最新图形的相似单元复习

合集下载

相似单元测试题及答案

相似单元测试题及答案

相似单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪项不是相似图形的特点?A. 形状相同B. 面积相等C. 大小相同D. 角度相同2. 相似比的定义是什么?A. 两个图形对应边长的比B. 两个图形对应角的比C. 两个图形对应面积的比D. 两个图形对应周长的比3. 若两个三角形相似,它们的对应角相等,对应边成比例,那么它们的对应高也成比例吗?A. 是B. 否4. 相似图形的面积比与边长比的平方相等,这是根据什么定理得出的?A. 相似定理B. 勾股定理C. 毕达哥拉斯定理D. 面积比定理5. 两个相似多边形的对应边数必须相等吗?A. 是B. 否二、填空题(每题2分,共10分)6. 如果两个三角形的相似比是2:3,那么它们的对应边长之比是________。

7. 相似图形的周长比等于它们的________。

8. 两个相似圆的面积比是25:36,那么它们的半径比是________。

9. 根据相似图形的性质,如果两个图形相似,那么它们的对应角________。

10. 在相似三角形中,如果一个三角形的边长是另一个三角形边长的1.5倍,那么它们的面积比是________。

三、简答题(每题5分,共10分)11. 解释为什么相似三角形的对应角相等。

12. 描述如何判断两个多边形是否相似。

四、计算题(每题10分,共20分)13. 已知三角形ABC与三角形DEF相似,且AB:DE = 2:3,求三角形ABC的面积与三角形DEF的面积之比。

14. 如果一个矩形的长是另一个矩形长的1.5倍,宽是另一个矩形宽的0.8倍,求这两个矩形的面积比。

五、论述题(每题15分,共15分)15. 论述相似图形在建筑设计中的应用及其重要性。

答案:一、选择题1. B2. A3. A4. D5. A二、填空题6. 2:37. 相似比8. 5:69. 相等10. 2.25:1三、简答题11. 相似三角形的对应角相等,因为相似三角形的定义就是它们的对应角相等,这是相似三角形的基本性质之一。

图形相似全章总复习

图形相似全章总复习

图形相似全章总复习夯实基础1、了解比例的基本性质,线段的比、成比例线段;2、掌握黄金分割的定义、性质及应用;3、理解相似三角形、相似多边形、相似比的概念;熟练掌握三角形相似的判定方法以及相似三角形的性质,并能够运用性质与判定解决有关问题;4、了解位似的概念,做的位似是特殊的相似变换,会利用位似的方法,讲一个图形放大或缩小;5、了解平行投影和中心投影的基本概念与性质,能综合运用图形相似的知识解决一些简单的实际问题.要点一、比例线段及黄金分割1.比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.要点诠释:(1)若a:b=c:d,则ad=bc;(d也叫第四比例项)(2)若a:b=b:c,则b2=ac(b称为a、c的比例中项).2.黄金分割的定义:如图,将一条线段AB分割成大小两条线段AP、PB,若小段与大段的长度之比等于大段的长度与全长之比,即ABAPAPPB(此时线段AP叫作线段PB、AB的比例中项),则P点就是线段AB的黄金分割点(黄金点),这种分割就叫黄金分割.3. 黄金矩形与黄金三角形:黄金矩形:若矩形的两条邻边长度的比值约为0.618,这种矩形称为黄金矩形.黄金三角形:顶角为36°的等腰三角形,它的底角为72°,恰好是顶角的2倍,人们称这种三角形为黄金三角形.黄金三角形性质:底角平分线将其腰黄金分割.要点二、相似图形1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similar figures).要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等.2.相似多边形各角分别相等,各边成比例的两个多边形,它们的形状相同,称为相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.要点三、相似三角形1.相似三角形的判定:判定方法(一):平行于三角形一边的直线与其他两边相交,所截得的三角形与原三角形相似.判定方法(二):两角分别相等的两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.判定方法(三):两边成比例夹角相等的两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):三边成比例的两个三角形相似.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形对应高,对应中线,对应角平分线的比都等于相似比;(3)相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方.3.相似多边形的性质:(1)相似多边形的对应角相等,对应边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.要点四、图形的位似及投影1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.4.平行投影在平行光的照射下,物体所产生的影称为平行投影.(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.(3)在同一时刻,不同物体的物高与影长成正比例.即:=.甲物体的高甲物体的影长乙物体的高乙物体的影长利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.5.中心投影在点光源的照射下,物体所产生的影称为中心投影.(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.一、典型例题类型一、黄金分割1.如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这是B″就是AB的黄金分割点.请你证明这个结论.举一反三【变式】如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.求证:(1)AD=BD=BC;(2)点D是线段AC的黄金分割点.类型二、相似三角形2. 已知:如图,∠ABC=∠CDB=90°,AC=a,BC=b,当BD与a、b之间满足怎样的关系时,这两个三角形相似?举一反三【变式】如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.(1)求证:△COM∽△CBA;(2)求线段OM的长度.类型三、相似三角形的综合应用3.如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.4. 如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG,如果α=45°,AB=42,AF=3,求FG的长.5. 如图,已知在梯形ABCD中,AD//BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形.(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式.举一反三【变式】如图所示,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A 为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE 的长为y.(1)求出y关于x的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值,最大值为多少?类型四、图形的位似6.如图,△ABC中,A、B两点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是2,求点B的横坐标.类型五、用相似三角形解决问题7.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?二、巩固练习一、选择题1.如图所示,给出下列条件:①;②;③;④. 其中单独能够判定的个数为( )A.1 B.2 C.3 D.42.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)3.如图,梯形ABCD中,AB∥CD,∠A=90°,E在AD上,且CE平分∠BCD,BE•平分∠ABC,则下列关系式中成立的有( )①;②;③;④CE2=CD×BC;⑤BE2=AE×BC.A.2个B.3个 C.4个 D.5个4.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA∶OC = OB∶OD,则下列结论中一定正确的是 ( )A.①和②相似B.①和③相似 C.①和④相似D.②和④相似5.如图,在正方形网格上有6个斜三角形:①△ABC,②△BCD,③△BDE,④△BFG,•⑤△FGH,⑥△EFK,其中②~⑥中与三角形①相似的是( )A.②③④ B.③④⑤ C.④⑤⑥ D.②③⑥第4题第5题第6题6. 如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P在四边形ABCD的边上.若P到BD的距离为32,则点P的个数为()A.1 B.2 C.3 D.47. 如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影的长度( )A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米第7题第8题8. 已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.512-B.512+C. 3D. 2二、填空题9.顶角为36°的等腰三角形称为黄金三角形.如图,△ABC、△BDC、△DEC都是黄金三角形,已知AB=1,则DE=____________.第9题第10题10.如图,M是ABCD的边AB的中点,CM交BD于E,则图中阴影部分的面积与ABCD的面积之比为___ __.11.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。

