中考数学复习圆专题复习教案课程(终审稿)
初中数学圆复习教案

初中数学圆复习教案【知识与技能】1. 理解圆的定义及相关概念,如圆心、半径、弦、直径、圆弧、半圆、等圆、等弧等。
2. 掌握圆的性质,如圆的对称性、唯一性、无限性等。
3. 学会使用圆规和量具进行圆的画法。
【过程与方法】1. 通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
2. 学会运用圆的性质解决实际问题,提高学生的解决问题的能力。
【情感、态度与价值观】1. 培养学生对数学的兴趣和自信心,使学生感受到数学的实用性和趣味性。
2. 培养学生严谨治学的态度,养成独立思考和合作交流的好习惯。
二、教学重难点【重点】1. 圆的定义及相关概念。
2. 圆的性质。
3. 圆的画法。
【难点】1. 对圆的概念和性质的理解。
2. 运用圆的性质解决实际问题。
三、教学过程(一)导入新课1. 复习已学过的圆的基本概念,如圆心、半径、弦、直径等。
2. 提问:同学们,我们已经学习了关于圆的一些基本概念,那么你们能总结一下圆的性质吗?(二)讲解新知1. 讲解圆的性质,如对称性、唯一性、无限性等。
2. 通过示例,讲解圆的画法,如使用圆规和量具。
3. 结合实例,讲解如何运用圆的性质解决实际问题。
(三)课堂练习1. 布置练习题,让学生独立完成。
2. 选取部分学生的作业进行讲解和评价。
(四)总结与反思1. 让同学们总结本节课所学的内容,分享自己的学习心得。
2. 教师进行课堂小结,强调圆的概念和性质的重要性。
四、课后作业1. 复习圆的定义及相关概念。
2. 练习圆的画法,提高操作技能。
3. 运用圆的性质解决实际问题,提高解决问题的能力。
五、教学反思本节课通过复习圆的基本概念、讲解性质和画法,让学生对圆的知识有了更深入的了解。
在教学过程中,注意引导学生主动参与、积极思考,培养学生的空间想象能力和逻辑思维能力。
同时,通过课堂练习和课后作业,让学生巩固所学知识,提高解决问题的能力。
在今后的教学中,要继续关注学生的学习情况,针对不同学生的特点进行有针对性的辅导,提高教学质量。
初中数学圆的复习教案

初中数学圆的复习教案一、教学目标1. 回顾和掌握圆的基本概念、性质和定理;2. 提高学生解决直线与圆、圆与圆位置关系的几何问题能力;3. 培养学生的逻辑思维能力和数学应用能力。
二、教学内容1. 圆的基本概念和性质;2. 直线与圆的位置关系;3. 圆与圆的位置关系;4. 圆的应用问题。
三、教学过程(一)复习导入(5分钟)1. 复习圆的基本概念:圆的定义、圆心、半径等;2. 复习圆的性质:圆的对称性、周长、面积等;3. 引导学生回顾圆的画法和相关工具。
(二)直线与圆的位置关系(15分钟)1. 讲解直线与圆的相交、相切、相离三种情况;2. 引导学生掌握垂径定理及其推论;3. 举例讲解直线与圆的位置关系在实际问题中的应用。
(三)圆与圆的位置关系(15分钟)1. 讲解圆与圆的相交、相切、相离三种情况;2. 引导学生掌握圆心角、弧、弦、弦心距之间的关系定理;3. 举例讲解圆与圆的位置关系在实际问题中的应用。
(四)圆的应用问题(15分钟)1. 讲解圆的周长、弧长、扇形面积等概念;2. 引导学生掌握圆的周长、弧长、扇形面积的计算方法;3. 举例讲解圆的应用问题在实际问题中的应用。
(五)课堂练习(10分钟)1. 针对本节课的内容,设计一些填空题、选择题和计算题;2. 引导学生独立完成练习题,并及时给予解答和反馈。
(六)总结与反思(5分钟)1. 引导学生回顾本节课所学内容,总结直线与圆、圆与圆的位置关系及应用;2. 鼓励学生提出问题,解答学生的疑问;3. 强调圆的知识在实际生活中的应用价值。
四、教学评价1. 课堂练习的完成情况;2. 对直线与圆、圆与圆位置关系的理解和应用能力;3. 学生的提问和解答问题的能力。
五、教学资源1. 教学PPT;2. 练习题;3. 几何画板等教学工具。
六、教学建议1. 注重学生的参与,鼓励学生积极提问和解答问题;2. 结合生活中的实例,让学生感受圆的知识在实际中的应用;3. 加强对学生几何画板等工具的指导,提高学生的动手能力。
初中圆总复习教案

初中圆总复习教案一、教学目标1. 知识与技能:巩固和掌握圆的基本概念、性质、公式和定理,提高学生的圆相关题目解答能力。
2. 过程与方法:通过复习,使学生能够灵活运用圆的知识解决实际问题,培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:激发学生对圆的知识的兴趣,培养学生积极学习的态度,提高学生的自信心。
