快切装置原理说明书
4.快切装置说明书

一单元2×660机组快切装置说明书目录1 概述 (31)2 厂用电切换方式 (31)2.1 按开关动作顺序分类(动作顺序以工作电源切向备用电源为例): (31)2.2 按起动原因分类 (31)2.3 按切换速度分类 (32)3 功能简介 (32)3.1 监测、显示功能 (32)3.2 切换功能 (32)3.2.1 正常切换 (32)3.2.2 事故切换 (33)3.2.3 不正常情况切换 (33)3.3 低压减载功能 (34)3.4 闭锁报警、故障处理功能 (34)3.4.1 开关位置异常(位置闭锁/去耦合) (35)3.4.2 装置异常 (35)3.4.3 保护闭锁 (35)3.4.4 PT断线 (36)3.4.5 后备电源失电监测 (36)3.4.6 装置闭锁(等待复归状态) (36)3.4.7 出口闭锁 (36)3.4.8 装置失电 (37)3.5 起动后加速保护功能 (37)3.6 画面自动弹出功能 (37)3.7 事件追忆、录波、打印、通信、GPS对时功能 (37)3.7.1 事件追忆 (37)3.7.2 录波 (38)3.7.3 通信 (38)3.7.4 GPS对时 (38)4 快切装置使用说明 (38)4.1 操作键与指示灯 (38)4.2 光字牌或DCS信号 (39)4.3 面板巡检 (40)4.4 液晶显示及操作说明 (40)4.4.1 主菜单 (40)4.4.2 子菜单 (41)1概述MFC2000型微机厂用电快切装置,适用于发电厂厂用电切换,或其它工业部门,如化工、煤炭和冶金等有较多高压电动机负荷的场合的电源切换。
这些场合对电源切换要求较高,在电源切换时不能造成运行中断或设备冲击损坏。
发电机组对厂用电切换的基本要求是安全可靠。
其安全性体现为切换过程中不能造成设备损坏,而可靠性则体现为提高切换成功率,减少备用变过流或重要辅机跳闸造成锅炉汽机停运的事故。
2厂用电切换方式厂用电源切换的方式可按开关动作顺序分,也可按起动原因分,还可按切换速度进行分类。
快切简要说明

2、快切功能简介:
正常切换:由手动启动,在DCS系统或装置面板上(需专业人员)均 可进行。正常切换是双向的,可以由工作电源切向备用电源,也可 以由备用电源切向工作电源。正常切换有以下几种方式: 并联自动: 手动启动,若并联切换条件满足,装置先合备用(工作) 开关,经一定延时后再自动跳开工作(备用)开关,如在这段延时 内,刚合上的备用(工作)开关被跳开,则装置不再跳开工作(备 用)开关。若启动后并联切换条件不满足,装置将闭锁发信,并进 入等待复归状态。 并联半自动:手动启动,若并联切换条件满足,装置合上备用(工 作)开关,而跳开工作(备用)开关的操作由人工完成,若在规定 的时间内,操作人员仍未跳开工作(备用)开关,装置将发出告警 信号。若启动后并联切换条件不满足,装置将闭锁发信,并进入等 待复归状态。 正常同时切换:手动启动,先发跳工作(备用)开关命令,在切换 条件满足时,发合备用(工作)开关命令。若要保证先分后合,可 在合闸命令前加一定延时。快速同时切换不成功则自动转入同期扑 捉或残压切换。
不正常情况切换:
厂用母线失电:当厂用母线三相电压均低 于整定值,时间超过整定延时,则装置根 据选择方式进行串联或同时切换。 工作电源开关误跳:因各种原因(包括人 为误操作)造成工作电源开关误跳开,装 置将在切换条件满足时合上备用电源。
3、各类切换软件流程 (见附件)
4、快切与备自投的区别
