[工学]模糊系统与模糊控制简介
第四章 模糊控制系统

常规反馈控制系统结构
今天, 今天,常规的反馈控制方法在实际过程中已经得到广泛 应用,例如在阿波罗登月舱的姿态控制、宇宙飞船、 应用,例如在阿波罗登月舱的姿态控制、宇宙飞船、导弹制 导以及在工业生产过程控制等。但是, 导以及在工业生产过程控制等。但是,对于常规反馈控制系 统,控制器的设计无论是采用经典控制理论还是现代控制理 都需要事先知道被控制对象精确的数学模型。 论,都需要事先知道被控制对象精确的数学模型。也就是说 系统的分析与综合都是建立在数学模型的基础上。 系统的分析与综合都是建立在数学模型的基础上。 然而,在实际控制中被控对象的精确数学模型很难建立, 然而,在实际控制中被控对象的精确数学模型很难建立, 甚至无法建立。例如,交通系统、经济系统及生物发酵过程 甚至无法建立。例如,交通系统、 这样,基于数学模型的控制方法则陷入了困境。 等。这样,基于数学模型的控制方法则陷入了困境。值得注 意的是对于上述的复杂过程, 意的是对于上述的复杂过程,有经验的专家或操作人员用手 动控制的方式,却可以收到令人满意的效果。 动控制的方式,却可以收到令人满意的效果。面对这样的事 人们考虑能否让计算机模拟人的思维方式, 实,人们考虑能否让计算机模拟人的思维方式,对这些复杂 过程进行控制决策。 过程进行控制决策。
x = (ω ,θ ) ɺ x = f ( x, u )
u1 u= u 2
其中u为一个有约束的控制向量, 为前轮的角度, 其中 为一个有约束的控制向量,u1为前轮的角度, u2为车 为一个有约束的控制向量 速。
如果把邻近两辆车定义为 x(执行中的约束),用集合 (执行中的约束) 表示,而两辆停着的车之间的空隙定义为Г( 表示,而两辆停着的车之间的空隙定义为 (允许的终端状 态的集合) 那么, 停车问题就转化为寻找一个控制律u(t), 态的集合 ) 。 那么 , 停车问题就转化为寻找一个控制律 , 使其在满足各种约束的条件下把初始状态转移到终端状态Г 使其在满足各种约束的条件下把初始状态转移到终端状态 中去。对于这个问题若采用基于数学模型的精确方法来求解, 中去。对于这个问题若采用基于数学模型的精确方法来求解, 由于约束条件过多,求解过程将异常复杂。 由于约束条件过多,求解过程将异常复杂。 但在实际停车时,汽车司机并不考虑控制律u(t)的求解。 的求解。 但在实际停车时,汽车司机并不考虑控制律 的求解 而是凭借以往的经验,先让车向前运动, 而是凭借以往的经验,先让车向前运动,前轮先向右而后向 然后使车向后运动,前轮仍先向右而后向左, 左,然后使车向后运动,前轮仍先向右而后向左,经过多次 反复,车将横向移动一个所需要的距离, 反复,车将横向移动一个所需要的距离,最后向前开停在空 隙处。这样,汽车司机通过一些不精确的观察,执行一些不 隙处。 这样, 汽车司机通过一些不精确的观察, 精确的控制,却达到了准确停车的目的。 精确的控制,却达到了准确停车的目的。
模糊系统及其应用研究

模糊系统及其应用研究一、引言随着科学技术的快速发展和社会的不断进步,人类社会已经正式步入信息化社会。
信息与知识已经成为社会发展的新要素和新引擎。
模糊系统,也称模糊逻辑或模糊数学,是信息科学中的一种新兴学科,是处理模糊信息的一种有效方法。
本文将详细介绍模糊系统及其应用研究。
二、模糊系统概述模糊系统是以模糊集合和模糊逻辑为基础的一种数学理论和方法,其主要特点是对信息的模糊性进行了有效处理,解决了传统集合和逻辑的不足。
模糊集合是指具有模糊性的集合,模糊逻辑是指运用模糊语言来表达的逻辑。
模糊系统的主要应用领域包括控制、决策、识别、智能优化、模式识别、数据挖掘等。
三、模糊系统的应用研究1. 模糊控制模糊控制是以模糊理论为基础的一种新的控制方法,其目的是解决传统控制方法对于非线性、大惯性、时变等复杂系统无法提供有效控制的问题。
模糊控制系统的最大特点是具有灵活性、自适应性、多功能性和鲁棒性等优势。
模糊控制在机械、航空、环保等领域都得到了广泛的应用。
2. 模糊决策模糊决策是以模糊数学为基础的一种决策分析方法,其主要特点是对决策过程中模糊性信息的处理能力较强。
模糊决策广泛应用于工程领域的高风险决策、金融投资决策、产品质量评估等方面。
3. 模糊识别模糊识别是一种针对未知模型的识别方法,主要特点是其对模型不确定性、非线性、时变等复杂模型的准确识别能力较强。