二、教学内容1. 圆的基本概念:圆的定义、圆心、半径等。
2. 圆的性质:圆的周长、面积公式,圆的对称性,圆的切线、割线、半径的性质等。
3. 圆的方程:圆的标准方程、一般方程等。
4. 圆与直线的关系:圆与直线的相交、相切、相离等。
5. 圆与圆的关系:圆与圆的相交、相切、相离等。
6. 圆的轴对称性、中心对称性等。
三、教学过程1. 复习导入:回顾圆的基本概念,如圆的定义、圆心、半径等。
引导学生回忆圆的性质,如圆的周长、面积公式,圆的对称性,圆的切线、割线、半径的性质等。
2. 知识梳理:通过PPT或板书,对圆的知识进行梳理,突出重点和难点。
引导学生理解圆的方程的定义和应用,掌握圆与直线、圆与圆的关系。
3. 典题解析:选取一些典型的圆的相关题目,进行解析和讲解,引导学生运用圆的知识解决实际问题。
4. 练习巩固:布置一些练习题,让学生独立完成,检验学生对圆的知识的掌握程度。
5. 总结提升:对本节课的复习内容进行总结,强调圆的知识在实际生活中的应用,激发学生学习的兴趣。
6. 课后作业:布置一些有关的作业,让学生进一步巩固圆的知识。
四、教学策略1. 采用PPT或板书,清晰展示圆的知识结构,便于学生理解和记忆。
2. 以学生为主体,引导学生主动参与复习过程,提高学生的学习积极性。
3. 注重典题解析,培养学生运用圆的知识解决实际问题的能力。
4. 鼓励学生提问、讨论,促进学生之间的交流与合作。
5. 及时反馈,针对学生的掌握情况,调整教学进度和方法。
五、教学评价1. 学生对圆的基本概念、性质、公式和定理的掌握程度。
初三圆全面复习(教案)

初三数学圆知识精讲一. 圆教学内容:1. 圆的内容包括:圆的有关概念和基本性质,直线和圆的位置关系,圆和圆的位置关系,正多边形和圆。
2. 主要定理:(1)垂径定理及其推论。
(2)圆心角、弧、弦、弦心距之间的关系定理。
(3)圆周角定理、弦切角定理及其推论。
(4)圆内接四边形的性质定理及其推论。
(5)切线的性质及判定。
(6)切线长定理。
(7)相交弦、切割线、割线定理。
(8)两圆连心线的性质,两圆的公切线性质。
(9)圆周长、弧长;圆、扇形,弓形面积。
(10)圆柱、圆锥侧面展开图及面积计算。
(11)正n边形的有关计算。
二. 中考聚焦:圆的知识在中考中所占的比例大,题型多,常见的有填空题、选择题、计算题或证明题,近年还出现了一些圆的应用题及开放型问题、设计型问题,中考的压轴题都综合了圆的知识。
三. 知识框图:三、知识点:㈠、温故而知新1.在同圆或等圆中,如果在两条弦、两条弧、两个圆心角中有_____组量相等,那么它们所对应的其余各组量都分别相等。
2. 垂径定理:垂直于弦的直径_____________这条弦,并且平分弦所对的两条_______。
3. 垂径定理的逆定理:平分弦(不是__________)的直径__________这条弦,并且平分弦所对的两条___4. 圆周角与圆心角的关系:一条弧所对的__________等于这条弧所对的__________的一半。
___________________所对圆周角相等。
在同圆或等圆中,相等的圆周角所对的______相等。
直径所对的圆周角是________,____________的圆周角所对弦是直径。
5.圆的切线⑴判定:经过直径________,并且与这条直径_____________的直线是圆的切线。
⑵性质:圆的切线垂直于___________的直径。
6.三角形的外心________________________确定一个圆。
经过三角形的三个顶点的圆叫做三角形的_____________,它的圆心叫做三角形的外心;三角形的外心是三角形的_____________________________的交点。
初三数学专题复习:圆的基本性质复习教案

6 4第六单元圆第21讲圆的基本性质一、教学目标: 1、认识圆,理解圆的本质属性,理解垂直于弦的直径的性质和推论、弧、弦、圆心角的关系、圆周角定理及推论,并能应用它解决一些简单的计算、证明和作图问题.2、灵活运用圆的性质定理解决有关圆的问题,提高分析问题、解决问题的能力;3、引导学生独立思考,通过归纳、概括、实践等数学活动,感受获得成功的体验,形成科学的学习习惯。
二、教学重难点:1、灵活运用圆的性质定理解决有关圆的计算和证明。
2、圆中常见题型的归纳总结,特别是多解问题的分析,提高学生解决问题的能力。