备自投未经同步检定,电动机易受冲击。合上备用电源时,母线残压与备 用电源电压之间的相角差已接近180°,将会对电动机造成过大的冲击。若经 过延时待母线残压衰减到一定幅值后再投入备用电源,由于断电时间过长, 母线电压和电机的转速均下降过大,备用电源合上后,电动机组的自起动电 流很大,母线电压将可能难以恢复,从而对电厂的锅炉系统的稳定性带来严 重的危害。 快速切换装置,可避免备用电源电压与母线残压在相角、频率相差过大时 合闸而对电机造成冲击,如失去快速切换的机会,则装置自动转为同期判别 或判残压及长延时的慢速切换,同时在电压跌落过程中,可按延时甩去部分 非重要负荷,以利于重要辅机的自起动。提高厂用电切换的成功率。 快切和备自投最大的区别就是快切是双向的——具有正常工况下备 用电源与工作电源间的双向切换,及事故或非正常工况下工作电源向备 用电源的单向切换;而备自投是单向的——只能有工作切至备用。
MFC2000-2型快切装置技术说明书V4.21

MFC2000-2型微机厂用电快速切换装置技术说明书金智科技股份有限公司东大金智电气自动化有限公司本公司保留对产品更改的权利,如有与装置不同之处,以装置为准版权所有,请勿翻印、复印版权:V4.21 印刷:2006年03月1目录1.概述 (1)2.厂用电切换原理及分析 (3)2.1.厂用电切换存在的问题 (3)2.2.厂用电切换方式 (4)2.3.快速切换、同期捕捉切换、残压切换原理 (4)2.4.厂用电切换应用事项 (7)2.5.关于快速切换时间 (8)3.装置特点及主要技术指标 (10)3.1.装置主要特点 (10)3.2.主要技术指标 (11)4.装置软硬件简介 (13)4.1.硬件简介 (13)4.2.软件简介 (14)5.功能简介 (16)5.1.监测、显示功能 (16)5.2.切换功能 (16)5.3.低压减载功能 (17)5.4.闭锁报警、故障处理功能 (17)5.5.起动后加速保护功能 (20)5.6.画面自动弹出功能 (20)5.7.事件追忆、录波、打印、通信、GPS对时功能 (20)6.定值参数设定 (22)6.1.整定定值 (22)6.2.方式设置 (23)7.设计说明 (24)7.1.装置配置 (24)7.2.组屏 (24)7.3.交流电压输入 (24)7.4.附图 (25)8.附录 (29)1. 概述MFC2000型微机厂用电快切装置,适用于发电厂厂用电切换,或其它工业部门,如化工、煤炭和冶金等有较多高压电动机负荷的场合的电源切换。
这些场合对电源切换要求较高,在电源切换时不能造成运行中断或设备冲击损坏。
以往厂用电切换一般采用工作开关辅助接点直接(或经低压继电器、延时继电器)起动备用电源投入。
这种方式,若合闸瞬间厂用母线反馈电压与备用电源电压间相角差较大,或可能接近180 ,将对电动机造成很大的合闸冲击。
对加固定延时的切换方式,也因切换时系统运行方式、厂用负荷、故障类型等因素,不能可靠保证躲过反相点合闸。
6kv快切装置的工作原理及切换方式

6kv快切装置的工作原理及切换方式
6kv快切装置是一种用于电力系统中的高压断路器,其工作原理主要包括电气触头的接合和分离、电磁驱动机构的动作。
其切换方式主要有手动切换和自动切换两种。
1. 工作原理:
- 接合:通过操作机械驱动机构,使两个电气触头接近并接通,电流得以从一侧通过断路器。
- 分离:当需要切断电流时,电梯式的机械驱动机构将两个电气触头分开,断开电路。
2. 切换方式:
- 手动切换:由人工通过手柄、手轮等手动操作装置控制断路器的开合,直接将机械驱动机构的动作信号传递给断路器,实现切换操作。
- 自动切换:通过自动化控制设备,如继电器、保护装置等,根据电力系统的实际工作状态,自动接通或分断断路器。
可以根据电流、电压等参数进行监测和控制,实现电力系统的自动保护和控制。
需要注意的是,6kv快切断路器通常应用于中小型变电站、配电站等场所,用于接通、切断电力系统中的电流。
工作原理和切换方式的具体实现有不同的品牌和型号,可能会有细微的差别。
快切装置

