第2章 控制系统中的模糊控制简介

合集下载

第二章模糊控制理论基础

第二章模糊控制理论基础

0
x
2、变量所取隶属度函数通常是对称和平衡的。
很低
1

适中

很高
Degree of membership
0.8
标称名:语言值 (个数适中:3~ 9个(通常是奇 数)) 语言值的个 数和规则数 成正比。
0.6
0.4
0.2
0 5
20
30
50
70
95
100
速度(语言变量)
3、隶属度函数要符合人们的语言顺序,避免不恰当的重叠
F F / u
例 以年龄为论域,取 U 0,100 。Zadeh给出了“年轻”的模糊集F, 其隶属函数为
1
Degree of membership
0 u 25 1 1 F (u ) u 25 2 25 u 100 1 5
例: F ={(0,1.0), (1 ,0.9), (2 ,0.75), (3,0.5),(4 ,0.2), (5 ,0.1) } (3)向量表示法 F ={(u1),(u2),…,(un)} (元素u按次序排列)
F ={1.0 ,0.9, 0.75,0.5,0.2 ,0.1 } 例:
模糊集合的表示方法: 2、论域为连续域
u F
(隶属函数 F:u隶属于F的程度)
(映射)
F (u)=1:u完全属于F; F (u)= 0:u完全不属于F; 0< F (u)<1:u部分属于F。 U中的模糊集F可以用元素u和它的隶属度来表示: F={(u ,F (u) )| uU}
例2-2 设F是远大于0的实数集合(显然F是模糊集 合,而论域U表示全部实数集合),U中任一元素u隶 属模糊集合F的隶属度F (u)可以用下式来定义:

模糊系统与模糊控制简介

模糊系统与模糊控制简介

2019/10/8
24
模糊系统的通用逼近能力
研究路线: 基于Stone-Weierstrass定理
如王立新证明了采用高斯隶属度函数、 Product推理和COG解模糊的简化模糊系 统是通用逼近器 。
2019/10/8
25
模糊系统的通用逼近能力
研究路线: 基于插值原理
如李洪兴认为模糊可以看作某种插值, 插值点充分近则可充分逼近。
2019/10/8
36
模糊系统的通用逼近能力
必要条件: 输入变量的划分不能少于被逼近函数的
极点个数 无论函数形式多复杂,只要极点很少的
函数用模糊系统逼近很有利 无论函数形式多简单,只要极点很多的
函数用模糊系统逼近很不利
2019/10/8
37
模糊系统的通用逼近能力
其它问题: 模糊系统通用逼近的误差界 如何选取相关参数以便更好地逼近 满足精度要求减少模糊规则的方法 满足精度要求寻找最小规则数 给定规则数寻找最佳逼近精度 等等
模糊控制在处理面向任务的问题时比传 统的控制更为有效,例如自动驾驶和停 靠、交通控制与运动控制等方面,利用 基于模糊规则控制策略要比传统的基于 微分方程的控制策略更为方便和有效。 但是,另一方面,模糊理论又表现出了 许多先天的不严谨性,不确定性和其它 局限性,导致模糊控制理论的不成熟。
2019/10/8
其它知识和信息表达方式的模糊系统
2019/10/8
16
模糊推理方法
自从Zadeh的开创性工作以来,已经提出 了许多种推理方法,其中包括CRI方法, 证据推理方法,区间推理方法,三I方法, 基于相似度的近似类比推理方法等,但 是模糊推理的基本原理与逻辑基础似乎 均应重新考虑。