三、教学用具:PP、三角板、彩色粉笔四、学情分析:通过概念辨析提高学生对概念的理解,通过典型例题深化学生对圆的性质定理的理解运用。
五、教学方法:讨论、交流、讲练结合法。
六、教学资源:教学设计、教材、复习练习册七、教学过程:(一)圆的有关概念1、(1)圆上各点到定点(圆心O)的距离 ,都等于(2)到定点的距离等于定长的点都在上.2、填空(1)到定点O的距离为2cm的点组成了以为圆心,为半径的圆。
(2)正方形的四个顶点在以为圆心,以为半径的圆上。
(3)下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧中,正确的命题有()个。
A、1 B、2 C、3 D、4(思政元素:感受圆的轴对称性和圆的旋转不变性,体会数学和生活中圆的魅力。
)(二)垂径定理和推论垂直于弦的直径平分弦,并且平分弦所对的两条弧.例1、如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB= cm.例2、如图,⊙ O的弦AB=8cm ,直径CE⊥AB于D,DC=2cm,求半径OC的长.练习1、如图a、b,一弓形弦长cm,弓形所在的圆的半径为7cm,则弓形的高为________.练习2、已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为 .练习3、⊙O的直径为10,弦AB=8,P为AB上的一个动点,那么OP长的取值范围 .(三)弧、弦、圆心角关系例1、如图,在⊙O中, AB=AC ,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.例2、在同圆中,圆心角∠AOB=2∠COD,则AB与CD的关系是()练习、如图,AB 是⊙O 的直径, BC = CD = DE ,∠COD=35°,∠AOE = .(四)圆周角定理及推论例1 如图,AC是☉O的直径(1)若∠A=80°.求∠ACB的大小.(2)若AC为10cm,弦AD为6cm.求DC的长;(3)若∠ADC的平分线交⊙O于B, 求AB、BC的长.例2、如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为( )A.30° B.45° C.60° D.75方法总结:在圆中如果有直径,一般要找直径所对的圆周角,构造直角三角形解题.例3、如图,AB是⊙O的直径,弦CD交AB于点P,∠ACD=60°,∠ADC=70°.求∠APC的度数.例4、(1)四边形ABCD是⊙O的内接四边形,且∠A=110°,∠B=80°,则∠C= ,∠D= .(2)⊙O的内接四边形ABCD中,∠A∶∠B∶∠C=1∶2∶3 ,则∠D=例5、如图,在△ABC中,AB=AC,以AB为直径的圆交BC于D,交AC于E,(1)BD与CD的大小有什么关系?为什么?(2)求证:弧BD=弧DE .(五)课堂小结:总结本课知识点和常规解法指导。
初三数学圆复习教案

初三数学圆知识精讲
一. 圆教学内容:
1. 圆的内容包括:圆的有关概念和基本性质,直线和圆的位置关系,圆和圆的位置关系,正多边形和圆。
2. 主要定理:
(1)垂径定理及其推论。
(2)圆心角、弧、弦、弦心距之间的关系定理。
(3)圆周角定理、弦切角定理及其推论。
(4)圆内接四边形的性质定理及其推论。
(5)切线的性质及判定。
(6)切线长定理。
(7)相交弦、切割线、割线定理。
(8)两圆连心线的性质,两圆的公切线性质。
(9)圆周长、弧长;圆、扇形,弓形面积。
(10)圆柱、圆锥侧面展开图及面积计算。
(11)正n边形的有关计算。
二. 中考聚焦:
圆这一章知识在中考试题中所占的分数比例大约如下表:
圆的知识在中考中所占的比例大,题型多,常见的有填空题、选择题、计算题或证明题,近年还出现了一些圆的应用题及开放型问题、设计型问题,中考的压轴题都综合了圆的知识。
三. 知识框图:。
《圆的复习》教案
《圆的复习》教案《圆的复习》教案《圆的复习》教案1◆您现在正在阅读的复习课《圆》之创新路文章内容由收集!本站将为您提供更多的精品教学资源!复习课《圆》之创新路复习课《圆》之创新路案例:本课复习内容包括:圆的单元复习包括圆的认识、圆的周长和面积。
在圆的认识里,包括圆心、半径、直径、按要求画圆;圆的周长的意义和公式,圆面积的意义和公式;轴对称图形的知识以及运用圆的周长和面积的'知识解决有关的实际问题。
设计时我没有按照教条常规先让学生总结知识点然后集体汇报补充,最后做相关练习。