2.2事故同时切换 由保护接点起动,先发跳工作电源开关指令, 在切换条件满足时(或经用户延时)发合备 用电源开关命令。 切换条件:快速、同期判别、残压及长延时 切换。快速切换不成功时自动转入同期判别、 残压及长延时切换。
2.3非正常工况切换 非正常工况切换是指装置检测到不正常运行 情况时自行起动,单向操作,只能由工作电 源切向备用电源。该切换有以下两种情况。
同期切换
残压切换
长延时切换
当某些情况下,母线上的残压有可能不易衰 减,此时如残压定值设置不当,可能会推迟 或不再进行合闸操作。因此在该装置中另设 了长延时切换功能,作为以上三种切换的总 后备。
五、装置闭锁
装置闭锁及报警功能 1保护闭锁 当某些保护动作时(如工作分支过流),为 防止备用电源误投入故障母线,可由这些保 护给出的接点闭锁装置。一旦该接点闭合, 装置将自动闭锁出口回路,发装置闭锁信号, 面板闭锁、待复归灯亮,并等待人工复归。
我厂选用用国电南自 WBKQ-01B微机备用电源快速 切换装置
并 联 自 动 手 动 并 联 并 联 半 自 动 正 常 手 动 切 换
(运 行 人 员 手 动 起 动 )
手 动 串 联 按 起 动 原 因 分 类 串 联 切 换
事 故 切 换
(发 变 组 、 厂 变 保 护 接 点 起 动 )
并联半自动 并联半自动指手动起动切换,如并联切换条 件满足要求,装置先合备用(工作)开关, 而跳开工作(备用)开关的操作则由人工完 成。如果在规定的时间内,操作人员仍未跳 开工作(备用)开关,装置将发告警信号。 如果手动起动后并联切换条件不满足,装置 将立即闭锁且发闭锁信号,等待复归。
1:手动并联切换只有在两电源并联条件满足时才 能实现,并联条件可在装置中整定。 2:两电源并联条件满足是指: ⑴两电源电压差小于整定值。 ⑵两电源频率差小于整定值。 ⑶两电源相角差小于整定值。 ⑷工作、备用电源开关任意一个在合位、一个在分 位。 ⑸目标电源电压大于所设定的电压值。 ⑹母线PT正常。
[整理]PZH-1型快切装置用户手册
![[整理]PZH-1型快切装置用户手册](https://img.taocdn.com/s3/m/6c3ca6bc76a20029bc642d2e.png)
第一章装置概述微机厂用快速切换装置是实现发电厂厂用母线电源快速切换的关键控制设备。
PZH-1型微机厂用电快速切换装置,是本公司在消化国际同类设备基础上结合我国电厂运行经验研制的新一代厂用快速切换装置。
装置具有正常情况下,备用电源与工作电源之间双向切换;事故或不正常情况下,工作电源向备用电源单向切换的功能。
采用该装置能够提高厂用电切换的成功率,避免非同期切换对厂用设备的冲击损坏,简化切换操作并减少误操作,提高机组的安全运行和自动控制水平。
每套装置可以对一段厂用母线的工作电源与备用电源进行切换控制,并提供装置面板、控制台和上位机三种控制操作方式。
一、装置特点●双CPU+CPLD结构CPU1是装置的主要核心,监测模拟量信号和开关量信号,在切换过程中记录切换数据,其高速输入HSI的分辨率为1.33 S,数据处理能力强大,使相差、频差的跟踪计算快速准确,完全满足厂用电同期检定和快速切换的要求。
CPLD模块完成切换逻辑功能,切换时CPU1提供切换同期切换允许信号。
CPU2完成人机对话处理及显示功能,CPU1和CPU2之间通过I2C 总线方式联络,CPU1在空闲时向CPU2传送显示数据。
双CPU同时工作,可以保证立即响应外部信号,可靠进行切换和故障处理,实现切换的零等待。
各主要模块功能专一,相互关系简单可靠,由于各模块并行协同工作,装置工作效率高。
在同期条件满足的情况下,保护切换跳工作响应时间小于3mS,合备用切换响应时间小于10mS。
●快速切换当频差和相差均小于快速条件设定值时,装置可随时进行快速切换。
●同期捕捉实时依据母线电压相位变化速率及已知合闸回路固有时间常数,推算出合闸时刻,使合闸完成时的相位差接近于零度。