北师版九年级数学 第四章 图形的相似(单元综合测试卷)

北师版九年级数学  第四章 图形的相似(单元综合测试卷)

第四章图形的相似(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题(本大题共10小题,每小题3分,共30分)1.若23a b =,则a a b +等于()A .15B .25C .35D .452.如果两个相似三角形的面积之比为9:4,那么这两个三角形的周长之比为()A .81:16B .27:12C .9:4D .3:23.已知,点P 是线段AB 的黄金分割点(AP PB >),若线段2AB cm =,则线段AP 的长是()Acm B .1)cm C .(3cm D .(2cm4.如图,直线123l l l ∥∥,直线AC 和DF 被1l ,2l ,3l 所截,4AB =,9AC =,4EF =,则DE 的长为()A .165B .169C .5D .95.如图,下列条件不能判定BDC ABC ∽ 的是()A .∠=∠BDC ABCB .DBC BAC ∠=∠C .2D C A B C C =⋅D .AD AB AB BC=6.如图,在ABCD Y 中,E 是AB 的中点,EC 交BD 于点F ,那么EF 与CF 的比是()A .21:B .13:C .12:D .31:7.如图,BE 为驾驶员的盲区,驾驶员的眼睛点P 处与地面BE 的距离为1.6米,车头FACD 近似看成一个矩形,且满足32FD FA =,若盲区BE 的长度是6米,则车宽FA 的长度为()米.A .117B .127C .137D .28.如图,在平面直角坐标中,已知()()1030A D ,,,,ABC 与DEF 位似,原点O 是位似中心.若 1.5AB =,则DE 长为()A .4.5B .6C .7.5D .99.如图,ABC 是等边三角形,点D 、E 分别在BC 、AC 上,且60ADE ∠=︒,6AB =,2BD =,则CE 的长等于()A .1B .43C .53D .210.如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ∠=︒,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③13412DEC S =-△;④12DH HC =.则其中正确的结论有()A .①②③B .①②③④C .①②④D .①③④二、填空题(本大题共8小题,每小题3分,共24分)11.如图,四边形ABCD ∽四边形A B C D '''',则a ∠的度数是.12.如图,在ABC 中,DE CB ∥,DE 分别与AC AB 、相交于点D 、E ,若4=AD ,8DC =,则:AE EB 的值为.13.如图,在ABC ∆中,点P 为AB 上一点,连接CP .若再添加一个条件,使APC ACB ∆∆∽,则需添加的一个条件是.14.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边0.6=DE 米,0.3EF =米,测得边DF 离地面的高度 1.5AC =米,10CD =米,则树高AB 为米.15.如图,已知ABC 和A B C ''△是以点()1,0C -为位似中心,位似比为1:2的位似图形,若点B 的对应点B '的横坐标为a ,则点B 的横坐标为.16.如图,AD 是ABC 的中线,E 是AD 的中点,BE 的延长线交AC 于点F ,那么AF AC =.17.如图,菱形ABCD 的边长为5,对角线AC 、BD 相交于点O ,E 为BC 边的中点,连接DE 交AC 于点F .若6AC =,则EF 的长为.18.如图,在矩形ABCD 中,6AB =,10BC =,点E 是AB 的中点,点M 是BC 的动点.将BEM △沿EM 翻折至PEM △.再将CFM △沿MF 翻折至QFM △,使点M ,P ,Q 在同一直线上,折痕MF 交射线CD 于点F .则:(1)EMF ∠=°;(2)当点M 是BC 的中点时,DF 的长为.三、解答题(本大题共9小题,共66分)19.(1)若234x y z ==,且328x y z -+=,求234x y z -+的值;(2)若23a eb f ==,则a e b f +=+______.20.如图,已知直线1l ,2l ,3l 分别截直线4l 于点A ,B ,C ,截直线5l 于点D ,E ,F ,且123l l l ∥∥.若4AB =,8BC =,10EF =,求DF 的长.21.如图,在ABC ∆中,点D ,E 在AB 上,点G 在AC 上,连接,,DG CE EG ,DG EC EG BC ∥∥,.求证:AE AD AB AE=22.如图,线段BD 、CE 是ABC 的两条高.(1)求证:ACE ABD ∽;(2)若6AD =,5DE =,10AB =,求BC 的长.23.小琛周末去检查视力,发现该店老板利用平面镜来解决房间小的问题.已知正常情况下,人与视力表之间的距离应为5米,而测得该店两面墙的距离为3米,如图,根据平面镜成像原理作出光路图,视力表AB 的上下边沿A ,B 上发出的光线经平面镜'MM 的上下边反射后射入人眼C 处.已知视力表AB 的全长为0.8米,要使墙面上的镜子能呈现完整的视力表,请计算出镜长至少为多少米?24.图①、图②、图③均是55⨯的正方形网格,其顶点称为格点,ABC 的顶点均在格点上,只用无刻度的直尺,在给定的网格中按下列要求作图,并保留作图痕迹.(1)在图①中,在ABC 的边BC 上找一点D ,连结AD ,使BAD BCA △∽△;(2)在图②中,在ABC 的边AB 上找一点P ,在边BC 上找一点Q ,连结PQ ,使BPQ BAC ∽,且相似比为1:2;(3)在图③中,在ABC 的边BC 上找一点E ,连结AE ,使2ABE ACE S S = .25.在正方形网格中,OBC △的顶点分别为()00O ,,()31B -,,()21C ,.(1)以点()00O ,为位似中心,以位似比21:在位似中心的异侧将OBC △放大为OB C ''△,放大后点B ,C 两点的对应点分别为B ',C ',请画出OB C ''△;(2)在(1)中,若点()M a b ,为线段BC 上任一点,直接写出变化后点M 的对应点M '的坐标.(用含a ,b 的代数式表示)26.已知四边形ABCD 的一组对边AD DC ,的延长线相交于点E .(1)如图1,若90ABC ADC ∠=∠=︒,求证:••ED EA EC EB =;(2)如图2.