模糊控制2500字

模糊控制2500字

模糊控制2500字一、模糊控制简介模糊控制(Fuzzy Control)是一种基于模糊数学理论的控制方法,在复杂系统控制中应用广泛。

传统的控制方法基于准确的数学模型,对系统有严格的要求,而实际控制过程中,系统的动态特性常常难以精确建模。

模糊控制通过模糊化输入输出变量,使用模糊规则来描述人类的控制经验,并通过模糊推理来实现控制目标,从而克服了传统控制方法对系统模型的要求。

二、模糊控制的基本原理模糊控制系统由输入、模糊化、模糊规则库、模糊推理、去模糊化和输出等部分组成。

输入是实际系统的状态量或变量,经过模糊化处理,转化为模糊变量。

模糊化是将输入量通过隶属函数转化为隶属度,表示其属于不同模糊集的程度。

模糊规则库是由专家经验提供的规则集合,其形式为“如果...那么...”。

模糊推理是根据输入的模糊变量和模糊规则,通过模糊逻辑运算得到模糊输出。

去模糊化是将模糊输出转化为实际控制变量,通常采用去隶属化、非线性映射和合成明确规则等方法。

最后,输出是实际控制器对系统施加的控制量。

三、模糊控制的特点1. 鲁棒性高:模糊控制对系统参数变化、外界干扰和测量噪声具有一定的鲁棒性,能够适应各种环境变化。

2. 推理能力强:模糊控制使用基于人类经验的模糊规则库进行推理,能够处理非线性、多变量、不确定的控制问题。

3. 操作简单:模糊控制主要通过数学模型中的模糊集、隶属度函数和模糊规则等概念进行描述,易于理解和实现。

4. 适应性强:模糊控制可以根据实际控制结果反馈信息,自动调整模糊规则和参数,实现自适应控制。

四、模糊控制器的设计方法模糊控制器的设计方法主要分为模糊控制器的结构设计和参数设计两个方面。

1. 结构设计:模糊控制器的结构设计包括选择输入输出变量、构建模糊规则库和确定模糊推理机制。

根据控制系统的特点和需求,选择合适的输入输出变量,并通过专家经验或试验数据构建模糊规则库。

模糊推理机制可以选择模糊关系矩阵、模糊神经网络或模糊Petri网等方法。

自动化控制系统中的模糊控制方法与调参技巧

自动化控制系统中的模糊控制方法与调参技巧

自动化控制系统中的模糊控制方法与调参技巧自动化控制系统中的模糊控制方法是一种基于模糊逻辑的控制策略,可以处理系统模型复杂、不确定性强的问题。

模糊控制方法通过将模糊逻辑应用于控制器设计中,能够有效地应对实际系统中的各种非线性、时变和不确定性因素,提高控制系统的鲁棒性和自适应能力。

在模糊控制系统中,模糊逻辑通过将模糊的自然语言规则转化为数学形式,对系统的输入和输出进行模糊化处理,从而实现对系统的自动控制。

模糊控制方法主要包括模糊推理、模糊建模和模糊控制器设计三个主要步骤。

首先,模糊推理是模糊控制方法的核心,它根据一组模糊规则对输入变量进行模糊推理,从而确定最终的控制策略。

在模糊推理中,需要定义一组模糊规则,每个模糊规则都由若干个模糊集和若干个模糊关系所组成。

通过对输入变量的模糊化处理和模糊规则的匹配,可以得到控制器的输出。

其次,模糊建模是模糊控制方法的前提,它是将实际系统映射为模糊控制系统的关键步骤。

模糊建模可以通过实验数据、专家知识或模型等方式获得系统的输入输出数据,然后利用聚类和拟合等方法建立系统的模糊模型。

模糊建模的目的是找到系统的内在规律和数学模型,以便后续的模糊控制器设计和参数调优。

最后,模糊控制器设计是模糊控制方法的具体实现,它根据模糊推理和模糊建模的结果,确定模糊控制器的结构和参数。

模糊控制器的结构包括输入变量的模糊集合和输出变量的模糊集合,参数则决定了模糊控制器的具体行为。

参数调优是模糊控制器设计的关键环节,通过合理地设置参数,可以使模糊控制器在实际系统中具有良好的控制性能和鲁棒性。

为了获得较好的控制性能,模糊控制系统中的调参技巧是必不可少的。

调参技巧通常包括以下几个方面:首先,选取适当的输入变量和输出变量,并对其进行模糊化处理。

输入变量和输出变量的选择应考虑到系统的特性和控制目标,而模糊化处理的方法则可以采用三角函数、梯形函数等常用的模糊集合类型。

其次,确定模糊规则的数量和形式。

模糊规则的数量和形式直接影响到模糊控制系统的稳定性和鲁棒性。

模糊控制简介

模糊控制简介

R=(NBe × PBu ) + ( NSe × PSu ) + (0e × 0u ) + ( PSe × NSu ) + ( PBe × NSu )