●慢速切换母线残压切换,作为快速切换和同期捕捉的后备切换。
●预置初始相位在装置中固定母线的AB相参与相位比较,如工作和备用电源电压信号与线电压信号所取相序不一致,而产生的固定相位差,可通过预置初始相位予以消除,使用中建议备用和工作电压采用AB相参与比相。
厂用电快切装置

二、 事故切换 事故切换指由发变组、高压厂变保护(或其 它跳工作电源开关的保护)接点起动,单向操作 ,只能由工作电源切向备用电源。事故切换有两 种方式可供选择。 事故串联切换 由保护接点起动,先跳开工作电源开关,在 确认工作电源开关已跳开且切换条件满足时,合 上备用电源开关。 切换条件:快速、同期判别、残压及长延时 切换。快速切换不成功时自动转入同期判别、残 压及长延时切换。
并联半自动 并联半自动指手动起动切换,如并联切换条 件满足要求,装置先合备用(工作)开关,而 跳开工作(备用)开关的操作则由人工完成。 如果在规定的时间内,操作人员仍未跳开工作 (备用)开关,装置将发告警信号。如果手动 起动后并联切换条件不满足,装置将立即闭锁 且发闭锁信号,等待复归。
1:手动并联切换只有在两电源并联条件满足时 才能实现,并联条件可在装置中整定。 2:两电源并联条件满足是指: ⑴两电源电压幅值差小于整定值。 ⑵两电源频率差小于整定值。 ⑶两电源电压相角差小于整定值。 ⑷工作、备用电源开关一个在合位、另一个在分 位。 ⑸目标电源电压大于所设定的电压值。 ⑹母线PT正常。
注意:
由于厂用工作变压器和起动/备用变压器引自 不同的母线和电压等级,它们之间往往有不同数 值的阻抗及阻抗角,当变压器带上负荷时,两电 源之间的电压将存在一定的相位差,此相位差通 常称作“初始相角差”。初始相角的存在,使手 动并联切换时,两台变压器之间会产生环流,如 环流过大,对变压器是十分有害的。初始相角在 200时,环流的幅值大约等于变压器的额定电流。 因此当初始相角差超过200时,慎用手动并联方 式(此时可采用手动串联切换方式)。
厂用电切换原理简图
自 动 切 换 过 程 电 压 矢 量 图
厂用快切装置的主要功能: 正常情况下实现工作电源与备用电源之间的双 向切换。 事故、母线低电压、工作电源开关偷跳情况下 实现工作电源至备用电源的单向切换。 快速切换、同期判别切换、残压切换、长延时 切换四种切换条件。 串联、并联、事故同时三种切换方式可供选择 。 两段式定时限低压减载。
快切装置说明书

第一章概述MFC2000型微机厂用电快切装置,适用于发电厂厂用电切换,或其它工业部门,如化工、煤炭和冶金等有较多高压电动机负荷的电源切换,这些场合对电源切换要求较高,在电源切换是不能造成运行中断或设备冲击损坏。
以往厂用电切换一般采用工作开关辅助接点直接起动备用电源投入,这种方式,若合闸瞬间厂用母线反馈电压与备用电源电压间相交差较大,或可能接近180°,将对电动机造成很大的合闸冲击。
对加了固定延时的切换方式,也因各种因素,不能可靠保证躲过反向点合闸。
如残压衰减到一定幅值后投入备用电源,则由于断电时间过长,母线电压和电动机转速都下降很大,将严重影响锅炉运行工况,在这种情况下,一方面有些辅机势必退出运行,另一方面,备用电源合上后,由于电动机成组自起动电流很大,母线电压将可能难以恢复,从而导致自起动困难,甚至被迫停机停炉。
MFC2000型微机厂用电快切装置解决了上述厂用电安全运行问题,从1997年投运运行,已经在很多电厂广泛地应运,而且动作正确率和切换成功率均很高,实践证明其可靠性较强,本快切装置经历了两代装置,第一代是MFC2000-1型快切装置,第二代是MFC2000-2型快切装置,是MFC2000-1型装置的改进型,在硬件上和软件上都采用了较先进的技术,如硬件利用了双CPU结构,分工协调,保证了切换的可靠性、快速性和灵活性。