模糊识别广泛应用于质量控制、机械故障诊断、金融市场预测等领域。
4. 模糊优化模糊优化是以模糊集合理论为基础的一种优化方法,其主要特点是可以适应非线性、模糊或者不确定的优化问题。
模糊优化适用于生产计划、物流运输、供应链管理等复杂的管理决策问题。
5. 模糊数据挖掘模糊数据挖掘是一种基于模糊数学理论的数据分析方法,其主要特点是处理不完整数据,解决数据挖掘中的误导性和随机性问题。
模糊数据挖掘适用于企业管理、社会调查、市场预测等领域的数据处理。
四、总结模糊系统是人工智能、控制理论等领域的重要方法之一,其主要特点是处理模糊信息的能力强。
计算机控制系统第5章模糊控制课件

与其隶属
度 A(xi ) 之间的对应关系;“+”也不表示“求和”,而是表示
模糊集合在论域上的整体。
2024/8/6
5
2.几种典型的隶属函数 (1)高斯型隶属函数
( xc)2
f (x; ,c) e 2 2
2024/8/6
6
(2)S形隶属函数
f
(x;
a,
c)
1
1 ea(xc)
2024/8/6
7
(3)梯形隶属函数
第一节 模糊控制系统
一、模糊控制系统的组成
模糊控制系统的结构与一般计算机控制系统基本相似, 通常由模糊控制器、输入输出接口、广义被控对象和测量装 置四个部分组成。
基本模糊控制器
给定值 +
e
-
输 入 量
化
模
糊 化
e~
处
理
模
糊 u~
推
理
反 模 糊 化 处
理
输 出 量
化
u
D/A
A/D
传感器
被控对象
执行机构
所谓论域就是被考虑客体所有元素的集合。在模糊控制系
统中,把模糊控制器的输入变量偏差 e 及其变化率 ec 的实际范
围称为这些变量的基本论域。基本论域内的量为精确量,需要 对它们进行量化处理。
在实际控制系统中,需要通过所谓量化因子进行量化处理, 实现论域变换。量化因子的定义为:
ke
2n be ae
kec
a,
b)
1 2( 2(b
x b
x
a a
)2 )2
ba
0
xa
a a
x b
a x
2
b
《模糊控制系统》PPT课件

是所期望的。这促使我们研究模糊系统作为万能
函数逼近器并拥有最小系统构成的必要条件,从
而使这些必要条件能用于指导模糊系统开发者设
计更紧凑的模糊控制器和模糊模型
• 必要条件设置了需要的输入模糊集、输出模糊集 和模糊规则,表明了模糊系统需要的输入模糊集
和模糊规则的数目依赖于被逼近函数的极值点的
数目和位置
精选ppt
“Fuzzy Sets”一文,首次提出了模糊集合的概念
• 1974年英国教授Mamdani首次将模糊集合理论应
用于加热器的控制,他将基于规则系统的想法与
模糊参数相结合来构造控制器,模仿人类操作者
的操作经验
• 1985年Takagi和Sugeno提出了另一类具有线性规
则后项的模糊控制器,称之为Takagi-Sugeno
(1988, Japan)
• Postsurgical patients
(1989, USA)
• Auto focus video camera
(1990, Japan)
• Washing machines
(1990, Japan)
• Air conditioners
(1990, Japan)
• Anti-shaking video camera
控制规律
• 各种类型的Mamdani和TS模糊系统在过去几年中
都被证明是万能逼近器,它们能一致逼近定义在
闭定义域D上的任意连续函数到任意高的逼近精
度。这些模糊系统有:加法模糊规则系统、模糊
输入—输出控制器、Sugeno模糊控制器的变型、
非独点模糊逻辑系统、一般Mamdani型模糊系统、
采用线性规则后项的TS型模糊系统、广义模糊系
模糊控制系统简介

模糊理论在模糊控制中的应用——模糊控制系统摘要:模糊控制技术对工业自动化的进程有着极大地推动作用。
本文简要的讲述了模糊控制理论的起源及基本原理,详细分析了模糊控制器的设计方法,最后就典型的模糊控制系统原理和新型模糊控制系统应用进行了分析正文:一:模糊理论1.1模糊理论概念:模糊理论(Fuzzy Theory)是指用到了模糊集合的基本概念或连续隶属度函数的理论。
它可分类为模糊数学,模糊系统,不确定性和信息,模糊决策这五个分支,它并不是完全独立的,它们之间有紧密的联系。
1.2模糊理论产生:1965年,模糊理论创始人,美国加州福尼亚大学伯克利分校的自动控制理论专家L.A.Zadeh教授发表了题为“Fuzzy Set”的论文,这标志着模糊理论的诞生。