若12060510ABC ADC CD AB ∠=︒∠=︒==,,,,CDE 的面积为6,求四边形ABCD 的面积.27.如图1,在等腰直角三角形ABC 中,以BC 为边在ABC 右侧作正方形DEFG .(1)问题提出:图I 中线段AF 与线段BE 的数量关系为(直接写出答案);(2)深入探究:如图2,将正方形DEFG 绕点D 在平面内旋转,连接AF BE ,.判断线段AF 与线段BE 的数量关系并说明理由;(3)拓展延伸:若2AC =,正方形DEFG 绕点D 在平面内旋转的过程中,当点A ,E ,请直接写出线段BE 的长.28.如图,在菱形ABCD 中,=60B ∠︒,点E 为边BC 上一点,将CDE 沿DE 翻折得到C DE ' ,连接AC '并延长交DE 于点F ,交BC 于点G .(1)设2ADC α'∠=,探究AFD ∠的大小是否为定值,请说明理由;(2)在DF 上截取FH FA =,连接AH ,求证:DH C F '=;(3)若54AC FG '=,5BE =,求菱形的边长.第四章图形的相似(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题1.若23a b =,则a a b +等于()A .15B .25C .35D .452.如果两个相似三角形的面积之比为9:4,那么这两个三角形的周长之比为()A .81:16B .27:12C .9:4D .3:2【答案】D【分析】本题考查了相似三角形的性质,直接根据相似三角形的性质即可得出答案,熟练掌握相似三角形的面积的比等于相似比的平方是解此题的关键.【解析】解:∵两个相似三角形的面积之比为9:4,∴两个相似三角形的相似比为3:2,∵相似三角形的周长比等于相似比,∴这两个三角形的周长之比为3:2,故选:D .3.已知,点P 是线段AB 的黄金分割点(AP PB >),若线段2AB cm =,则线段AP 的长是()Acm B .1)cm C .(3cm D .(2cm4.如图,直线123l l l ∥∥,直线AC 和DF 被1l ,2l ,3l 所截,4AB =,9AC =,4EF =,则DE 的长为()A .165B .169C .5D .95.如图,下列条件不能判定BDC ABC ∽ 的是()A .∠=∠BDC ABCB .DBC BAC ∠=∠C .2D C A B C C=⋅D .AD AB AB BC=【答案】D 【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【解析】解:A 、∵∠=∠BDC ABC ,C C ∠=∠,∴BDC ABC ∽ ,故此选项不合题意;B 、∵DBC BAC ∠=∠,C C ∠=∠,∴BDC ABC ∽ ,故此选项不合题意;C 、∵2D C A B C C =⋅,∴BC AC DC BC=,又∵C C ∠=∠,∴BDC ABC ∽ ,故此选项不合题意;D 、AD AB AB BC=不能判定BDC ABC ∽ ,故此选项符合题意.故选:D .【点睛】本题考查了相似三角形的判定,熟悉相似三角形的判定定理是解题的关键.6.如图,在ABCD Y 中,E 是AB 的中点,EC 交BD 于点F ,那么EF 与CF 的比是()A .21:B .13:C .12:D .31:【答案】C 【分析】本题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握平行四边形的性质及相似三角形的判定与性质是解答本题的关键.根据平行四边形的性质得到AB CD =,进而推得12BE CD =,再证明BEF DCF ∽△△,根据相似三角形的性质,即得答案.7.如图,BE 为驾驶员的盲区,驾驶员的眼睛点P 处与地面BE 的距离为1.6米,车头FACD 近似看成一个矩形,且满足32FD FA =,若盲区BE 的长度是6米,则车宽FA 的长度为()米.A .117B .127C .137D .2则 1.6PM =,设FA x =米,由32FD FA =得,8.如图,在平面直角坐标中,已知()()1030A D ,,,,ABC 与DEF 位似,原点O 是位似中心.若 1.5AB =,则DE 长为()A .4.5B .6C .7.5D .99.如图,ABC 是等边三角形,点D 、E 分别在BC 、AC 上,且60ADE ∠=︒,6AB =,2BD =,则CE 的长等于()A .1B .43C .53D .210.如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ∠=︒,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③14DEC S =-△;④12DH HC =.则其中正确的结论有()A.①②③B.①②③④C.①②④D.①③④ ≌,ABE ADE(SAS)∴.∠=∠ABE ADE∴∠=∠,CBE CDE,BC CF=在Rt ADC 中,根据勾股定理求出由面积公式得:1122AD DC AC ⨯=22DM ∴=,45DCA ∠=︒ ,二、填空题11.如图,四边形ABCD ∽四边形A B C D '''',则a ∠的度数是.【答案】100︒/100度【分析】利用相似多边形对应角相等、对应边成比例即可求解.【解析】解: 四边形ABCD ∽四边形A B C D '''',70B B '∴∠=∠=︒,3601306070100C '∴∠=︒-︒-︒-︒=︒100C α'∴∠=∠=︒,故答案为:100︒.【点睛】本题考查了相似多边形的性质,解题的关键是知道相似多边形的对应边的比相等,对应角相等.12.如图,在ABC 中,DE CB ∥,DE 分别与AC AB 、相交于点D 、E ,若4=AD ,8DC =,则:AE EB 的值为.【答案】1:2【分析】本题主要考查了平行线分线段成比例定理,熟练掌握该定理是解题的关键,根据DE CB ∥,由平行线分线段成比例定理可得::AE EB AD CD =,将已知条件代入即可求解.【解析】解:∵DE CB ∥,4=AD ,8DC =,∴::4:81:2AE EB AD CD ===.故答案为1:2.13.如图,在ABC ∆中,点P 为AB 上一点,连接CP .若再添加一个条件,使APC ACB ∆∆∽,则需添加的一个条件是.【答案】∠ACP =∠B 或∠APC =∠ACB 或AP :AC =AC :AB【分析】利用相似三角形的判定可求解.【解析】解:①当∠ACP =∠B ,∠A =∠A ,可得△APC ∽△ACB ,故可添加∠ACP =∠B ;②当∠APC =∠ACB ,∠A =∠A ,可得△APC ∽△ACB ,故可添加∠APC =∠ACB ;③当AP :AC =AC :AB ,∠A =∠A ,可得△APC ∽△ACB ,故可添加AP :AC =AC :AB ;故答案为∠ACP =∠B 或∠APC =∠ACB 或AP :AC =AC :AB .【点睛】本题考查了相似三角形的判定方法,相似三角形的判定方法有:①对应角相等,对应边成比例的两个三角形叫做相似三角形;②平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;③两角相等的两个三角形相似;④两边对应成比例,且夹角相等的两个三角形相似判定即可;⑤三边对应成比例的两个三角形相似.14.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边0.6=DE 米,0.3EF =米,测得边DF 离地面的高度 1.5AC =米,10CD =米,则树高AB 为米.15.如图,已知ABC 和A B C ''△是以点()1,0C -为位似中心,位似比为1:2的位似图形,若点B 的对应点B '的横坐标为a ,则点B 的横坐标为.【答案】32a +-【分析】本题考查了位似变换的性质、相似三角形的性质,根据相似三角形的性质求出1112x a --=+是解题的关键.设B 点横坐标为x ,过B 作BM x ⊥轴于点M ,过B '作B N x '⊥轴于点N ,根据平行线分线段成比例定理得到CM BC CN B C =',根据相似三角形的性质求出1112x a --=+,计算即可.【解析】设B 点横坐标为x ,如图,过B 作BM x ⊥轴于点M ,过B '作B N x '⊥轴于点NBM B N '∴∥,BCM B CN ∴'△∽△,CM BC CN B C∴'=,∵ABC 和A B C ''△是位似比为1:2的位似图形,即1112x a --=+,解得32a x +=-,B ∴点横坐标为32a +-.16.如图,AD 是ABC 的中线,E 是AD 的中点,BE 的延长线交AC 于点F ,那么AC =.∵D为BC中点,DG BF∥∴12CG CDCF CB==,即:CG又E为AD的中点,BE的延长线交∴12AE AFAD AG==,即:AF17.如图,菱形ABCD的边长为5,对角线AC、BD相交于点O,E为BC边的中点,连接DE交AC于点F.若6AC=,则EF的长为.18.如图,在矩形ABCD 中,6AB =,10BC =,点E 是AB 的中点,点M 是BC 的动点.将BEM △沿EM 翻折至PEM △.再将CFM △沿MF 翻折至QFM △,使点M ,P ,Q 在同一直线上,折痕MF 交射线CD 于点F .则:(1)EMF ∠=°;(2)当点M 是BC 的中点时,DF 的长为.(2)如图,点M 是BC 的中点时,由折叠知,,MB MP MC =∴MP MQ =,即,P Q 两点重合.△MPE 中,MPE B ∠=∠=【点睛】本题考查矩形的性质,折叠的性质,相似三角形的判定和性质;由折叠得到角相等,线段相等是解题的关键.三、解答题19.(1)若234x y z ==,且328x y z -+=,求234x y z -+的值;(2)若23a eb f ==,则a e b f +=+______.20.如图,已知直线1l ,2l ,3l 分别截直线4l 于点A ,B ,C ,截直线5l 于点D ,E ,F ,且123l l l ∥∥.若4AB =,8BC =,10EF =,求DF 的长.【答案】15DF =【分析】本题考查了平行线分线段成比例;根据平行线分线段成比例列式求出DE ,再根据DF DE EF =+计算即可.【解析】解:∵123l l l ∥∥,∴AB DE BC EF =,即4810DE =,∴5DE =,∴51015DF DE EF =+=+=.21.如图,在ABC ∆中,点D ,E 在AB 上,点G 在AC 上,连接,,DG CE EG ,DG EC EG BC ∥∥,.求证:AE AD AB AE=【答案】证明见解析【分析】根据平行线分线段成比例可得=AG AE AC AB 和AG AD AC AE=,即得AE AD AB AE =【解析】证明:∵EG BC ∥,∴=AG AE AC AB ,∵DG EC ∥,∴AG AD AC AE =,∴AE AD AB AE=.【点睛】本题考查比例线段,解题的关键是掌握平行线分线段成比例.22.如图,线段BD 、CE 是ABC 的两条高.(1)求证:ACE ABD ∽;(2)若6AD =,5DE =,10AB =,求BC 的长.【答案】(1)见解析(2)253【分析】(1)根据高线的定义,得到90ADB CEA ∠=∠=︒,再根据A A ∠=∠,即可得证;(2)证明ADE ABC △△∽,列出比例式进行求解即可.【解析】(1)解:∵线段BD 、CE 是ABC 的两条高,∴90ADB CEA ∠=∠=︒,∵A A ∠=∠,∴ACE ABD ∽;(2)∵ACE ABD ∽,∴AD AB AE AC =,∴AD AE AB AC=,∵A A ∠=∠,∴ADE ABC △△∽,∴AD DE AB BC =,即:6510BC=,∴253BC =.【点睛】本题考查相似三角形的判定和性质.熟练掌握相似三角形的判定方法,证明三角形相似,是解题的关键.23.小琛周末去检查视力,发现该店老板利用平面镜来解决房间小的问题.已知正常情况下,人与视力表之间的距离应为5米,而测得该店两面墙的距离为3米,如图,根据平面镜成像原理作出光路图,视力表AB 的上下边沿A ,B 上发出的光线经平面镜'MM 的上下边反射后射入人眼C 处.已知视力表AB 的全长为0.8米,要使墙面上的镜子能呈现完整的视力表,请计算出镜长至少为多少米?∵AB MM A B '''∥∥,CE A B ∴⊥'',CMM CA B ''' ∽,MM CD '24.图①、图②、图③均是55⨯的正方形网格,其顶点称为格点,ABC 的顶点均在格点上,只用无刻度的直尺,在给定的网格中按下列要求作图,并保留作图痕迹.(1)在图①中,在ABC 的边BC 上找一点D ,连结AD ,使BAD BCA △∽△;(2)在图②中,在ABC 的边AB 上找一点P ,在边BC 上找一点Q ,连结PQ ,使BPQ BAC ∽,且相似比为1:2;(3)在图③中,在ABC 的边BC 上找一点E ,连结AE ,使2ABE ACE S S = .