软件采用了汇编和C语言相结合的技术,是本装置功能得到了很大的增强,且有较强的实用性和实践中分析事故和问题的功能。
第二章厂用电切换原理及分析2.1 厂用电切换方式厂用电源切换的方式可按开关动作顺序分,也可按启动原因分,还可按切换速度进行分类。
(1)按照开关动作顺序分类(动作顺序以工作电源向备用电源为例):◆并联切换:先合上备用电源开关,两电源短时并联,再跳开工作电源开关,这种方式多用于正常切换,如起、停机过程中的厂用电倒换。
并联方式分为自动和并联半自动两种。
◆串联切换:先跳开工作电源开关,在确认工作开关跳开后,在合上备用电源开关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
快切装置原理说明一快切的作用:火力发电厂厂用电系统一般都具有两个电源:即厂用工作电源和备用(启动)电源,其典型接线如图1所示。
目前绝大多数大型机组火力发电厂都采用单元接线,正常运行时机组厂用电由单元机组供电,停机状态由备用电源供电,机组在启动和停机过程都必须带负荷进行厂用电切换。
另外,当机组或厂用工作电源发生故障时,为了保证厂用电不中断及机组安全有序地停机,不扩大事故,必须尽快把厂用电电源从工作电源切换到备用电源。
二启动快切的模式1 正常手动切换功能手动切换是指电厂正常工况时,手动切换工作电源与备用电源。
这种方式可由工作电源切换至备用电源,也可由备用电源切换至工作电源。
它主要用于发电机起、停机时的厂用电切换。
该功能由手动起动,在控制台或装置面板上均可操作。
手动切换可分为并联切换及串联切换。
1.1 手动并联切换(切换逻辑示意图见附图3)A 并联自动并联自动指手动起动切换,如并联切换条件满足要求,装置先合备用(工作)开关,经一定延时后再自动跳开工作(备用)开关。
如果在该段延时内,刚合上的备用(工作)开关被跳开,则装置不再自动跳开工作(备用)开关。
如果手动起动后并联切换条件不满足,装置将立即闭锁且发闭锁信号,等待复归。
b 并联半自动并联半自动指手动起动切换,如并联切换条件满足要求,装置先合备用(工作)开关,而跳开工作(备用)开关的操作则由人工完成。
如果在规定的时间内,操作人员仍未跳开工作(备用)开关,装置将发告警信号。
如果手动起动后并联切换条件不满足,装置将立即闭锁且发闭锁信号,等待复归。
注意:1:手动并联切换只有在两电源并联条件满足时才能实现,并联条件可在装置中整定。
2:两电源并联条件满足是指:⑴两电源电压幅值差小于整定值。
⑵两电源频率差小于整定值。
⑶两电源电压相角差小于整定值。
⑷工作、备用电源开关一个在合位、另一个在分位。
⑸目标电源电压大于所设定的电压值。
⑹母线PT 正常。
1.2 手动串联切换(切换逻辑示意图见附图4)手动串联切换指手动起动切换,先发跳工作电源开关指令,不等开关辅助接点返回,在切换条件满足时,发合备用(工作)开关命令。
如开关合闸时间小于开关跳闸时间,自动在发合闸命令前加所整定的延时以保证开关先分后合。
切换条件:快速、同期判别、残压及长延时切换。
快速切换不成功时自动转入同期判别、残压及长延时切换。
需要注意的一个问题,由于厂用工作变压器和起动/备用变压器引自不同的母线和电压等级,它们之间往往有不同数值的阻抗及阻抗角,当变压器带上负荷时,两电源之间的电压将存在一定的相位差,此相位差通常称作“初始相角差”。
初始相角的存在,使手动并联切换时,两台变压器之间会产生环流,如环流过大,对变压器是十分有害的。
初始相角在20°时,环流的幅值大约等于变压器的额定电流。
因此当初始相角差超过20°时,慎用手动并联方式(此时可采用手动串联切换方式)。
2 事故切换事故切换指由发变组、高压厂变保护(或其它跳工作电源开关的保护)接点起动,单向操作,只能由工作电源切向备用电源。