这一理论为描述和处理事务的模糊性和系统中的不确定性,以及模拟人所特有的模糊逻辑思维功能,从定性到定量,提供了真正强有力的工具。
1966年,马里诺斯发表了模糊逻辑的研究报告,而Zadeh进一步提出了著名的模糊语言值逻辑,并于1974年进行了模糊逻辑推理的研究。
由于这一研究和观点反映了客观世界中普遍存在的事务,它一出现便显示出强大的生命力和广阔的发展前途,在自然科学,其他科学领域及工业中得到了迅速的广泛的应用。
二:模糊控制理论2.1模糊控制理论的产生:在控制技术的应用过程中,对于多变量、非线性、多因素影响的生产过程,即使不知道该过程的数学模型,有经验的操作人员也能够根据长期的实践观察和操作经验进行有效地控制,而采用传统的自动控制方法效果并不理想。
从这一点引申开来,是否可将人的操作经验总结为若干条控制规则以避开复杂的模型建造过程?模糊控制理论与技术由此应运而生。
20世纪70年代模糊理论应用于控制领域的研究开始盛行,并取得成效。
其代表是英国伦敦大学玛丽皇后分校的E.H.Mamdani教授将IF-THEN型模糊规则用于模糊推理,并把这种规则型模糊推理用于蒸汽机的自动运转中。
模糊系统与智能控制技术

模糊系统与智能控制技术随着人工智能技术的不断发展,智能控制技术作为重要的一部分也得到了快速的发展。
其中,模糊系统作为智能控制的重要手段之一,逐渐在工程技术中得到了广泛应用。
一、模糊系统概述模糊系统指的是一类基于模糊数学理论为基础的人工智能系统,用于处理不确定、模糊、复杂的信息和控制问题。
模糊系统一般由模糊集合、模糊逻辑、模糊推理和模糊控制等组成。
模糊集合是模糊系统中的基本概念,通过模糊集合的模糊度来描述信息的不确定性和模糊性。
二、模糊系统在智能控制中的应用在智能控制中,模糊系统应用广泛,主要表现在以下方面:1.模糊控制模糊控制是模糊系统在控制领域中的一种应用,其核心是建立模糊控制器,通过输入变量经过模糊化、规则匹配和解模糊等过程,输出模糊控制量,控制被控对象达到某种期望状态或优化目标。
2.模糊识别模糊识别是指将输出与输入之间的模糊关系进行建模,并通过一定的方法求解识别问题。
常用的模糊识别方法包括模糊C均值聚类、模糊决策树等。
3.模糊优化模糊优化是将模糊规划和优化算法相结合,通过求解模糊集合上的优化问题,确定最优决策方案。
三、模糊系统的优势和不足模糊系统作为一种智能控制技术,在实际应用中有其独特的优势,包括:1.建模简单对于一些复杂、模糊、不易准确建模的问题,采用模糊系统可以使建模过程更加容易,而且表现出的精度和可靠性也比较高。
2.适应性强模糊系统具有一定的自适应性和鲁棒性,在面对变化和不确定性的环境中,能够更好地适应环境变化。
但是,模糊系统也有一定的不足之处,主要包括:1.复杂性高由于模糊系统需要考虑许多未知且不可测的因素,因此其模型结构比较复杂,不易于实现。
2.性能不稳定模糊系统的性能受到多种因素的影响,因此在一些极端情况下,很难保证控制效果的稳定性。
四、结语综上所述,模糊系统作为一种智能控制技术,在实际应用中能够解决许多不确定、模糊、复杂的信息和控制问题,并具有一些独特的优势。
随着人工智能技术的不断发展,相信模糊系统在未来的应用中也会发挥更大的作用。
第2章模糊控制系统教学内容

OR、NOT); 步骤3:从前提到结论的推理; 步骤4:所有规则作用结果的聚集; 步骤5:解模糊。
9
餐馆小费模糊推理系统
其中“食物”和“服务”是输入模糊变量(变量 范围(或论域)是[0,10]);
“小费”是输出模糊变量(变量范围是[0, 0.25])。
当输入为X=-3和Y=1.5时, 规则1的开放度(DOF)为 DOF1=μNS(X)∧μZE(Y)=0.8∧
0.6=0.6 输出为截去顶部的MF(PS’) 对于规则2和规则3,有
DOF2=μZE(X)∧μZE(Y)=0.4∧0.6=0.4 DOF3=μZE(X)∧μPS(Y)=0.4∧1.0=0.4
第2章模糊控制系统
第二章 模糊控制系统
模糊控制系统是一种自动控制系统。 它是以模糊数学、模糊语言形式的知识表示和模
糊逻辑推理为理论基础,采用计算机控制技术构 成的一种具有闭环结构的数字控制系统。 它的组成核心是具有智能性的模糊控制器。 在控制原理上它应用模糊集合论、模糊语言变量 和模糊逻辑推理的知识,模拟人的模糊思维方法, 对复杂过程进行控制。
15
步骤5:解模 糊。
最后,模糊 输出(面积) 转化为精确 输出(小费为 16.7%) , 即 一个单纯的 数字.
典 型 的 解 模 糊 方 法 有 重 心 法 (COA)。
16
2.1.3推理方法 1、Mamdani方法
考虑一个模糊系统中的三条规则,其一般表述形式如下: 规则1:如果X是负小(NS)且Y是零(Zቤተ መጻሕፍቲ ባይዱ),那么Z是正小
采用三角型MF的 模糊集合A和B之 间的或、与、非 逻辑运算如图 (左边),并与右 边相应的布尔逻 辑运算相比较。
模糊控简介及模糊控制器的设计要点

目录摘要........................................................................ (1)1模糊控制简介................................................................................ .. (1)模糊控制方法的研究现状 (2)模糊控制的特色...........................................................................2模糊控制的研究对象 (3)模糊控制的展望............................................................................32模糊控制器的结构与工作原理 (4)根本结构与构成............................................................................4一般模糊控制器各主要环节的功能 (4)隶属函数的确定原那么和根本确立方法 (5)模糊条件语句与模糊控制规那么 (6)模糊量的裁决方法 (6)模糊控制规那么的设计和模糊化方法 (8)解模糊化.......................................................................... (8)3模糊控制器的设计................................................................................94对于模糊(及智能)控制理论与技术展开的思虑 (11)参照文件.................................................................................. (12)摘要纲要:本文主要介绍了模糊控制系统的研究现状、特色,以及模糊控制器的结构与工作原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊系统概述
模糊控制的局限性 模糊控制在处理面向任务的问题时比传 统的控制更为有效,例如自动驾驶和停 靠、交通控制与运动控制等方面,利用 基于模糊规则控制策略要比传统的基于 微分方程的控制策略更为方便和有效。 但是,另一方面,模糊理论又表现出了 许多先天的不严谨性,不确定性和其它 局限性,导致模糊控制理论的不成熟。
01:03
16
模糊推理方法
自从Zadeh的开创性工作以来,已经提出 了许多种推理方法,其中包括CRI方法, 证据推理方法,区间推理方法,三I方法, 基于相似度的近似类比推理方法等,但 是模糊推理的基本原理与逻辑基础似乎 均应重新考虑。
01:03
17
模糊推理方法
Rule Base R( ) RulesRule i i 1
X 的子集 K称为 紧致集:设 X 是拓扑空间, 紧致的当且仅当K 的每个开覆盖 有有限个子覆盖。 有界且闭的有限维空间是紧致的。
01:03 20
模糊系统的通用逼近能力
主要内容: 模糊系统通用逼近的研究路线 模糊系统通用逼近的充分条件 模糊系统通用逼近的必要条件 模糊系统通用逼近的其它问题
模糊系统与模糊控制简介
--博士生论坛系列报告
主要内容
01:03
模糊系统概述 模糊推理方法 模糊系统的通用逼近能力 模糊控制器的结构分析 模糊控制器的稳定性 模糊控制器的系统化设计 模糊PID
2
模糊系统概述
模糊系统发展的历程 1965 年,美国系统论专家 Zadeh 教授创立了模 糊集合理论,提供了处理模糊信息的工具 1974年,英国学者Mamdani首次将模糊理论应 用于工业控制(蒸气机的压力和速度控制) 近30年来,模糊控制在理论、方法和应用都取 得了巨大的进展
模糊系统概述
模糊理论发展方向 将模糊控制与非模糊控制相结合,互相 借鉴 深入分析模糊系统的结构特性及逼近精 度,建立一套完整的理论,使人们应用 模糊系统时做到心中有数
01:03
15
模糊系统概述
适用于模糊系统的学习算法的提出,算 法收敛性分析,及学习完成后模糊系统 的性能分析 多变量模糊系统的方法 构造能利用除“if then ”知识形式以外的 其它知识和信息表达方式的模糊系统
01:03
6
模糊系统概述
模糊控制的特征: 不需要对象的精确数学模型,而要求有 关的控制经验和知识 鲁棒性强 适用于非线性、时变、大滞后系统的控 制
01:03
7
模糊系统概述
知识库 参考输入 模糊化 模糊推理 解模糊化 被控对象 输出
模糊控制器的结构图
01:03
8
模糊系统概述
常规方法需要系统的模型,这有时是很 难做到的,智能控制在此背景下发展起 来,模糊控制、神经网络控制、专家系 统被视为三种典型的智能控制方法。
01:03
18
模糊推理方法
目前最常用的模糊推理方法是CRI方法, 但是在 δ– 等式的定义下讨论得出其鲁棒 性并不理想的结论,这里的鲁棒性是指 模糊前件的微小变化对模糊后件的影响。 最优模糊推理的鲁棒性是否有所改进也 是我们需要研究的一个问题。
01:03
19
模糊系统的通用逼近能力
模糊系统的通用逼近性:以任意精度逼 近紧致集上的任意连续实函数
01:03
21
模糊系统的通用逼近能力
研究路线: 基于神经网络与模糊系统的等效性 如RBF神经网络等价于采用高斯隶属度函 数,sum-product推理和COG解模糊化的 简化模糊系统 ,很难得出神经网络与模 糊系统等价的一般结论。
01:03
22
模糊系统的通用逼近能力
研究路线: 基于一致连续的概念 如汪培庄证明了采用全交叠三角形隶属 度函数的MISO简化模糊系统是通用逼近 器,很难研究非全交叠的情况及T-S模型。
比较依据:逼近精度与复杂性的平衡; 学习算法的收敛速度; 结果的可解释性; 充分利用各种不同形式的信息。
01:03
11
模糊系统概述
模糊控制的机理 模糊系统与模糊控制器已得到比较充分 的研究,特别是证明了它的万能逼近性, 这为模糊控制系统的分析与设计奠定了 一个坚实的理论基础。但它们是万能的 吗?它们还有哪些能力?又不具有哪些 能力?是否应将新的思想注入到模糊论的地位已经和六七十年代有了根本性 的不同:模糊逻辑的数学基础已经比较好地建 立起来;最基本的理论已经到位;模糊逻辑在 基础学科――特别是在数学、物理和化学―― 的影响日益显著;基于模糊理论的应用向家用 消费品、工业系统、生物工程、决策分析和认
识技术等各个方向发展
01:03 13
模糊系统概述
模糊理论的先天不足就在于它是传统逻 辑的一种扩展,整个过程是“定义”出 来的。当然每一种“定义”都有其优势 或者特点,但我们无法用某个指标来评 价它。而且这些“定义” 含有很大的随 意性,不同的“定义”会带来不同的结 果,使得一般性的理论分析很难进展下 去。
01:03 14
n
E1 , E2 E1 , E2
Fuzzification
Reasoning Premise A ( )
Compositional Operation Inference Method
Reasoning Consequence B ( )
u
Defuzzification
现有模糊推理方法框图
01:03
4
模糊系统概述
模糊控制理论出现的必然性 自动控制理论发展的两个主要阶段: 经典控制理论――主要解决单变量系统的 反馈控制 现代控制理论――主要解决多变量系统的 优化控制
01:03
5
模糊系统概述
现代工业具有以下特征: 复杂性:系统结构和参数的高维、时变、 高度非线性 不确定性:系统内外部的未知和不确定 的因素 高标准的性能要求
01:03
9
模糊系统概述
模糊理论经常被问及的问题 能否举一个例子,只能用模糊控制来解 决,而其它方法无法解决。 我们是否需要模糊理论,因为模糊理论 能解决的问题用概率论同样可以解决。
01:03
10
模糊系统概述
模糊理论经常被问及的问题 模糊系统方法中没有模糊的地方 模糊系统与其它非线性建模方法相比, 优点何在