为了提高学生对复习课的兴趣,我这样设计复习旧知环节:习题回顾、整理提升1、请画出两个圆。
(放手让学生画)能找到对称轴吗?你会画一个同心圆吗?2、谁能说说刚才你在画图的过程中知道了哪些信息?或者有什么想提醒大家的?(定圆心、定半径、圆心定位置,半径定大小)3、请画出内圆的半径和直径。
得出:d=2r 半径有无数条直径也是无数条,直径所在直线是圆的对称轴,圆的对称轴有无数条4、请你计算出外圆的周长。
得出:C= d=C/ 怎样求周长?5、剪掉小圆,得到什么图形?(圆环)你会计算它的面积吗?得出:S=圆环:S=-r或S=(R-r)6、思考:解决这些问题的思路是什么?也就是求周长、面积需要知道什么?(小组交流)(集体展示)案例分析:复习课是对所学知识的一个梳理与巩固作用,而复习课要上得有效,就要达到提高学生数学能力之一目标。
数学能力最为重要的能力即思维能力及创新能力。
设计时在回顾与整理环节我以导学注重培养了学生的思维能力,采用动手操作强化有关圆的知识,引导学生在动手操作中边思考边实践,并在第一步画出两个圆中,学生设计出了相交、相离、内切、外切等多种样式,提高了学生的创新能力,体会到了对称图形的美。
随后学生通过练习进行扎实训练,及时反馈提高了学习效率,整堂课教学效果非常好!《圆的复习》教案2课题:复习圆、轴对称图形,数学教案-复习圆、轴对称图形。
中考数学总复习教案
中考数学总复习教案——圆的有关概念与性质一、教学目标:1. 知识与技能:(1)理解圆的概念,掌握圆的各部分名称;(2)掌握圆的性质,了解圆的常见公式;(3)学会运用圆的性质解决实际问题。
2. 过程与方法:(1)通过观察、实践,培养学生的空间想象能力;(2)运用小组合作、讨论的方式,提高学生的交流与协作能力;(3)培养学生运用圆的性质解决数学问题的能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养积极的数学学习态度;(2)培养学生勇于探索、严谨治学的科学精神;(3)培养学生团结协作、共同进步的团队意识。
二、教学内容:1. 圆的概念:定点到定点的距离等于定长的点的集合。
2. 圆的性质:(1)圆心到圆上任意一点的距离相等;(2)圆上任意一点到圆心的连线与圆的切线垂直;(3)圆的半径与圆心角、弧、弦的关系;(4)圆的周长、面积公式。
3. 圆的常见公式:(1)圆的周长公式:C = 2πr;(2)圆的面积公式:S = πr²;(3)弧长公式:l = nπr/180;(4)扇形面积公式:S = 1/2lnr。
三、教学重点与难点:1. 教学重点:(1)圆的概念及圆的各部分名称;(2)圆的性质及应用;(3)圆的常见公式及运用。
2. 教学难点:(1)圆的性质的理解与运用;(2)圆的常见公式的记忆与运用。
四、教学方法:1. 采用直观演示法,让学生通过观察、实践,理解圆的概念和性质;2. 运用小组合作、讨论法,引导学生主动探究圆的性质和应用;3. 运用讲解法,清晰讲解圆的常见公式及运用方法。
五、教学过程:1. 引入:通过生活实例,引导学生认识圆的概念,激发学生的学习兴趣;2. 讲解:讲解圆的各部分名称,重点讲解圆的性质,引导学生理解并掌握圆的性质;3. 实践:让学生通过实际操作,验证圆的性质,提高学生的实践能力;4. 探讨:引导学生运用圆的性质解决实际问题,培养学生的解决问题能力;5. 小结:对本节课的内容进行总结,强调圆的性质和常见公式的运用。
初三圆的复习教案
初三圆的复习教案教案标题:初三圆的复习教案教学目标:1. 学生能够理解圆的概念,并能正确使用圆的术语。
2. 学生能够计算圆的周长和面积。
3. 学生能够应用圆的相关概念解决实际问题。
4. 学生能够发展对圆形图形的观察和推理能力。
教学准备:1. 教学PPT或白板。
2. 圆规、直尺和铅笔。
3. 纸板或绘图纸。
4. 练习题和答案。
教学过程:Step 1: 引入1. 在白板上画一个圆形,引导学生回顾圆的定义,并解释相关术语(圆心、半径、直径、弧、弦、切线等)。
2. 提问学生有关圆的特征和性质,激发他们对圆更深入的思考。
Step 2: 计算圆的周长和面积1. 提醒学生关于计算周长和面积的公式(周长=2πr,面积=πr²)。
2. 通过示范,解释如何根据给定的半径或直径计算圆的周长和面积。
3. 给学生一些练习题,让他们独立计算圆的周长和面积,并检查答案。
Step 3: 圆的相关问题1. 提供一些实际问题,要求学生应用所学知识解决。