事故切换有两种方式可供选择。
2.1 事故串联切换(切换逻辑示意图见附图5)由保护接点起动,先跳开工作电源开关,在确认工作电源开关已跳开且切换条件满足时,合上备用电源开关。
切换条件:快速、同期判别、残压及长延时切换。
快速切换不成功时自动转入同期判别、残压及长延时切换。
2.2 事故同时切换(切换逻辑示意图见附图6)由保护接点起动,先发跳工作电源开关指令,不等待工作开关辅助接点变位,一旦切换条件满足时,立即发合备用电源开关命令(或经整定的短延时“同时切换合备用延时”发合备用电源开关命令)。
“同时切换合备用延时”定值可用来防止电源并列。
切换条件:快速、同期判别、残压及长延时切换。
快速切换不成功时自动转入同期判别、残压及长延时切换。
3 非正常工况切换非正常工况切换是指装置检测到不正常运行情况时自行起动,单向操作,只能由工作电源切向备用电源。
该切换有以下两种情况。
3.1 母线低电压当母线三线电压均低于整定值且时间大于所整定延时定值时,装置根据选定方式进行串联或同时切换。
切换条件:快速、同期判别、残压及长延时切换。
快速切换不成功时自动转入同期判别、残压及长延时切换。
3.2 工作电源开关偷跳因各种原因(包括人为误操作)引起工作电源开关误跳开,装置可根据选定方式进行串联或同时切换。
切换条件:快速、同期判别、残压及长延时切换。
快速切换不成功时自动转入同期判别、残压及长延时切换。
三低压减载功能本装置低压减载只在装置进行切换时才会起作用。
切换过程中的短时断电将使厂用母线电压和电动机转速下降备用电源合上后电动机成组自起动成功与否将主要取决于厂用母线电压此时若切除某些不重要辅机将有利于重要辅机的自起动本装置可有二段低压减载出口二段可分别设定延时以备用电源合上为延时起始时四快速切换、同期判别切换、残压切换及长延时切换说明1母线残压特性对于大容量火力发电厂,尤其是300MW及以上的机组,厂用电高压电动机的容量大且数量较多,当厂用电源中断时,由于高压电机及负载的机械惯性,电动机将维持较长时间继续旋转,且将转变为异步发电机运行工况,因此厂用电母线在一段时间内会维持一定的残压并缓慢衰减,频率也会随着转速降低而缓慢下降。
图2 为典型的厂用母线电压衰减曲线。
从图中可以看出,在厂用电源中断瞬间,母线残压的衰减量还不大,但残压与备用电源电压的矢量角差已开始拉开,如果备用电源投入的时机不当,将产生很大的冲击电流,直接作用于电动机,这不但影响了电机的使用寿命,甚至可能导致切换失败造成厂用电中断,其后果是十分严重的。
因此,厂用电切换必须根据系统的残压衰减特性,选择合适的切换时机。
根据实际运行经验得出,为保证厂用电的成功切换且不产生大的冲击电流,备用电源断路器最合适的合闸时刻是厂用母线残压与备用电源电压的相角差不超过30°,即厂用电系统切换全过程在100ms以内。
图2 极坐标下的母线残压向量图Vs备用电源电压 Vd厂用母线残压 DU差拍电压A-A’与B-B’为不同负荷情况下允许电源切换的边界2快速切换当母线电源中断后,立刻同时发出断路器的分、合闸指令,跳开工作电源,同时合上备用电源。
厂用电快速切换时,母线残压和备用电源电压之间的相位差拉开不超过30°,系统实际无流时间仅为断路器合、分闸时间之差,一般不超过15ms。
快速切换可达到极短的切换时间,切换全过程不超过100ms,完全满足系统对冲击电流的要求,安全性好。
正常运行情况下,由于快速切换装置连续监视厂用母线电压与备用电源的电压、频率和相位,同时监视断路器的控制回路,当接到启动命令时,若快切的逻辑条件满足要求,立即执行快切功能,所以在实际应用中,快速切换的成功率几乎达到100%。
图3表示采用快速切换模式进行切换的波形图,从图中可以看到,厂用电母线的实际无流时间为12.5ms,且电气设备实际所受的冲击电流几乎可忽略。