NBe × PBu = (1, 0.5, 0, 0, 0, 0, 0) × (0, 0, 0, 0, 0, 0.5,1) NSe × PSu = (0, 0.5,1, 0, 0, 0, 0) × (0, 0, 0, 0,1, 0.5, 0) 0e × 0u = (0, 0, 0.5,1, 0.5, 0, 0) × (0, 0, 0.5,1, 0.5, 0, 0) PSe × NSu = (0, 0, 0, 0,1, 0.5, 0) × (0, 0.5,1, 0, 0, 0, 0) PBe × NSu = (0, 0, 0, 0, 0, 0.5,1) × (1, 0.5, 0, 0, 0, 0, 0) 0 0 0 0 0.5 1 0 0 0 0 0 0.5 0.5 0.5 0 0 0.5 0.5 1 0 0 R= 0 0 0.5 1 0.5 0 0 0 0.5 1 0.5 0.5 0 0 0 0 0 0.5 0.5 0.5 0 1 0.5 0 0 0 0 0
学习功能
数据存储 单元
y
∗ k
e
r + —


k
e
e
k
c
2
e
k
Байду номын сангаас
r
模糊 控制 规则
k

u
u
u
u
k −1
k
+ +
被 控 对 象
y
k
六.思考
矛盾对立统一规律: 矛盾对立统一规律:两面性 • 优点:模糊逻辑本身提供了由专家构造语 优点: 言信息并将其转化为控制策略的一种系统 的推理方法, 的推理方法,因而能够解决许多复杂而无 法建立精确数学模型系统的控制问题, 法建立精确数学模型系统的控制问题,所 以它是处理推理系统和控制系统中不精确 和不确定性的一种有效方法。从广义上讲, 和不确定性的一种有效方法。从广义上讲, 模糊控制是适于模糊推理, 模糊控制是适于模糊推理,模仿人的思维 方式, 方式,对难以建立精确数学模型的对象实 施的一种控制策略。 施的一种控制策略。它是模糊数学同控制 理论相结合的产物, 理论相结合的产物,同时也是智能控制的 重要组成部分。 重要组成部分。

模糊控制

模糊控制

2 按模糊控制的线性特性分类 对开环模糊控制系统S,设输入变量为u,输出变量
为v。对任意输入偏差Δ u和输出偏差Δ v,满足
v k u
u U,v V
定义线性度δ ,用于衡量模糊控制系统的线性化
程度:
vmax 2u m a xm
其中 vmax vmax vmin
,umax umax umin
1. 模糊控制器的结构 单变量二维模糊控制器是最常见的结构形式。
2 .定义输入输出模糊集 对误差E、误差变化EC及控制量u的模糊集及其论域
定义如下:
E、EC和u的模糊集均为:NB, NM , NS, Z, PS, PM, PB
E、EC的论域均为:{-3,-2,-1,0,1,2,3} u的论域为:{-4.5,-3,-1.5,0,1,3,4.5}
4.4 模糊自适应整定PID控制
4.4.1 模糊自适应整定PID控制原理
在工业生产过程中,许多被控对象随着负荷变化 或干扰因素影响,其对象特性参数或结构发生改变。 自适应控制运用现代控制理论在线辨识对象特征参数 ,实时改变其控制策略,使控制系统品质指标保持在 最佳范围内,但其控制效果的好坏取决于辨识模型的 精确度,这对于复杂系统是非常困难的。因此,在工 业生产过程中,大量采用的仍然是PID算法,大多数 都以对象特性为基础。
图4-6 多变量模糊控制器
4.2 模糊控制系统分类
1 按信号的时变特性分类 (1)恒值模糊控制系统
系统的指令信号为恒定值,通过模糊控制器消除外 界对系统的扰动作用,使系统的输出跟踪输入的恒定值。 也称为“自镇定模糊控制系统”,如温度模糊控制系统。 (2)随动模糊控制系统
系统的指令信号为时间函数,要求系统的输出高精度、 快速地跟踪系统输入。也称为“模糊控制跟踪系统”或 “模糊控制伺服系统”。

控制系统中的模糊控制算法设计与实现

控制系统中的模糊控制算法设计与实现

控制系统中的模糊控制算法设计与实现现代控制系统在实际应用中,往往面临着多变、复杂、非线性的控制问题。

传统的多变量控制方法往往无法有效应对这些问题,因此,模糊控制算法作为一种强大的控制手段逐渐受到广泛关注和应用。

本文将从控制系统中的模糊控制算法的设计和实现两个方面进行介绍,以帮助读者更好地了解和掌握这一领域的知识。

一、模糊控制算法的设计1. 模糊控制系统的基本原理模糊控制系统是一种基于模糊逻辑的控制系统,其基本思想是通过将输入和输出变量模糊化,利用一系列模糊规则来实现对系统的控制。