例如:一个花坛的形状是一个半径为4米的圆,求花坛周围的围墙长度和花坛的面积分别是多少?2. 引导学生思考解决问题的方法,并鼓励他们用图画或数学计算来解决。
Step 4: 圆形图形观察和推理1. 准备一些不同大小和位置的圆形图形,让学生观察并描述它们的特征和相似之处。
2. 引导学生思考圆形图形的一些共同特点,并鼓励他们提出自己的观察和推理。
例如:如何通过测量圆的直径来判断两个圆是否相等?3. 给学生几个挑战性的问题,鼓励他们思考并解决。
Step 5: 小结和反思1. 总结圆的相关概念和计算方法。
2. 要求学生回顾整个课堂内容,自我评价学习效果。
3. 鼓励学生思考如何将所学知识应用到实际生活中。
教学扩展:1. 鼓励学生自行寻找更多关于圆的实际问题并解决。
2. 设计一些有趣的游戏或活动,帮助学生巩固对圆的概念的理解。
教学评估:1. 在课堂上观察学生的参与度和对圆概念的理解程度。
2. 分发练习题和挑战性问题,检查学生对圆的计算和应用能力。
圆复习课教案初中数学
圆复习课教案初中数学教学目标:1. 复习并巩固圆的基本概念、性质和公式;2. 提高学生解决与圆相关的实际问题的能力;3. 培养学生的逻辑思维能力和团队合作精神。
教学内容:1. 圆的基本概念:圆的定义、圆心、半径;2. 圆的性质:圆的对称性、圆的周长和面积公式;3. 与圆相关的实际问题:圆的周长和面积的计算、圆的直径和半径的关系。
教学过程:一、导入(5分钟)1. 复习圆的定义:一个平面上所有点到一个固定点的距离都相等的点的集合;2. 引导学生回顾圆的基本性质,如对称性、周长和面积公式等。
二、自主学习(15分钟)1. 学生自主复习圆的性质,总结圆的周长和面积公式;2. 学生通过练习题巩固圆的性质和公式的应用。
三、合作探究(15分钟)1. 学生分组讨论与圆相关的实际问题,如圆的周长和面积的计算、圆的直径和半径的关系;2. 各小组选取一道实际问题,进行展示和讲解,其他小组成员进行评价和补充。
四、巩固练习(15分钟)1. 学生独立完成练习题,巩固圆的性质和公式的应用;2. 教师选取部分学生的练习题进行讲解和分析,指出错误和不足之处。
五、总结和反思(5分钟)1. 学生总结本节课的收获和不足,制定下一步的学习计划;2. 教师对学生的表现进行评价,鼓励学生继续努力。
教学评价:1. 学生课堂参与度:观察学生在课堂上的发言和练习情况,了解学生的学习状态;2. 学生练习题完成情况:检查学生的练习题,评估学生对圆的性质和公式的掌握程度;3. 学生合作探究能力:评价学生在小组合作中的表现,如沟通、协作、解决问题等能力。
教学资源:1. 圆的性质和公式PPT;2. 与圆相关的实际问题练习题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学复习圆专题复习教案课程公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]中考数学专题复习六 几何(圆) 【教学笔记】 一、与圆有关的计算问题(重点)1、扇形面积的计算扇形:扇形面积公式 213602n R S lR π== n :圆心角 R :扇形对应的圆的半径 l :扇形弧长 S :扇形面积圆锥侧面展开图:(1)S S S =+侧表底=2Rr r ππ+(2)圆锥的体积:213V r h π=2、弧长的计算:弧长公式 180n R l π=; 3、角度的计算 二、圆的基本性质(重点)1、切线的性质:圆的切线垂直于经过切点的半径.2、圆周角定理:一条弧所对圆周角等于它所对圆心角的一半;推论:(1)在同圆或等圆中,同弧或等弧所对的圆周角相等;(2)相等的圆周角所对的弧也相等。
(3)半圆(直径)所对的圆周角是直角。
(4)90°的圆周角所对的弦是直径。
注意:在圆中,同一条弦所对的圆周角有无数个。
3、垂径定理定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧推论:(1)平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧(2)弦的垂直平分线经过圆心,并且平分这条弦所对的弧(3)平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧(4)在同圆或者等圆中,两条平行弦所夹的弧相等三、圆与函数图象的综合一、与圆有关的计算问题【例1】(2016资阳)在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A.2﹣π B.4﹣π C.2﹣π D.