edge[k][j]==1 && visited[j]==0){ printf("%c%c\n",GA->vex[j][0],GA->vex[j][1]);visited[j]=1;rear=rear+1;Q[rear]=j;}}}void traver1(Graph *GA){ int i;for (i=0; i<GA->n;i++)visited[i]=0;for (i=0; i<GA->n; i++)if (visited[i]==0)bfs(GA, i);}typedef struct NODE{ int adjvex;struct NODE *next;}ENode;typedef struct NODE1{ char vex[2];ENode *first;} VexNode;typedef struct FS1{VexNode GL[M];int bian,top;}FS;FS *CreateGL( ){ FS *kk=(FS *)malloc(sizeof(FS));int i,j,k;ENode *s;printf("请输入顶点数和边数(用逗号隔开):\n");scanf("%d,%d",&kk->top, &kk->bian);printf("请输入顶点信息:\n");for (i=0; i<kk->top; i++){ scanf("%s",kk->GL[i].vex);kk->GL[i].first=NULL; }printf("请输入边的信息(i,j):\n");for (k=0;k<kk->bian;k++){ scanf("\n%d,%d",&i,&j);s =(ENode*)malloc(sizeof(ENode));s->adjvex=j;s->next=kk->GL[i].first;kk->GL[i].first =s;}return kk;}void DFS(FS *kk, int v){ ENode *w; int i;printf("%s\n",kk->GL[v].vex); visited[v]=1;w=kk->GL[v].first ;while (w!=NULL){ i=w->adjvex;if (visited[i]==0)DFS(kk,i);w=w->next;}}void TRAVER(FS *kk){ int i;for(i=0; i<kk->top;i++)visited[i]=0;for(i=0; i<kk->top; i++)if(visited[i]==0)DFS(kk, i);}void BFS(FS *kk, int v){ int Q[M], front=-1,rear=-1;ENode *w;int i, k;printf("%s\n",kk->GL[v].vex);visited[v]=1;rear=rear+1; Q[rear]=v;while (front!=rear){ front=front+1;k=Q[front];w=kk->GL[k].first;while(w!=NULL){ i=w->adjvex;if( visited[i]==0){ visited[i]=1; printf("%s",kk->GL[i].vex);rear=rear+1; Q[rear]=i;}w=w->next;}}}void TRAVER1(FS *kk){ int i;for(i=0; i<kk->top;i++) visited[i]=0;for(i=0; i <kk->top;i++)if(visited[i]==0)BFS(kk,i);}int main(){int i=0;Graph *p;FS *q;while(i=1){/*建立菜单*/char jz[30]={"1.创建邻接矩阵"};char jd[30]={"2.邻接矩阵DFS遍历"};char jb[30]={"3.邻接矩阵BFS遍历"};char bg[30]={"4.创建邻接表"};char bd[30]={"5.邻接表DFS遍历"};char bb[30]={"6.邻接表BFS遍历"};char tc[30]={"7.退出"};char mn[30]={"菜单"};int l=strlen(jd);int o=strlen(mn);int m,n;printf("\n");for(m=0;m<=(2*l-o)/2;m++)printf(" ");printf("%s",mn);for(m=0;m<=(2*l-o)/2;m++)printf(" ");printf("\n");for(m=0;m<=2*l;m++)printf("*");printf("\n");printf("* %s *\n* %s*\n* %s *\n* %s *\n* %s *\n* %s *\n* %s*\n",jz,jd,jb,bg,bd,bb,tc);for(m=0;m<=2*l;m++)printf("*");printf("\n");/*选择功能*/printf("请输入所需功能序号:");scanf("%d",&n);switch(n){case 1: p=Create_Graph();break;case 2: traver(p);break;case 3: traver1(p);break;case 4: q=CreateGL();break;case 5: TRAVER(q);break;case 6: TRAVER1(q);break;case 7: return 0;default:printf("输入功能序号有误!\n");}}return 0;}四、运行结果:在此把运行结果从屏幕上拷下来贴在此五、心得体会:测试数据要注意现实中矩阵是从1开始,而数组里是从0开始。