【答案】(1)详见解析(2)详见解析(3)详见解析【分析】(1)在BC 上取一点D ,使得AD BC ⊥即可;(2)取AB 的中点P ,取格点T ,连接PT 交BC 于点Q ,线段PQ 即为所求;(3)取格点P ,Q ,连接PQ 交BC 于点E ,连接AE 即可,本题考查作图,相似三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.【解析】(1)解:如图①中,线段AD 即为所求;(2)解:如图2中,线段PQ 即为所求;(3)解:如图③中,点E 即为所求.25.在正方形网格中,OBC △的顶点分别为()00O ,,()31B -,,()21C ,.(1)以点()00O ,为位似中心,以位似比21:在位似中心的异侧将OBC △放大为OB C ''△,放大后点B ,C 两点的对应点分别为B ',C ',请画出OB C ''△;(2)在(1)中,若点()M a b ,为线段BC 上任一点,直接写出变化后点M 的对应点M '的坐标.(用含a ,b 的代数式表示)【答案】(1)见详解(2)()22M a b '--,【分析】(1)利用位似变换的性质,2OC OC '=,2OB OB '=,再结合()00O ,,()31B -,,()21C ,,即可分别作出B ,C 的对应点B ',C ',再连接即可作答;(2)探究坐标变化规律,可得结论.【解析】(1)解:如图,OB C ''△即为所求:(2)解:因为()31B -,,()21C ,,且由(1)的图可知()62B '-,,()42C '--,,所以变化后点()M a b ,的对应点M '的坐标为()22a b --,.【点睛】本题考查作图−位似变换,解题的关键是掌握位似变换的性质,属于中考常考题型.26.已知四边形ABCD 的一组对边AD DC ,的延长线相交于点E .(1)如图1,若90ABC ADC ∠=∠=︒,求证:••ED EA EC EB =;(2)如图2.若12060510ABC ADC CD AB ∠=︒∠=︒==,,,,CDE 的面积为6,求四边形ABCD 的面积.【答案】(1)证明见解析(2)18【分析】本题考查了相似三角形的判定与性质,含30度角的直角三角形以及勾股定理等知识点,熟记相关定理内容是解题关键.(1)证EDC EBA ∽ 即可;(2)过C 作CF AD ⊥于F ,AG EB ⊥于G .可求出,,EF CF AG ;证EFC EGA ∽V V 得::EF EG CF AG =,即可求解;【解析】(1)证明:∵90ADC ∠=︒,180EDC ADC ∠+∠=︒,∴90EDC ∠=︒,∵90ABC ∠=︒,∴EDC ABC ∠=∠,∵E E ∠=∠,∴EDC EBA∽,V V ∴::ED EB EC EA =,∴··ED EA EC EB =;(2)解:如图2中,过C 作CF AD ⊥于F ,AG EB ⊥于G .在Rt CDF △中,60ADC ∠=∴30DCF ∠=°,∵5CD =,∴15,22DF CD ==CD CF =27.如图1,在等腰直角三角形ABC 中,以BC 为边在ABC 右侧作正方形DEFG .(1)问题提出:图I 中线段AF 与线段BE 的数量关系为(直接写出答案);(2)深入探究:如图2,将正方形DEFG 绕点D 在平面内旋转,连接AF BE ,.判断线段AF 与线段BE 的数量关系并说明理由;(3)拓展延伸:若2AC =,正方形DEFG 绕点D 在平面内旋转的过程中,当点A ,E ,请直接写出线段BE 的长.【答案】(1)2AF BE=(2)2AF BE =,理由见解答过程(3)62-或62+【分析】(1)根据ABC 是等腰直角三角形,得2AF BC =,再由正方形的性质即可解答;(2)连接BD CD ,,根据ABD △和DEF 都是等腰直角三角形,可证明BDE ADF ∽,然后根据线段比例即可解答;(3)分当点F 在线段AE 上或点F 在线段AE 的延长线两种情形,分别画出图形,利用勾股定理求得AF ,再由(2)得出BE 的长度即可.【解析】(1)解:∵ABC 是等腰直角三角形,∴2AF BC =,∵四边形DEFG 是正方形,∴BC GF BE ==,∴2AF BE =.故答案为:2AF BE =.(2)解:2AF BE =,理由如下:如图2,连接BD ,在Rt BAC 中,45BAC ∠=∴2sin 2BD BAC AD ∠==,在正方形DEFG 中,sin ∠∴BD DE AD DF=,∴45EDF BDA ∠=∠=︒,∴EDF BDF BDA ∠-∠=∠∴BDE ADF ∽,∴2AF AD ==,即AF 由(1)知,DE FE DG ==在Rt ADE △中,2,DE =∴222AE AD DE =-=∴23AF AE FE =-=-由(2)知,2AF BE =由(1)知,2DE FE DG ===,在Rt ADE △中,2DE =,∴2223AE AD DE =-=,∴232AF AE FE =-=+,由(2)知,2AF BE =,∴()223223226222222BE +++====⨯∴当正方形DEFG 旋转到A 、E 、F 三点共线时【点睛】本题主要考查四边形的综合题,主要考查了相似三角形的判定和性质、等腰直角三角形的性质、正方形的性质等知识点,灵活运用相关判定和性质定理是解题的关键.28.如图,在菱形ABCD 中,=60B ∠︒,点E 为边BC 上一点,将CDE 沿DE 翻折得到C DE ' ,连接AC '并延长交DE 于点F ,交BC 于点G .(1)设2ADC α'∠=,探究AFD ∠的大小是否为定值,请说明理由;(2)在DF 上截取FH FA =,连接AH ,求证:DH C F '=;(3)若54AC FG '=,5BE =,求菱形的边长.【答案】(1)AFD ∠的大小为定值,理由见解析(2)见解析∵AD DC =,60ADC ∠=∴ADC △为等边三角形,∴AC AD =,60CAD ∠=︒∵FH FA =,60AFD ∠=︒∴AFH 为等边三角形,∴AF AH =,60FAH ∠=∵CAF CAH CAH ∠+∠=∠∴CAF DAH ∠=∠,∴AFC AHD ≌,∴DH CF =,∵CD C D ¢=,CDF C ∠=∠∴CDF C DF ' ≌,∴C F CF '=,∴DH C F '=;(3)解:如图:由54AC FG '=,可设5AC a ='则4FG a =,DH C F CF '==∵AFH 为等边三角形,∴60AHF AFH ∠=∠=︒,∴120AHD ∠=︒由(2)AFC AHD ≌,。