图3 快速切换录波图3同期切换当母线残压和备用电源电压相对旋转一周又回到同期点,这时角差为0,差压也较小,若在这一时刻合上备用电源,电气设备受到的冲击也较小,这种切换称为同期切换。
切换装置根据采集的电压可计算母线残压向量相对于备用电源电压向量旋转到第一个同期点的时间,并设定备用电源合闸的导前时间。
同期捕捉切换有两种基本方法:一种基于“恒定越前相角”原理,即根据正常厂用负荷下同期捕捉阶段相角变化的速度(取决于该时的频差)和合闸回路的总时间,计算并整定出合闸提前角,快速切换装置实时跟踪频差和相差,当相差达到整定值,且频差不超过整定范围时,即发合闸命令,当频差超范围时,放弃合闸,转入残压切换。
这种方法合闸角精确度不高,且合闸角随厂用负载变化而变化。
另一种基于“恒定越前时间”原理,即完全根据实时的频差、相差,依据一定的变化规律模型,计算出离相角差过零点的时间,当该时间接近合闸回路总时间时,发出合闸命令。
该方法能较精确地实现过零点合闸,且不受负荷变化影响。
需要说明的是同期捕捉切换之同期与发电机同期并网之同期有很大不同。
同期捕捉切换时电动机相当于异步发电机其定子绕组磁场已由同步磁场转为异步磁场,而转子不存在外加原动力和外加励磁电流。
因此,备用电源合上时,若相角差不大即使存在一些频差和压差定子磁场也将很快恢复同步,电动机也很快恢复正常异步运行。
所以此处同期指在相角差零点附近一定范围内合闸合上。
图4 为同期切换的录波图。
从波形图我们看到,冲击电流比快速切换增大了许多,但还是在系统可接受的范围内。
同期切换录波图44残压切换当母线残压衰减到低于设定值时合上备用电源。
一般来讲,当母线残压低于40%的额定电压时进行切换,冲击电流已降到可接受的范围内,但需要注意的是,不同的系统容量和备用变压器容量都会影响冲击电流值。
图5为残压切换的录波图。
从波形图中可看到,差压包络线的周期逐渐减小,反映了电动机减速的过程,残压切换引起的冲击电流较大。
5长延时切换发出切换指令后经过一定的延时后合上备用电源的切换方式,一般可设定1.5s的等待时间。
图5 残压切换的录波图五装置闭锁及报警功能1 保护闭锁当某些判断为母线故障的保护动作时(如工作分支限时速断),为防止备用电源误投入故障母线,可由这些保护给出的接点闭锁装置。
一旦该接点闭合,装置将自动闭锁出口回路,发装置闭锁信号,面板闭锁、待复归灯亮,并等待人工复归。
2 控制台闭锁装置当控制台闭锁装置时,装置将自动闭锁出口回路,发装置闭锁信号,面板闭锁、待复归灯亮,并等待人工复归。
3 PT 断线闭锁当厂用母线PT 断线时,装置将自动闭锁低电压切换功能,发PT 断线信号,面板断线、待复归灯亮,并等待人工复归。
4 目标电源低压工作电源投入时,备用电源为目标电源;备用电源投入时,工作电源为目标电源。
当目标电源电压低于所整定值时,装置将发目标电源低压信号,面板低压灯亮。
当目标电源电压低于所整定值时,装置将自动闭锁出口回路,且发闭锁信号,直到电源电压恢复正常5 母线PT 检修压板及PT 位置接点闭锁功能快切柜内设有母线PT 检修压板,当该压板断开或母线PT 的位置接点断开时,装置将自动闭锁低电压切换功能,并发母线PT 检修信号。
当检修压板接通且母线PT 位置接点6 装置故障装置运行时,软件将自动地对装置的重要部件如CPU、FLASH、EEPROM、AD、装置内部电源电压、继电器出口回路等进行动态自检,一旦有故障将立即报警。
7 开关位置异常装置在正常运行时,将不停地对工作和备用开关的状态进行监视,装置在正常运行时,工作、备用开关应一个在合位,另一个在分位。
如检测到开关位置异常(工作开关误跳除外),装置将闭锁出口回路,发开关8 去耦合由于在同时切换过程中,发跳工作开关指令后,不等待其辅助接点断开后就发合备指令,如果工作开关跳不开,势必将造成两电源并列。