模糊控制系统主要由模糊化、规则库、模糊推理和解模糊四个基本部分组成,其中规则库是模糊控制系统的核心部分,包含了一系列的模糊规则,用于描述输入和输出变量之间的关系。

2. 模糊控制算法的设计步骤(1)确定输入和输出变量:首先需要明确系统中的输入和输出变量,例如温度、压力等。

(2)模糊化:将确定的输入和输出变量进行模糊化,即将其转换为模糊集合。

(3)建立模糊规则库:根据实际问题和经验知识,建立一系列模糊规则。

模糊规则关联了输入和输出变量的模糊集合之间的关系。

(4)模糊推理:根据当前的输入变量和模糊规则库,利用模糊推理方法求解输出变量的模糊集合。

(5)解模糊:将求解得到的模糊集合转换为实际的输出值,常用的方法包括最大值法、加权平均法等。

3. 模糊控制算法的设计技巧(1)合理选择输入和输出变量的模糊集合:根据系统的实际需求和属性,选择合适的隶属函数,以便更好地描述系统的特性。

(2)精心设计模糊规则库:模糊规则库的设计是模糊控制算法的关键,应根据实际问题与经验知识进行合理的规则构建。

可以利用专家经验、试验数据或者模拟仿真等方法进行规则的获取和优化。

(3)选用合适的解模糊方法:解模糊是模糊控制算法中的一项重要步骤,选择合适的解模糊方法可以提高控制系统的性能。

常用的解模糊方法有最大值法、加权平均法、中心平均法等,应根据系统的需求进行选择。

控制系统中的滑模控制与模糊控制比较

控制系统中的滑模控制与模糊控制比较

控制系统中的滑模控制与模糊控制比较控制系统是现代工程中的重要组成部分,用于实现对系统的稳定性、性能和鲁棒性的调节和控制。

在控制系统中,滑模控制和模糊控制是两种常用的控制方法。

本文将比较滑模控制和模糊控制的优缺点、适用范围以及在不同场景下的应用。

一、滑模控制滑模控制是一种以滑动面为基础的控制方法,通过引入滑动变量来实现对系统状态的控制。

滑模控制具有以下特点:1. 系统鲁棒性强:滑模控制通过引入滑动面,能够有效抵抗外部扰动和不确定性对系统的影响,使系统具有较强的鲁棒性。

2. 控制精度高:滑模控制可以实时调节控制量,使系统状态能够快速地跟踪期望值,从而提高系统的控制精度。

3. 设计和调试难度大:滑模控制需要设计滑模面和滑动变量的参考值,这些参数往往需要经验和专业知识的支持。

同时,滑模控制存在滑模面的快速切换问题,这对控制器的设计和调试带来了一定的困难。

二、模糊控制模糊控制是一种基于模糊逻辑的控制方法,通过定义模糊规则和使用模糊推理来实现对系统的控制。

模糊控制具有以下特点:1. 控制规则灵活:模糊控制使用模糊规则来描述系统的行为,可以根据具体的情况灵活调整规则,适应不同的工程需求。

2. 控制器设计简单:模糊控制不需要精确的系统模型,只需要通过专家经验和模糊规则来设计控制器,大大简化了控制器的设计过程。

3. 控制鲁棒性一般:由于模糊控制是基于模糊规则的,对于一些复杂的系统和精度要求高的控制任务,模糊控制的鲁棒性可能不够。

三、滑模控制与模糊控制的比较滑模控制和模糊控制作为两种不同的控制方法,在不同场景下有各自的优势和适用范围。

1. 鲁棒性比较:滑模控制通过引入滑动面来增强系统的鲁棒性,能够有效应对外部扰动和不确定性。

而模糊控制的鲁棒性相对较差,在面对复杂系统和精度要求较高的场景下可能无法满足要求。

2. 控制精度比较:滑模控制通过实时调节控制量,能够实现较高的控制精度,适用于对系统要求较高的场景。

而模糊控制的控制精度相对较低,适用于对系统要求不那么苛刻的场景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档