第1章 图形的相似 单元复习课 青岛版数学九年级上册

第1章 图形的相似 单元复习课  青岛版数学九年级上册
第1章
图形的相似
1111
单元复习课
体系自我构建
目标维度评价
【维度1】基础知识的应用
1.(2022·宁夏中考)如图,将三角尺直立举起靠近墙面,打开手机手电筒照射三角
尺,在墙面上形成影子.则三角尺与影子之间属于以下哪种图形变换
A.平移
B.轴对称
C.旋转
D.位似
2.两个相似图形的对应边的比为3∶2,则面积比为__________.
A)
8.(2023·内江中考)如图,在△ABC中,点D,E为边AB的三等分点,点F,G在边BC
上,AC∥DG∥EF,点H为AF与DG的交点.若AC=12,则DH的长为( C )
A.1
3
B.
2
C.2
D.3
9.(2023·阜新中考改编)如图,△ABC和△DEF是以点O为位似中心的位似图形,相似比
为2∶3,则△ABC和△DEF的面积比是__________.
,
=
∠ = ∠
∴△DAE≌△ACF(ASA),∴DE=AF.
14.(2023·上海中考)如图,在梯形ABCD中,AD∥BC,点F,E分别在线段BC,AC上,且
∠FAC=∠ADE,AC=AD.
(2)若∠ABC=∠CDE,求证:AF2=BF·CE.
【证明】(2)∵△ACF≌△DAE,∴∠AFC=∠DEA,
9∶ 4
( D)
【维度2】基本技能(方法)、基本思想的应用
3.(2023·吉林中考)如图,在△ABC中,点D在边AB上,过点D作DE∥BC,交AC于点E.

若AD=2,BD=3,则 的值是(

2
A.
5
1
B.
2
3

相似复习课课件

相似复习课课件

G HF
边长
A D KE B
练习(2003,潍坊)在Rt⊿ABC中, ∠C=90。,AC=4,BC=3,
C GF
(1)如图1,四边形DEFG为 ⊿ABC的内接正方形,求正方形 的边长。
(2)如图2,三角形内有并排的 两个相等的正方形,它们组成的 矩形内接与⊿ABC,求正方形的 边长
(3)如图3,三角形内有并排的 三个相等的正方形,它们组成的 矩形内接于⊿ABC,求正方形的 边长。
DF∥AC,EG∥AB。 (1)△ADE和△EGC的相似比是 3∶ 1 ,
面积的比是 9 ∶1。
(2) △ABC和△DBF的相似比 4 ∶1 , △ABC和△DBF的周长比 ________ A
4 ∶1
D BF
E C G
练习
5.若如图所示,△ABC∽△ADB,那么下列关系成立的是
A.∠ADB=∠ACB
(1)如图1,四边形DEFG为 ⊿ABC的内接正方形,求正方形
A
的边长。
C GF
D EB
练习(2003,潍坊)在Rt⊿ABC中, ∠C=90。,AC=4,BC=3,
C GF
(1)如图1,四边形DEFG为
⊿ABC的内接正方形,求正方形 A
的边长。
D EB C
(2)如图2,三角形内有并排的
两个相等的正方形,它们组成的 矩形内接与⊿ABC,求正方形的
(B )
B.∠ADB=∠ABC
C.∠CDB=∠CAB
D.∠ABD=∠BDC
6.△ABC中,AC=6,BC=4,CA=9,△ABC∽△A′B′C′, △A′B′C′最短为12,则它的最长边的长度为( C )
A.16 B.18 C.27 D.24

《相似三角形》单元复习

《相似三角形》单元复习

《相似三角形》单元复习同学们,咱们一起来好好复习一下《相似三角形》这个单元!还记得上次在课堂上,我给大家出了一道题,让大家判断两个三角形是否相似。

结果好多同学都有点迷糊,抓耳挠腮的样子可太有趣了。

有个同学还小声嘀咕:“这相似三角形咋就这么难分辨呢?”其实啊,只要咱们掌握了方法,相似三角形那就是小菜一碟!咱们先来说说相似三角形的定义。

简单来讲,就是三个角对应相等,三条边对应成比例的两个三角形就是相似三角形。

这就好比两个人,长得像不像,咱们得看五官、身材比例是不是差不多。

三角形也一样,角和边都对上号了,那就是相似的。

那怎么判断两个三角形相似呢?这可有好几种方法。

第一种就是两角对应相等的两个三角形相似。

比如说,一个三角形的两个角分别是60 度和 80 度,另一个三角形也有两个角是 60 度和 80 度,那它们肯定相似,这就好比两个人都有一样的大眼睛和高鼻梁,那能不像吗?再说说三边对应成比例。

假如一个三角形的三条边分别是3、4、5,另一个三角形的三条边是 6、8、10,因为 3:6 = 4:8 = 5:10 ,所以这两个三角形相似。

这就好像两个人,胳膊、腿、身子的比例都一样,那能不相似嘛!还有两边对应成比例且夹角相等的两个三角形相似。

比如说,一个三角形两条边是 2 和 3,夹角是 45 度,另一个三角形两条边是 4 和 6,夹角也是 45 度,那它们就是相似的。

这就好比两个人,上半身和下半身的比例一样,而且姿势也相同,那看起来肯定像呀!咱们在做题的时候,一定要仔细看清题目给出的条件,千万别粗心大意。

有一次考试,有个题就是让判断两个三角形是否相似,有个同学把边的比例算错了,结果丢了分,多可惜啊!相似三角形的性质也很重要哦!相似三角形的对应边成比例,对应角相等。

而且它们的周长比等于相似比,面积比等于相似比的平方。

这就像两个相似的模型,大的那个模型的周长和面积肯定比小的那个大,而且它们之间的关系是有规律的。

咱们来做几道题练练手。

相似三角形单元复习

相似三角形单元复习

相似三角形单元复习在数学的世界里,相似三角形是一个非常重要的知识点。

相似三角形不仅在几何问题中频繁出现,而且在实际生活中的测量、建筑等领域也有着广泛的应用。

现在,让我们一起来对相似三角形这个单元进行一次全面的复习。

首先,我们来明确一下相似三角形的定义。

相似三角形是指对应角相等,对应边成比例的三角形。

简单来说,如果两个三角形的形状相同,但大小不一定相同,那么它们就是相似三角形。

相似三角形有着许多重要的性质。

比如说,相似三角形的对应角相等,这是判断两个三角形是否相似的重要依据之一。

同时,相似三角形的对应边成比例,而且这个比例是恒定的。

这意味着,如果我们知道了两个相似三角形中一组对应边的比例,就可以通过这个比例求出其他对应边的长度。

相似三角形的判定方法也是我们必须要掌握的重点内容。

第一种判定方法是两角对应相等的两个三角形相似。

比如说,如果一个三角形的两个角分别与另一个三角形的两个角相等,那么这两个三角形就是相似的。

第二种判定方法是两边对应成比例且夹角相等的两个三角形相似。

这里要特别注意,必须是夹角相等才行。

第三种判定方法是三边对应成比例的两个三角形相似。

在实际解题中,我们经常会用到相似三角形的性质和判定方法。

比如,在一些几何证明题中,我们需要通过已知条件判断两个三角形是否相似,然后利用相似三角形的性质来得出结论。

还有在一些计算问题中,比如求三角形的边长或者角度,我们也可以通过构建相似三角形来解决。

接下来,让我们通过一些具体的例子来加深对相似三角形的理解。

例 1:在三角形 ABC 中,AB = 6,AC = 8,在三角形 A'B'C'中,A'B' = 3,A'C' = 4,判断三角形 ABC 和三角形 A'B'C'是否相似。

我们先来看角。

由于两个三角形的对应边的比例分别为:AB /A'B' = 6 / 3 = 2,AC / A'C' = 8 / 4 = 2,而两条对应边的夹角都是角 A,所以根据两边对应成比例且夹角相等的判定方法,可以得出三角形 ABC 和三角形 A'B'C'相似。

图形的相似单元复习

图形的相似单元复习

图形的相似单元复习知识点回顾:知识点1..相似图形的含义把形状相同的图形叫做相似图形。

(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.知识点2.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读:(1)正确理解相似多边形的定义,明确“对应”关系.(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.知识点3.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”;(5)相似三角形的对应边之比叫做相似比.知识点4.相似三角的判定方法(1)定义:对应角相等,对应边成比例的两个三角形相似;(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.知识点5.相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.知识点6.相似三角形的基本类型两个三角形相似,一般说来必须具备下列六种图形之一:注意分清相似三角形中对应角和对应边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的相似单元复习
知识点回顾:
知识点1..相似图形的含义
把形状相同的图形叫做相似图形。

(即对应角相等、对应边的比也相等的图形)
解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.
(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.
(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.
知识点2.相似多边形的性质
相似多边形的性质:相似多边形的对应角相等,对应边的比相等.
解读:(1)正确理解相似多边形的定义,明确“对应”关系.
(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.
知识点3.相似三角形的概念
对应角相等,对应边之比相等的三角形叫做相似三角形.
解读:(1)相似三角形是相似多边形中的一种;
(2)应结合相似多边形的性质来理解相似三角形;
(3)相似三角形应满足形状一样,但大小可以不同;
(4)相似用“∽”表示,读作“相似于”;
(5)相似三角形的对应边之比叫做相似比.
知识点4.相似三角的判定方法
(1)定义:对应角相等,对应边成比例的两个三角形相似;
(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.
(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.
(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.
(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.
(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.
知识点5.相似三角形的性质
(1)对应角相等,对应边的比相等;
(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;
(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.
知识点6.相似三角形的基本类型
两个三角形相似,一般说来必须具备下列六种图形之一:
注意分清相似三角形中对应角和对应边。

知识点7几何变换(按一定的方法把一个图形变成另一个图形)
(1)相似变换:保持图形的形状不变的几何变换叫做相似变换
(2)位似变换 ①位似图形:如果两个图形不仅是 图形,而且每组对应点所在的直线都 ,那么这样的两个图形叫做位似图形,这个点叫做 ,这时的相似比又称为 . ②位似图形的性质:位似图形上任意一对对应点到 的距离之比等于位似比. 例题分析:
例1:下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角80°的两个等腰三角形;⑤两个正五边形;⑥有一个内角是100°的两个等腰三角形,其中一定是相似图形的是_________(填序号).
例2:已知△ABC ∽△A 1B 1C 1,,11AB A B =23
,△ABC 的周长为20cm ,面积为40cm 2. 求(1)△A 1B 1C 1的周长;(2)△A 1B 1C 1的面积.
例3:已知:如图,△PMN 是等边三角形,∠APB=120°。

求证:AM ·PB = PN ·AP 。

例4:已知:如图,□AB C D 中E 为AD 的中点,AF :AB =1:6,EF 与AC 交于M 。

求:AM :AC 。

同步测试
一、选择题(每小题3分,共30分)
1、在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高是( )
A.20米 .
B.18米
C.16米
D.15米
2、如图,D 、E 分别是AB 、AC 上两点,CD 与BE 相交于点O ,下列条件中不能使ΔABE 和ΔACD 相似的是( )
A.∠B=∠C
B.∠ADC=∠AEB
C.BE=CD ,AB=AC
D.AD ∶AC=AE ∶AB
3、如图所示,D 、E 分别是ΔABC 的边AB 、AC 上的点,DE ∥BC ,并且AD ∶BD=2,那么S ΔADE ∶S 四边形DBCE =( ) (A)32 (B)43 (C)54 (D)9
4 4.在矩形ABCD 中,E 、F 分别是CD 、BC 上的点,若∠AEF=90°,则一定有( )
(A)ΔADE ∽ΔAEF (B)ΔECF ∽ΔAEF (C)ΔADE ∽ΔECF (D)ΔAEF ∽ΔABF
(第2题图) (第3题图) (第4题图) (第5题图)
5、厨房角柜的台面是三角形(如图所示),如果把各边中点连线所围成的三角形铺成黑色大理石(图中阴影部分),其余部分铺成白色大理石,则黑色大理石面积与白色大理石的面积之比是( )
A.1∶2
B.1∶3
C.1∶4
D.1∶5
6、如图,在大小为4×4的正方形网格中,是相似三角形的是( )
① ② ③ ④
A.①和②
B.②和③
C.①和③
D.②和④
7、如图是圆桌正上方的灯泡O 发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m ,桌面距离地面1m ,若灯泡O 距离地面3m ,则地面上阴影部分的面积为( )
A.0.36πm 2
B.0.81πm 2
C.2πm 2
D.3.24πm 2
8、如图,直线l 1∥l 2,AF ∶FB=2∶3,BC ∶CD=2∶1,则AE ∶EC 是( )
A.5∶2
B.4∶1
C.2∶1
D.3∶2
9、如图,三个正六边形全等,其中成位似图形关系的有( )
A.4对
B.1对
C.2对
D.3对
(第7题图) (第8题图) (第9题图) (第10题图)
10、平面直角坐标系中,有一条“鱼,它有六个顶点”,则( )
A.将各点横坐标乘以2,纵坐标不变,得到的鱼与原来的鱼位似
B.将各点纵坐标乘以2,横坐标不变,得到的鱼与原来的鱼位似
C.将各点横、纵坐标都乘以2,得到的鱼与原来的鱼位似
D.将各点横坐标乘以2,纵坐标乘以21,得到的鱼与原来的鱼位似 二、填空题(每小题4分,共20分) 11、两个相似多边形的一组对应边分别为3cm 和4.5cm ,如果它们的面积之和为130cm 2,那么较小的多边形的面积是 cm 2.
12、如图,DE 与BC 不平行,当
AC
AB = 时,ΔABC 与ΔADE 相似.
(第12题图) (第13题图) (第14题图) (第15题图)
13、如图,AD=DF=FB ,DE ∥FG ∥BC ,则S Ⅰ∶S Ⅱ∶S Ⅲ= .
14、如图,正方形ABCD 的边长为2,AE=EB ,MN=1,线段MN 的两端在CB 、CD 上滑动,当CM= 时,ΔAED 与N ,M ,C 为顶点的三角形相似.
15、如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 或 时,使得由点B 、O 、C 组成的三角形与ΔAOB 相似(至少写出两个满足条件的点的坐标).
三、解答题(每小题8分,共40分)
16、如图,ΔABC 中,BC=a . (1)若AD 1=
31AB ,AE 1=3
1AC ,则D 1E 1= ; (2)若D 1D 2=31D 1B ,E 1E 2=31E 1C ,则D 2E 2= ;
(3)若D 2D 3=
31D 2B ,E 2E 3=3
1E 2C ,则D 3E 3= ;……. (4)若D n -1D n =31D n -1B ,E n -1E n =31E n -1C ,则D n E n = . 17、如图,ΔABC 中,BD 是角平分线,过D 作DE ∥AB 交BC 于点E ,AB=5cm ,BE=3cm ,求EC 的
长.
18、已知:E是正方形ABCD的AB边延长线上一点,DE交CB于M,MN∥AE。

求证:MN=MB。

相关文档
最新文档