π【解答】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=2,∴BC=ACtan30°=2=2,∴S阴影=S△A B C﹣S扇形C B D=×2×2﹣=2﹣π.故选A.【例2】(2014资阳)如图,扇形AOB中,半径OA=2,∠AOB=120°,C是的中点,连接AC、BC,则图中阴影部分面积是()A.﹣2B.﹣2C.﹣ D.﹣解答:连接OC,∵∠AOB=120°,C为弧AB中点,∴∠AOC=∠BOC=60°,∵OA=OC=OB=2,∴△AOC、△BOC是等边三角形,∴AC=BC=OA=2,∴△AOC的边AC上的高是=,△BOC边BC上的高为,∴阴影部分的面积是﹣×2×+﹣×2×=π﹣2,故选A.【例3】(2013资阳)钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是( )A .π B. π C . π D . π 解答: 从9点到9点30分分针扫过的扇形的圆心角是180°,则分针在钟面上扫过的面积是:=π.故选:A . 【例4】(2015成都)如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 和BC 弧线的长分别为( )A .2,3π B .23,π C .3,23π D .23,43π 【课后练习】1、(2015南充)如图,PA 和PB 是⊙O 的切线,点A 和B 的切点,AC 是⊙O 的直径,已知∠P =40°,则∠ACB 的大小是( B )A .40°B .60°C .70°D .80°2、(2015达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B ′,则图中阴影部分的面积是( B )A .12π B.24π C.6π D.36π3、(2015内江)如图,在⊙O 的内接四边形ABCD 中,AB是直径,∠BCD =120°,过D 点的切线PD 与直线AB 交于点P ,则∠ADP 的度数为( )A .40° B.35° C.30° D.45°解析:连接BD ,∵∠DAB=180°-∠C=50°,AB 是直径,∴∠ADB =90°,∠ABD =90°-∠DAB=40°,∵PD 是切线,∴∠ADP =∠B=40°.故选A .4、(2015自贡)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =32,则阴影部分的面积为A .2πB .πC .3π D .32π解析:∠BOD =60° 5、(2015凉山州)如图,△ABC 内接于⊙O ,∠OBC=40°,则∠A 的度数为( )A .80° B.100° C.110° D.130°6、(2015凉山州)将圆心角为90°,面积为4πcm 2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径 ( )A .1cmB .2cmC .3cmD .4cm7、(2015泸州)如图,PA 、PB 分别与⊙O 相切于A 、B 两点,若∠C =65°,则∠P 的度数为( )A .65° B.130° C.50° D.100°8、(2015眉山)如图,⊙O 是△ABC 的外接圆,∠ACO =450,则∠B 的度数为( )A .300B .350C .400D 4509、(2015巴中)如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =50°,则∠OAB 的度数为( )A .25° B.50° C.60° D.30°10、(2015攀枝花)如图,已知⊙O的一条直径AB与弦CD相交于点E,且AC=2,AE=3,CE=1,则图中阴影部分的面积为()A.239πB.439πC.29πD.49π11、(2015甘孜州)如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()A.π﹣2 B.π﹣4 C.4π﹣2 D.4π﹣412、(2015达州)已知正六边形ABCDEF的边心距为3cm,则正六边形的半径为cm.13、(2015自贡)如图,已知AB是⊙O的一条直径,延长AB至C点,使AC=3BC,CD与⊙O相切于D点.若CD=3,则劣弧AD的长为.14、(2015遂宁)在半径为5cm的⊙O中,45°的圆心角所对的弧长为cm.15、(2015宜宾)如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC切⊙O于点C,点B是CF的中点,弦CF交AB于点E.若⊙O的半径为2,则CF= .16、(2015泸州)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.17、(2015眉山)已知⊙O的内接正六边形周长为12cm,则这个圆的半经是_________cm.18、(2015广安)如图,A.B.C三点在⊙O上,且∠AOB=70°,则∠C= 度.19、24.(2015巴中)圆心角为60°,半径为4cm的扇形的弧长为cm.20、(2015甘孜州)如图,AB是⊙O的直径,弦CD垂直平分半径OA,则∠ABC 的大小为度.二、圆的基本性质【例1】(2016资阳)如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN 的长.【解答】解:(1)如图,连接OD,∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵CD与⊙O相切于点D,∴∠CDB+∠ODB=90°,∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;(2)∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN==.【例2】(2015资阳)如图11,在△ABC中,BC是以AB为直径的⊙O的切线,且⊙O与AC相交于点D,E为BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接AE,若∠C=45°,求sin∠CAE的值.解答:解:(1)连接OD,BD,∴OD=OB ∴∠ODB=∠OBD.∵AB是直径,∴∠ADB=90°,∴∠CDB=90°.∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE=90°,∴DE是⊙O的切线;(2)作EF⊥CD于F,设EF=x∵∠C=45°,∴△CEF、△ABC都是等腰直角三角形,∴CF=EF=x,∴BE=CE=x,∴AB=BC=2x,在RT△ABE中,AE==x,∴sin∠CAE==.【例3】(2014资阳)如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.解答:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠DAE=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD;(2)解:∵AB=2,∴OA=1,在Rt△AOC 中,AC=2,∴OC==3,∴CD=OC﹣OD=3﹣1=2, ∵△CDE∽△CAD,∴=,即=,∴CE=.【例4】(2013资阳)在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连结CD .(1)如图1,若点D 与圆心O 重合,AC=2,求⊙O 的半径r ;(2)如图2,若点D 与圆心O 不重合,∠BAC=25°,请直接写出∠DCA 的度数.解答: (1)如图,过点O 作OE⊥AC 于E ,则AE=AC=×2=1, ∵翻折后点D 与圆心O 重合,∴OE=r ,在Rt△AOE 中,AO 2=AE 2+OE 2,即r 2=12+(r )2,解得r=;(2)连接BC ,∵AB 是直径,∴∠ACB=90°,∵∠BAC=25°,∴∠B=90°﹣∠BAC=90°﹣25°=65°,根据翻折的性质,所对的圆周角等于所对的圆周角,∴∠DCA=∠B﹣∠A=65°﹣25°=40°.【课后练习】1、(2015达州)如图,AB 为半圆O 的在直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,连接OD 、OC ,下列结论:①∠DOC =90°,②AD +BC =CD ,③22ΔAOD ΔBOC ::S S AD AO =,④OD :OC =DE :EC ,⑤2OD DE CD =⋅,正确的有( )A .2个B .3个C .4个D .5个解析:如图,连接OE,∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC。