上海市青浦2020高三数学二模卷

合集下载

2020 青浦 高三二模

2020 青浦 高三二模

2020 青浦高三二模一、填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)已知全集U=R,集合A=(﹣∞,2),则集合∁U A=.2.(4分)已知i为虚数单位,复数z=2+i的共轭复数=.3.(4分)已知函数,则方程f﹣1(x)=2的解x=.4.(4分)若(ax+1)5的展开式中x3的系数是80,则实数a的值是.5.(4分)双曲线的一个焦点到一条渐近线的距离是.6.(4分)用一平面去截球所得截面的面积为3πcm2,已知球心到该截面的距离为1cm,则该球的表面积cm2.7.(5分)已知x,y>0且x+2y=1,则的最小值为.8.(5分)已知平面向量满足,,,则与的夹角为.9.(5分)设a∈{1,3,5},b∈{2,4,6},则函数是减函数的概率为.10.(5分)已知函数,若存在实数x0满足f[f(x0)]=x0,则实数a的取值范围是.11.(5分)已知正三角形ABC的三个顶点均在抛物线x2=y上,其中一条边所在直线的斜率为,则△ABC的三个顶点的横坐标之和为.12.(5分)定义函数f(x)={x{x}},其中{x}表示不小于x的最小整数,如{1.4}=2,{﹣2.3}=﹣2,当x∈(0,n](n∈N*)时,函数f(x)的值域为A n,记集合A n中元素的个数为a n,则a n=.二. 选择题(本大题共4题,每题5分,共20分)13.(5分)已知a,b∈R,则“b≥0”是“a2+b≥0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件14.(5分)我国古代数学著作《九章算术》中记载问题:“今有垣厚八尺,两鼠对穿,大鼠日一尺,小鼠日半尺,大鼠日增倍,小鼠日自半,问几何日相逢?”,意思是“今有土墙厚8尺,两鼠从墙两侧同时打洞,大鼠第一天打洞一尺,小鼠第一天打洞半尺,大鼠之后每天打洞长度比前一天多一倍,小鼠之后每天打洞长度是前一天的一半,问两鼠几天打通相逢?”两鼠相逢需要的最少天数为()A.3B.4C.5D.615.(5分)记椭圆围成的区域(含边界)为Ωn(n=1,2,…),当点(x,y)分别在Ω1,Ω2,…上时,x+y的最大值分别是M 1,M2,…,则=()A.B.4C.3D.16.(5分)已知函数f(x)=sin x+2|sin x|,关于x的方程有以下结论:①当a≥0时,方程在[0,2π]内最多有3个不等实根;②当时,方程在[0,2π]内有两个不等实根;③若方程在[0,6π]内根的个数为偶数,则所有根之和为15π.④若方程在[0,6π]内根的个数为偶数,则所有根之和为36π.其中所有正确结论的序号是()A.②④B.①④C.①③D.①②③三. 解答题(本大题共4题,每题5分,共20分)17.(14分)如图,在正四棱柱ABCD﹣A1B1C1D1中,∠B1AB=60°.(1)求直线A1C与平面ABCD所成的角的大小;(2)求异面直线B1C与A1C1所成角的大小.18.(14分)已知函数.(1)若函数y=f(x)的图象关于直线x=a(a>0)对称,求a的最小值;(2)若存在,使mf(x0)﹣2=0成立,求实数m的取值范围.19.(14分)上海市某地铁项目正在紧张建设中,通车后将给更多市民出行带来便利.已知该线路通车后,地铁的发车时间间隔t(单位:分钟)满足2≤t≤20,t∈N*.经测算,在某一时段,地铁载客量与发车时间间隔t相关,当10≤t≤20时地铁可达到满载状态,载客量为1200人,当2≤t<10时,载客量会减少,减少的人数与(10﹣t)的平方成正比,且发车时间间隔为2分钟时载客量为560人,记地铁载客量为p (t).(1)求p(t)的表达式,并求在该时段内发车时间间隔为6分钟时,地铁的载客量;(2)若该时段这条线路每分钟的净收益为(元),问当发车时间间隔为多少时,该时段这条线路每分钟的净收益最大?20.(16分)已知椭圆的左、右焦点分别是F1,F2,其长轴长是短轴长的2倍,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,证明为定值,并求出这个定值;(3)点P是椭圆C上除长轴端点外的任一点,设∠F1PF2的角平分线PM交椭圆C的长轴于点M(m,0),求m的取值范围.21.(18分)对于无穷数列{a n}、{b n},n∈N*,若b k=max{a1,a2,…,a k}﹣min{a1,a2,…,a k},k∈N*,则称数列{b n}是数列{a n}的“收缩数列”.其中max{a1,a2,…,a k}、min{a1,a2,…,a k}分别表示a1,a2,…,a k中的最大项和最小项.已知数列{a n}的前n项和为S n,数列{b n}是数列{a n}的“收缩数列”.(1)若a n=3n﹣1,求数列{b n}的前n项和;(2)证明:数列{b n}的“收缩数列”仍是{b n};(3)若S1+S2+…+S n=,求所有满足该条件的数列{a n}.参考答案一、填空题1.[2,+∞);2.2﹣i;3.;4.2;5.2;6.16π;7.;8.;9.;10.(﹣∞,];11.﹣;12.;二、选择题13.A;14.B;15.D;16.C;三、解答题17.解:(1)设AB=1,∵在正四棱柱ABCD﹣A1B1C1D1中,∠B1AB=60°,∴AB1=2,BB1=,AC==,∵A1A⊥平面ABCD,A是垂足,∴∠A1CA是A1C与平面ABCD所成的角,∵tan∠A1CA===,∴∠A1CA=arctan.∴A1C与平面ABCD所成的角的大小为.(2)∵A1C1∥AC,∴∠B1CA是异面直线B1C与A1C1所成角,∵AB1=B1C=2,AC=,∴cos∠B1CA===,∴∠B1CA=arccos.∴异面直线B1C与A1C1所成角的大小为arccos.18.解:(1)因为=所以函数f(x)的图象的对称轴由下式确定:从而.由题可知当k=0时,a有最小值;(2)当时,,从而,则f(x0)∈[﹣1,2]由mf(x0)﹣2=0可知:m≥1或m≤﹣2.19.解:(1)由题意知p(t)=,t∈N,(k为常数),∵p(2)=1200﹣k(10﹣2)2=560,∴k=10,∴p(t)==,∴p(6)=1200﹣10(10﹣6)2=1040;(2)由Q=,可得Q=,当2≤t<10时,Q=6[140﹣10()]≤6(140﹣10×12)=120,当且仅当t=6时等号成立;当10≤t≤20时,Q=≤384﹣360=24,当t=10时等号成立,∴当发车时间间隔为t=6分钟时,该线路每分钟的净收益最大,最大为120元.答:当发车时间间隔为t=6分钟时,该线路每分钟的净收益最大,最大为120元.20.解:(1)由于c2=a2﹣b2,将x=﹣c代入椭圆方程,得.由题意知,即a=2b2.又,a2=b2+c2,所以a=2,b=1.所以椭圆C的方程为.(2)设P(x0,y0)(y0≠0),则直线l的方程为y﹣y0=k(x﹣x0).联立得,整理得由题意得△=0,即.又,所以,故.又知,所以,因此为定值,这个定值为﹣8.(3)设P(x0,y0)(y0≠0),又,,所以直线PF1,PF2的方程分别为,.由题意知.由于点P在椭圆上,所以.所以.因为,﹣2<x0<2,可得,所以,因此.21.解:(1)由a n=3n﹣1,可得{a n}为递增数列,所以b n=max{a1,a2,…,a n}﹣min{a1,a2,…,a n}=a n﹣a1=3n﹣1﹣2=3n﹣3,故{b n}的前n项和为;(2)证明:因为max{a1,a2,…,a n}≤max{a1,a2,…,a n+1}(n=1,2,3,…),min{a1,a2,…,a n}≥min{a1,a2,…,a n+1}(n=1,2,3,…),所以max{a1,a2,…,a n+1}﹣min{a1,a2,…,a n+1}≥max{a1,a2,…,a n}﹣min{a1,a2,…,a n},所以b n+1≥b n(n=1,2,3,…),又因为b1=a1﹣a1=0,所以max{b1,b2,…,b n}﹣min{b1,b2,…,b n}=b n﹣b1=b n,所以{b n}的“收缩数列”仍是{b n};(3)由,可得当n=1时,a1=a1;当n=2时,2a1+a2=3a1+b2,即b2=a2﹣a1,所以a2≥a1;当n=3时,3a1+2a2+a3=6a1+3b3,即3b3=2(a2﹣a1)+(a3﹣a1)(*),若a1≤a3<a2,则b3=a2﹣a1,所以由(*)可得a3=a2,与a3<a2矛盾;若a3<a1≤a2,则b3=a2﹣a3,所以由(*)可得a3﹣a2=3(a1﹣a3),所以a3﹣a2与a1﹣a3同号,这与a3<a1≤a2矛盾;若a3≥a2,则b3=a3﹣a1,由(*)可得a3=a2.猜想:满足的数列{a n}是:.n∈N*,经验证,左边=,右边=.下面证明其它数列都不满足(3)的题设条件.由上述n≤3时的情况可知,n≤3时是成立的.假设a k是首次不符合的项,则a1≤a2=a3=…=a k﹣1≠a k,由题设条件可得(*),若a1≤a k<a2,则由(*)式化简可得a k=a2与a k<a2矛盾;若a k<a1≤a2,则b k=a2﹣a k,所以由(*)可得,所以a k﹣a2与a1﹣a k同号,这与a k<a1≤a2矛盾;所以a k≥a2,则b k=a k﹣a1,所以由(*)化简可得a k=a2.这与假设a k≠a2矛盾.所以,所有满足该条件的数列{a n}的通项公式为,n∈N*.。

2020年上海市青浦区高考数学二模试卷 (含答案解析)

2020年上海市青浦区高考数学二模试卷 (含答案解析)

2020年上海市青浦区高考数学二模试卷一、选择题(本大题共4小题,共20.0分)1.已知A={x|x>2},B={x∈N|x≤4},则A∩B=()A. {x|2<x≤4}B. {2,3,4}C. {3,4}D. {x|x>2}2.在△ABC中,满足tanA⋅tanB>1,则这个三角形是()A. 正三角形B. 等腰三角形C. 锐角三角形D. 钝角三角形3.“过点(0,1)的直线l与双曲线x2−y2=13有且仅有一个公共点”是“直线l的斜率k的值为±2”的()A. 充分必要条件B. 充分但不必要条件C. 必要但不充分条件D. 既不充分也不必要条件4.设数列的通项公式为a n=2n−7,则|a1|+|a2|+⋯+|a15|=()A. 153B. 210C. 135D. 120二、填空题(本大题共12小题,共54.0分)5.不等式5x+1x+1<3的解集是______ .6.设复数z满足z1+2i=2+i,则|z|=____________.7.设平面向量a=(3,2),b⃗ =(2−x,4+x),若2a⃗−b⃗ 与a⃗共线,则a⃗在b⃗ 方向上的投影为________.8.若(x+1ax2)6的二项展开式中x3的系数是52,则a=______ .9.在平面直角坐标系xoy中,抛物线x2=2py(p>0)的焦点坐标为(0,1),则实数p的值为_______.10.已知P(A)=0.2,P(B)=0.3,且A与B是互斥事件,则P(A∪B)=______.11.已知函数f(x)=2sin(x+π3) ,则f(x)的最大值为__________.12.已知实数x,y满足{x−2y+1⩽03x−2y+3⩾03x+y−6⩽0,则x2−2x+y2的最小值是________.13.设函数f(x)={4x+1,x≥4log2x,0<x<4,则f(8)=______ ,若f(a)=f(b)=c,f′(b)<0,则a,b,c的大小关系是______ .14.三视图如图所示的几何体的最长棱的长度为______ .15. 已知函数f(x)=x 2+ax +b(a,b ∈R)在区间[1,2]上有两个不同的零点,则a +b 的取值范围是______.16. 在△ABC 中,AD ⃗⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,设BD ⃗⃗⃗⃗⃗⃗ =λBA ⃗⃗⃗⃗⃗ +μBC ⃗⃗⃗⃗⃗ ,则实数λ+μ的值为______.三、解答题(本大题共5小题,共76.0分)17. 在正方体ABCD—A 1B 1C 1D 1中,AB =3,E 在CC 1上且CE =2EC 1.(1)若F 是AB 的中点,求异面直线C 1F 与AC 所成角的大小;(2)求三棱锥B 1—DBE 的体积.18. 如图所示,A,B,C 为山脚两侧共线的三点,在山顶P 处测得三点的俯角分别为.计划沿直线AC 开通穿山隧道,请根据表格中的数据,计算隧道DE 的长度.19.已知定义域为R的函数f(x)=−2x+b2x+1+a是奇函数.(1)求a、b的值;(2)若对任意的x∈R,不等式f(x2−x)+f(2x2−t)<0恒成立,求t的取值范围.20.将圆x2+y2=1变换为椭圆x29+y24=1的一个伸缩变换公式为φ:{X=ax(a>0),Y=by(b>0),求a,b的值.21.已知数列{a n}满足a1=2,a n+1=2(n+1n)2⋅a n(n∈N∗)(1)求证:数列{a nn2}是等比数列,并求其通项公式;(2)设b n=3log2(a nn2)−26,求数列{|b n|}的前n项和T n.-------- 答案与解析 --------1.答案:C解析:解:∵A={x|x>2},B={x∈N|x≤4}={0,1,2,3,4},∴A∩B={3,4}.故选:C.先分别求出集合A和B,由此能求出A∩B.本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.答案:C解析:解:∵在△ABC中,满足tanA⋅tanB>1,∴A、B都是锐角,tanA>0,tanB>0.<0,可得A+B为钝角,故由三角形内角和公式可得C为锐角.再由tan(A+B)=tanA+tanB1−tanA⋅tanB综上可得这个三角形是锐角三角形.故选:C.<0,可得A+B为由条件可得A、B都是锐角,tanA>0,tanB>0,再由tan(A+B)=tanA+tanB1−tanA⋅tanB钝角,C为锐角,由此得出结论.本题主要考查两角和的正切公式、三角形内角和公式的应用,判断三角形的形状,属于中档题.3.答案:C解析:【分析】本题主要考查充分条件、必要条件以及充要条件的判断,以及直线与双曲线的位置关系.直接验证,将k=±2时可证必要性成立;当直线与双曲线只有一个交点时,举反例:直线与双曲线的渐近线平行,说明充分性不成立,从而可得到答案.【解答】解:直接检验可得,当k=±2时,直线与双曲线相切,此时直线与双曲线有且只有一个交点,所以必要性成立;但是当直线与双曲线的渐近线平行时,双曲线与直线也有且只有一个交点,此时k=±1,所以充分性不成立,“过点(0,1)的直线l与双曲线x2−y2=1有且仅有一个公共点”是“直线l的斜率k的值为±2”的3必要但不充分条件,故选C.4.答案:A解析:【分析】本题考查了含绝对值符号的数列求和、等差数列的前n项和公式等基础知识与基本技能方法,属于中档题.令a n=2n−7≥0,解得n≥72.可知:从第4项开始大于0,|a1|+|a2|+⋯+|a15|=−a1−a2−a3+ a4+a5+⋯+a15,利用等差数列的前n项和公式即可得出.【解答】解:令a n=2n−7≥0,解得n≥72.∴从第4项开始大于0,∴|a1|+|a2|+⋯+|a15|=−a1−a2−a3+a4+a5+⋯+a15=5+3+1+1+3+⋯+(2×15−7)=9+12×(1+23)2=153.故选A.5.答案:{x|−1<x<1}解析:解:不等式5x+1x+1<3可以转化为2x−2x+1<0,∴2x−2x+1<0等价于(2x−2)(x+1)<0,∴(x−1)(x+1)<0,∴−1<x<1,∴不等式5x+1x+1<3的解集为{x|−1<x<1}.故答案为:{x|−1<x<1}.将不等式5x+1x+1<3移项,通分,转化为2x−2x+1<0,等价于(2x−2)(x+1)<0,利用一元二次不等式的求法,求解即可得到不等式5x+1x+1<3的解集.本题主要考查分式不等式的解法.对于分式不等式,一般是“移项,通分”,将分式不等式转化为各个因式的正负问题.体现了等价转化的数学思想,属于基础题.6.答案:5解析:【分析】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.把已知等式变形,再由复数代数形式的乘除运算化简,最后利用复数模的计算公式求解.【解答】解:∵z 1+2i =2+i ,∴z =(1+2i)(2+i)=2+4i +i −2=5i ,所以|z|=5,故答案为:5. 7.答案:√13解析:【分析】本题考查了a ⃗ 在b ⃗ 方向上的投影,向量共线的坐标表示以及向量的坐标运算,首先利用坐标运算以及共线求出x ,进而得到b ⃗ =(185,125),最后利用公式求出结果. 【解答】解:依题意得:2a ⃗ −b ⃗ =(4+x,−x ),∵2a ⃗ −b⃗ 与a ⃗ 共线,∴2(4+x)+3x =0,,∴x =−85, 即b ⃗ =(185,125), ∴a ⃗ 在b ⃗ 方向上的投影为a ⃗ ·b ⃗ |b ⃗ |=3×185+2×125√(185)2+(125)2=√13.故答案为:√13.8.答案:125解析:【分析】利用二项展开式的通项公式求出展开式的第r +1项,令x 的指数为3,求出展开式中x 3的系数,列出方程求出a .本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.【解答】解:通项T r+1=C 6r ⋅a −r x 6−3r , 当6−3r =3时,r =1,所以系数为C 61⋅a −1=52,得a =125.故答案为:125. 9.答案:2解析:【分析】本题主要考查了抛物线的性质及几何意义,属于简单题.抛物线焦点坐标为(0,1)得p2=1,即可得出.【解答】解:抛物线焦点坐标为(0,1)得p2=1,∴p=2.故答案为2.10.答案:0.5解析:【分析】本题考查互斥事件的概率的求法,考查互斥事件的性质等基础知识,考查运算求解能力,是基础题.由A与B是互斥事件,得P(A∪B)=P(A)+P(B).【解答】解:∵P(A)=0.2,P(B)=0.3,且A与B是互斥事件,∴P(A∪B)=P(A)+P(B)=0.2+0.3=0.5.故答案为:0.5.11.答案:2解析:解:∵函数f(x)=2sin(x+π3) ,又sin(x+π3)∈[−1,1],∴f(x)的最大值为2,12.答案:−15解析:【分析】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.先根据条件画出可行域,再利用几何意义求最值,只需求出可行域内的点到原点距离的最值,从而得到z最小值即可.【解答】解:先根据约束条件画出可行域,x2−2x+y2=(x−1)2+y2−1的几何意义是可行域内的点与坐标A(1,0)连线距离的最小值的平方再减去1,由图可知A(1,0)到直线x −2y +1=0的距离为|1−0+1|√1+4=2√5, 故可得x 2−2x +y 2的最小值(2√5)2−1=−15,故答案为−15.13.答案:32;b >a >c解析:解:∵f(x)={4x +1,x ≥4log 2x,0<x <4, ∴f(8)=48+1=32,画出函数f(x)的图象,如图示: ,若f ′(b)<0,则b >4,若f(a)=f(b)=c ,则2<a <4,1<c <2,故b >a >c ,故答案为:32;b >a >c .将x =8代入函数的表达式,求出f(8)的值即可;画出函数f(x)的图象,结合图象求出a ,b ,c 的范围,判断其大小即可.本题考查了求函数值问题,考查分段函数的图像的运用,是一道中档题.14.答案:√3解析:解:三视图的直观图是棱锥,放到正方体中,可得几何体的最长棱的长度为√3, 故答案为√3.三视图的直观图是棱锥,放到正方体中,可得几何体的最长棱的长度。

2020上海高三数学二模汇编-解析几何含答案

2020上海高三数学二模汇编-解析几何含答案

解析几何一、直线1、【2020年闵行区二模第3题】若直线10ax by ++=的方向向量为(1,1),则此直线的倾斜角为 【答案:4π】 2、【2020年黄浦区二模第4题】若直线1:350l ax y +-=与2:210l x y +-=互相垂直,则实数a 的值为 【答案: 6- 】3、【2020年金山区二模第13题】已知直角坐标平面上两条直线的方程分别为1111:0l a x b y c ++=,2222:0l a x b y c ++=,那么“11220a b a b =”是“两直线1l 、2l 平行”的( ). (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 【答案:B 】4、【2020年徐汇区二模第8题】已知直线(2)(1)30a x a y ++--=的方向向量是直线(1)(23)20a x a y -+++= 的法向量,则实数a 的值为 .【答案:11或- 】5、【2020年松江区二模第13题】若为坐标原点,是直线上的动点,则的最小值为( ) (A)(B)(C)(D)【答案:B 】6、【2020年金山区二模第12题】设*n ∈N ,n a 为()(2)1nn x x +-+的展开式的各项系数之和,162m t =-+,,1222...333n n n a a na b ⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦([x ]表示不超过实数x 的最大整数),则()22()n n t b m -+-的最小值为___________.O P 20-+=x y OP 2R t ∈【答案:95解析:赋值法,令1x =,∴32nnn a =-,∴(32)2[][][()]333n n nn n nna n n n -==-⋅, 可用计算器分析2()3n n ⋅单调性及范围,可知2()(0,1)3n n ⋅∈,∴[]13n n na n =-,∴(1)2n n n b -=,22()()n n t b m -+-的 几何意义为点(,)n n b 到点(,)t m 的距离的平方,如图所示, 当3n =时,点(3,3)到直线162y x =-+的距离最小, ∴min 22512d ==+,即2min95d =。

【附20套高考模拟试题】2020届上海市青浦高级中学高考数学模拟试卷含答案

【附20套高考模拟试题】2020届上海市青浦高级中学高考数学模拟试卷含答案

2020届上海市青浦高级中学高考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若双曲线221x my -=的实轴长是虚轴长的两倍,则m =( )A .14 B .12 C .4D .22.如图所示的程序框图所实现的功能是( )A .输入a 的值,计算()2021131a -⨯+ B .输入a 的值,计算()2020131a -⨯+ C .输入a 的值,计算()2019131a -⨯+ D .输入a 的值,计算()2018131a -⨯+3.用数字0,2,4,7,8,9组成没有重复数字的六位数,其中大于420789的正整数个数为( ) A .479 B .480 C .455 D .4564.已知数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且0n a >,2*634()n n n S a a n N =+-∈,()()1111n n n b a a +=--,若对任意的n *∈N ,n k T >恒成立,则的最小值为( )A .13B .19C .112D .1155.在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为( ).A.32 B.2 C.23D.36.5y A sin x x R66ππωϕ⎡⎤=+∈-⎢⎥⎣⎦如图是函数()()在区间,上的图象,为了得到这个函数的图象,只要将y sin x x R=∈()的图象上所有的点A.向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B.向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D.向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变7.下列命题中:①若命题:p x R∃∈,200x x-≤,则:p x R⌝∀∈,20x x->;②将sin2y x=的图象沿x轴向右平移6π个单位,得到的图象对应函数为sin26y xπ⎛⎫=-⎪⎝⎭;③“0x>”是“12xx+≥”的充分必要条件;④已知()0,0M x y为圆222x y R+=内异于圆心的一点,则直线200x x y y R+=与该圆相交.其中正确的个数是()A.4 B.3 C.2 D.18.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋯其中第一项是02,接下来的两项是02,12,再接下来的三项是02,12,22,依此类推那么该数列的前50项和为()A.1044 B.1024 C.1045 D.10259.已知双曲线()2222100x ya ba b-=>>,的左右焦点分别为()()1200F c F c-,,,,若直线2y x=与双曲线的一个交点P的横坐标恰好为c,则双曲线的离心率为()A5B.2 C21D2110.设关于x ,y 的不等式组21000x y x m y m -+>⎧⎪+<⎨⎪->⎩,表示的平面区域内存在点00(,)P x y ,满足0022x y -=,则m 的取值集合是( ) A .4,3⎛⎫-∞-⎪⎝⎭B .4,3⎛⎫-+∞ ⎪⎝⎭C .2,3⎛⎫-∞- ⎪⎝⎭ D .2,3⎛⎫-+∞ ⎪⎝⎭ 11.在ABC ∆中,3AB =,4BC =,5AC =,过B 点作AC 的垂线,垂足为D ,以BD 为折痕将ABD ∆折起使点A 到达点P 处,满足平面PBD ⊥平面BDC ,则三棱锥P BDC -的外接球的表面积为( )A .25πB .16πC .48πD .48125π12.已知0x y >>,则( ) A .11x y > B .11()()22x y> C .cos cos x y > D .ln(+1)ln(1)x y >+ 二、填空题:本题共4小题,每小题5分,共20分。

2019-2020学年上海市青浦区高考数学二模试卷(有答案)

2019-2020学年上海市青浦区高考数学二模试卷(有答案)

上海市青浦区高考数学二模试卷一、填空题(本大题共12小题,满分54分,第1-6题每题4分,第7-12题每题5分)1.已知集合A={x|x>﹣1,x∈R},集合B={x|x<2,x∈R},则A∩B= .2.已知复数z满足(2﹣3i)z=3+2i(i为虚数单位),则|z|= .3.函数f(x)=的最小正周期是.4.已知双曲线﹣=1(a>0)的一条渐近线方程为y=2x,则a= .5.若圆柱的侧面展开图是边长为4cm的正方形,则圆柱的体积为cm3(结果精确到0.1cm3)6.已知x,y满足,则z=2x+y的最大值是.7.直线(t为参数)与曲线(θ为参数)的交点个数是.8.已知函数f(x)=的反函数是f﹣1(x),则f﹣1()= .9.设f(x)=1+x+(1+x)2+…+(1+x)n(x≠0,n∈N*)的展开式中x项的系数为Tn,则= .10.生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为0.01和p,每道工序产生废品相互独立,若经过两道工序得到的零件不是废品的概率是0.9603,则p= .11.已知函数f(x)=x|x﹣a|,若对任意x1∈[2,3],x2∈[2,3],x1≠x2恒有,则实数a的取值范围为.12.对于给定的实数k>0,函数f(x)=的图象上总存在点C,使得以C为圆心,1为半径的圆上有两个不同的点到原点O的距离为1,则k的取值范围是.二、选择题(本大题共4小题,满分20分,每小题5分)13.设a,b∈R,则“a+b>4”是“a>1且b>3”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件14.如图,P为正方体ABCD﹣A1B1C1D1中AC1与BD1的交点,则△PAC在该正方体各个面上的射影可能是()A.①②③④B.①③C.①④D.②④15.如图,AB为圆O的直径且AB=4,C为圆上不同于A、B的任意一点,若P为半径OC上的动点,则(+)•的最小值是()A.﹣4 B.﹣3 C.﹣2 D.﹣116.设x1,x2,…,x10为1,2,…,10的一个排列,则满足对任意正整数m,n,且1≤m<n≤10,都有xm +m≤xn+n成立的不同排列的个数为()A.512 B.256 C.255 D.64三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤。

2019-2020学年上海市青浦区高三二模数学试卷及答案解析

2019-2020学年上海市青浦区高三二模数学试卷及答案解析

2019-2020学年上海市青浦区高三二模数学试卷一、填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分。

1. 已知全集U =R ,集合(,2)A =-∞,则集合U A =ð__________. 【答案】[)2,+∞【解析】由补集的运算可得[)2,+∞2. 已知i 为虚数单位,复数2i z =+的共轭复数z =__________. 【答案】2i -【解析】由共轭复数的概念可得2z i =- 3. 已知函数()11f x x=+,则方程()12f x -=的解x =__________. 【答案】32【解析】由反函数性质可得,()12f x -=等价于13(2)122x f ==+= 4. 若5(1)ax +的展开式中3x 的系数是80,则实数a 的值是__________. 【答案】2【解析】()5551552,rrr r r r T C ax C a x r ---+=⋅=⋅⋅⇒=3x 的系数是23580,2C a a ⋅=⇒=5. 双曲线22144x y -=的一个焦点到一条渐近线的距离是__________. 【答案】2【解析】双曲线22144x y -=的焦点为()±,渐近线方程为y x =±,由点到直线距离公式得距离2d =.6. 用一平面去截球所得截面的面积为23πcm ,已知球心到该截面的距离为1cm ,则该球的表面积是__________2cm . 【答案】16π【解析】平面去截球所得截面的面积为23cm π,则该截面的圆的半径为r =由勾股定理得球的半径为2R =,∴球的表面积为2416.S R ππ==7. 已知,0x y >且21x y +=,则11x y+的最小值为__________.【答案】3+【解析】由()11112=233y xx y x y x y x y ⎛⎫+++=++≥+ ⎪⎝⎭2=y x x y ,即x =时取等号成立,此时11x y+的最小值为.8. 已知平面向量a b r r ,满足(1,1)a =-r ,||1b =u u r ,|2|a b +=r ra r 与b r 的夹角为_________. 【答案】34π【解析】由|2|a b +=r r ,且(1,1)a =-r ,所以22||4||||cos 4||2a a b b θ+⋅+=u u r r r r ,代入解得cos 2θ=-,即夹角为34π. 9. 设{}1,3,5a ∈,{}2,4,6b ∈,则函数1()log baf x x=是减函数的概率为_________. 【答案】23【解析】因为x 1是单调递减,若要x x f ab 1log )(=单调递减则需要1>a b当1=a 时6,4,2=b ;当3=a 时6,4=b ;当5=a 时6=b 共6种情况,所以函数1()log baf x x=是减函数的概率为3261313=C C10. 已知函数()f x =,若存在实数0x 满足00)]([x x f f =,则实数a 的取值范围是_______.【答案】14a ≤【解析】令00)(y x f =则000)())((x y f x f f ==为()f x =0x 满足00[()]f f x x =,且()f x =()f x =与()f x x =有交点就行,41,0,0,2≤≥∆=+-=-a a x x x a x11. 已知正三角形ABC 的三个顶点均在抛物线2x y =上,则△ABC 的三个顶点的横坐标之和为__________.【答案】10-【解析】令()()()222112233,,,,,A x x B x x C x x ,令212122122=+=--=x x x x x x k AB在正三角形ABC 中533243213213132123+-=⋅-+=+=--=x x x x x x k AC 533243213223232223+-=⋅+-=+=--=x x x x x x k BC由此可得出1023231-=++x x x 12. 定义函数{}{}()f x x x =,其中{}x 表示不小于x 的最小整数,如{}1.42=,{}2.32-=-,当()(0,]x n n N *∈∈时,函数()f x 的值域为n A ,记集合n A 中元素的个数为n a ,则n a =_______.【答案】(1)2n n n a +=【解析】当1=n 时,因为]1,0(∈x ,所以{}{}{}1,1==x x x ,所以{}1,111==a A ;当2=n 时,因为]2,1(∈x ,所以{}{}{}]4,2(,2=∈=x x x ,所以{}3,4,3,122==a A ;当3=n 时,因为]3,2(∈x ,所以{}{}{}]9,6(,3∈=x x x ,所以{}6,9,8,7,4,3,133==a A ;当4=n 时,因为]4,3(∈x ,所以{}{}{}]16,12(,4∈=x x x ,所以{}10,16,15,14,13,9,8,7,4,3144==a A ,;由此类推,n a a n n =--1,由累加法可得2)1(+=n n a n .二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分。

2020年上海市青浦区高考数学二模试卷 (解析版)

2020年上海市青浦区高考数学二模试卷 (解析版)

2020年上海市青浦区高考数学二模试卷一、填空题(共12小题)1.已知全集U=R,集合A=(﹣∞,2),则集合∁U A=.2.已知i为虚数单位,复数z=2+i的共轭复数.3.已知函数,则方程f﹣1(x)=2的解x=.4.若(ax+1)5的展开式中x3的系数是80,则实数a的值是.5.双曲线的一个焦点到一条渐近线的距离是.6.用一平面去截球所得截面的面积为3πcm2,已知球心到该截面的距离为1cm,则该球的表面积是cm2.7.已知x,y>0且x+2y=1,则的最小值为.8.已知平面向量满足,,,则与的夹角为.9.设a∈{1,3,5},b∈{2,4,6},则函数是减函数的概率为.10.已知函数,若存在实数x0满足f[f(x0)]=x0,则实数a的取值范围是.11.已知正三角形ABC的三个顶点均在抛物线x2=y上,其中一条边所在直线的斜率为,则△ABC的三个顶点的横坐标之和为.12.定义函数f(x)={x{x}},其中{x}表示不小于x的最小整数,如{1.4}=2,{﹣2.3}=﹣2,当x∈(0,n](n∈N*)时,函数f(x)的值域为A n,记集合A n中元素的个数为a n,则a n=.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.已知a,b∈R,则“b≥0”是“a2+b≥0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件14.我国古代数学著作《九章算术》中记载问题:“今有垣厚八尺,两鼠对穿,大鼠日一尺,小鼠日半尺,大鼠日增倍,小鼠日自半,问几何日相逢?”,意思是“今有土墙厚8尺,两鼠从墙两侧同时打洞,大鼠第一天打洞一尺,小鼠第一天打洞半尺,大鼠之后每天打洞长度比前一天多一倍,小鼠之后每天打洞长度是前一天的一半,问两鼠几天打通相逢?”两鼠相逢需要的最少天数为()A.3B.4C.5D.615.记椭圆围成的区域(含边界)为Ωn(n=1,2,…),当点(x,y)分别在Ω1,Ω2,…上时,x+y的最大值分别是M1,M2,…,则()A.B.4C.3D.16.已知函数f(x)=sin x+2|sin x|,关于x的方程有以下结论:①当a≥0时,方程在[0,2π]内最多有3个不等实根;②当时,方程在[0,2π]内有两个不等实根;③若方程在[0,6π]内根的个数为偶数,则所有根之和为15π.④若方程在[0,6π]内根的个数为偶数,则所有根之和为36π.其中所有正确结论的序号是()A.②④B.①④C.①③D.①②③三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.如图,在正四棱柱ABCD﹣A1B1C1D1中,∠B1AB=60°.(1)求直线A1C与平面ABCD所成的角的大小;(2)求异面直线B1C与A1C1所成角的大小.18.已知函数.(1)若函数y=f(x)的图象关于直线x=a(a>0)对称,求a的最小值;(2)若存在,使mf(x0)﹣2=0成立,求实数m的取值范围.19.上海市某地铁项目正在紧张建设中,通车后将给更多市民出行带来便利.已知该线路通车后,地铁的发车时间间隔t(单位:分钟)满足2≤t≤20,t∈N*.经测算,在某一时段,地铁载客量与发车时间间隔t相关,当10≤t≤20时地铁可达到满载状态,载客量为1200人,当2≤t<10时,载客量会减少,减少的人数与(10﹣t)的平方成正比,且发车时间间隔为2分钟时载客量为560人,记地铁载客量为p(t).(1)求p(t)的表达式,并求在该时段内发车时间间隔为6分钟时,地铁的载客量;(2)若该时段这条线路每分钟的净收益为(元),问当发车时间间隔为多少时,该时段这条线路每分钟的净收益最大?20.(16分)已知椭圆的左、右焦点分别是F1,F2,其长轴长是短轴长的2倍,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,证明为定值,并求出这个定值;(3)点P是椭圆C上除长轴端点外的任一点,设∠F1PF2的角平分线PM交椭圆C的长轴于点M(m,0),求m的取值范围.21.(18分)对于无穷数列{a n}、{b n},n∈N*,若b k=max{a1,a2,…,a k}﹣min{a1,a2,…,a k},k∈N*,则称数列{b n}是数列{a n}的“收缩数列”.其中max{a1,a2,…,a k}、min{a1,a2,…,a k}分别表示a1,a2,…,a k中的最大项和最小项.已知数列{a n}的前n项和为S n,数列{b n}是数列{a n}的“收缩数列”.(1)若a n=3n﹣1,求数列{b n}的前n项和;(2)证明:数列{b n}的“收缩数列”仍是{b n};(3)若S1+S2+…+S n,求所有满足该条件的数列{a n}.参考答案一、填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.已知全集U=R,集合A=(﹣∞,2),则集合∁U A=[2,+∞).【分析】由补集的定义直接可以得出.解:由题知全集U=R,集合A=(﹣∞,2),故∁U A=[2,+∞),故答案为:[2,+∞).【点评】本题主要考查的是补集及其运算,是道基础题.2.已知i为虚数单位,复数z=2+i的共轭复数2﹣i.【分析】复数z=a+bi的共轭复数a﹣bi.解:i为虚数单位,复数z=2+i的共轭复数2﹣i.故答案为:2﹣i.【点评】本题考查复数的共轭复数的求法,考查共轭复数的性质等基础知识,考查运算求解能力,属于基础题.3.已知函数,则方程f﹣1(x)=2的解x=.【分析】利用互为反函数的性质即可得出.解:函数,则方程f﹣1(x)=2的解x=1.故答案为:.【点评】本题考查了互为反函数的性质,考查了推理能力与计算能力,属于基础题.4.若(ax+1)5的展开式中x3的系数是80,则实数a的值是2.【分析】由题意可得,T r+1=C5r(ax)5﹣r=a5﹣r C5r x5﹣r,令5﹣r=3可得r=2,则有a3C52=80,从而可求解:由题意可得,T r+1=C5r(ax)5﹣r=a5﹣r C5r x5﹣r令5﹣r=3可得r=2∴a3C52=80∴a=2故答案为:2【点评】本题主要考查了二项展开式的通项的应用,属于基础试题.5.双曲线的一个焦点到一条渐近线的距离是2.【分析】求出双曲线的渐近线方程与焦点坐标,然后通过点到直线的距离公式求解即可.解:双曲线的一个焦点(2,0)到一条渐近线x+y=0的距离:2.故答案为:2.【点评】本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.6.用一平面去截球所得截面的面积为3πcm2,已知球心到该截面的距离为1cm,则该球的表面积是16πcm2.【分析】由已知求出小圆的半径,然后利用勾股定理求出球的半径,即可求出球的表面积.解:用一平面去截球所得截面的面积为3πcm2,∴小圆的半径为cm;已知球心到该截面的距离为1 cm,∴球的半径为:cm,∴该球的表面积是S=4π×22=16πcm2.故答案为:16.【点评】本题考查球的截面小于的半径、球心到球的截面的距离与球的半径之间的关系,是基础题.7.已知x,y>0且x+2y=1,则的最小值为.【分析】利用“乘1法”与基本不等式的性质即可得出.解:由已知:()(x+2y)=12≥3+2,当且仅当时等号成立,则的最小值为3+2,故答案为:3+2.【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.8.已知平面向量满足,,,则与的夹角为.【分析】根据题意,设与的夹角为θ,由的坐标求出||的值,进而由数量积的计算公式可得(2)22+4•42=6+4×1cosθ=2,计算可得cosθ的值,分析可得答案.解:根据题意,设与的夹角为θ,又由,则||,若,则有(2)22+4•42=6+4×1cosθ=2,解可得:cosθ,则θ;故答案为:.【点评】本题考查数量积的计算,涉及向量模的计算,属于基础题.9.设a∈{1,3,5},b∈{2,4,6},则函数是减函数的概率为.【分析】基本事件总数n=3×3=9,由函数是减函数,得,利用列举法求出函数是减函数包含的基本事件(a,b)有6个,由此能求出函数是减函数的概率.解:∵a∈{1,3,5},b∈{2,4,6},基本事件总数n=3×3=9,∵函数是减函数,∴,∴函数是减函数包含的基本事件(a,b)有:(1,2),(1,4),(1,6),(3,4),(3,6),(5,6),共6个,∴函数是减函数的概率p.故答案为:.【点评】本题考查概率的求法,考查古典概型、列举法等基础知识,考查推理论证能力能力与运算求解能力,属于基础题.10.已知函数,若存在实数x0满足f[f(x0)]=x0,则实数a的取值范围是(﹣∞,].【分析】判断y=f(x)在定义域内递增,结合条件可得y=f(x)的图象与直线y=x 有交点,即方程x有解,运用参数分离和二次函数的值域求法,可得所求范围.解:函数在[a,+∞)递增,若存在实数x0满足f[f(x0)]=x0,可得y=f(x)的图象与直线y=x有交点,即方程x有解.由x(x≥0),可得x﹣a=x2,即有a=x﹣x2=﹣(x)2,而y=﹣(x)2在[0,)递增,(,+∞)递减,可得y=﹣(x)2的最大值为,此时x,则a,即a的取值范围是(﹣∞,].故答案为:(﹣∞,].【点评】本题考查方程存在性问题解法,注意运用转化思想和参数分离,以及二次函数的图象和性质,考查运算能力和推理能力,属于中档题.11.已知正三角形ABC的三个顶点均在抛物线x2=y上,其中一条边所在直线的斜率为,则△ABC的三个顶点的横坐标之和为.【分析】设出点A,B,C的坐标,根据题意,利用两点之间斜率的关系表示出横坐标与斜率的关系,再由三角形为等边三角形,得到另外两边的斜率大小,进而表示出a+b+c,再由正切的和差角公式展开计算得答案.解:设点A(a,a2),B(b,b2),C(c,c2),则,,,不放设,且直线AB的倾斜角为α,又△ABC为等边三角形,则,∴.故答案为:.【点评】本题主要考查抛物线的性质,考查直线斜率的求法以及正切和差角公式的运用,考查推理能力及计算能力,属于中档题.12.定义函数f(x)={x{x}},其中{x}表示不小于x的最小整数,如{1.4}=2,{﹣2.3}=﹣2,当x∈(0,n](n∈N*)时,函数f(x)的值域为A n,记集合A n中元素的个数为a n,则a n=.【分析】当x∈(n﹣1,n]时,{x}=n,所以x{x}所在的区间为(n(n﹣1),n2],区间长度为n,{x{x}取到的整数为n2﹣n+1,n2﹣n+2,……,n2﹣n+n=n2,共n个,则由此可求得a n.解:由题意得:当x∈(n﹣1,n]时,{x}=n,所以x{x}所在的区间为(n(n﹣1),n2],区间长度为n,{x{x}}取到的整数为n2﹣n+1,n2﹣n+2,……,n2﹣n+n=n2,共n个,所以,当x∈(0,1]时,{x{x}}有1个;当x∈(1,2]时,{x{x}}有2个;当x∈(2,3]时,{x{x}}有3个;……,当x∈(n﹣1,n]时,{x{x}}有n个.所以x∈(0,n]时,{x{x}}共有1+2+3+……+n个数.故.故答案为:.【点评】本题考查新定义问题,注意分析x{x}所在的区间长度,从而确定{x{x}}的个数.考查学生的逻辑推理和数学运算能力,属于中档题.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.已知a,b∈R,则“b≥0”是“a2+b≥0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判断.解:当b≥0时,a2+b≥0成立.当a=3,b=﹣1时,满足a2+b≥0成立,但b≥0不成立.∴“b≥0”是“a2+b≥0”充分不必要条件.故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键,比较基础.14.我国古代数学著作《九章算术》中记载问题:“今有垣厚八尺,两鼠对穿,大鼠日一尺,小鼠日半尺,大鼠日增倍,小鼠日自半,问几何日相逢?”,意思是“今有土墙厚8尺,两鼠从墙两侧同时打洞,大鼠第一天打洞一尺,小鼠第一天打洞半尺,大鼠之后每天打洞长度比前一天多一倍,小鼠之后每天打洞长度是前一天的一半,问两鼠几天打通相逢?”两鼠相逢需要的最少天数为()A.3B.4C.5D.6【分析】将大鼠小鼠所打的厚度分别看作数列{a n},{b n},它们的前n项和分别为A n,B n,令A n+B n=8,求n即可.【解答】解,设大鼠小鼠所打的厚度分别看作数列{a n},{b n},它们的前n项和分别为A n,B n,则,{a n},是以1为首项,2为公比的等比数列,{b n}是以为首项,为公比的等比数列,∴A n2n﹣1,B n1,令A n+B n=8,即2n﹣1+18,解得n≥4,故选:B.【点评】本题考查了等比数列的前n项和,属基础题.15.记椭圆围成的区域(含边界)为Ωn(n=1,2,…),当点(x,y)分别在Ω1,Ω2,…上时,x+y的最大值分别是M1,M2,…,则()A.B.4C.3D.【分析】先由椭圆得到这个椭圆的参数方程为:(θ为参数),再由三角函数知识求x+y的最大值,从而求出极限的值.解:椭圆的参数方程为:(θ为参数),∴x+y=2cosθsinθ,∴(x+y)max.∴M n2.故选:D.【点评】本题考查数列的极限,椭圆的参数方程和最大值的求法,解题时要认真审题,注意三角函数知识的灵活运用.16.已知函数f(x)=sin x+2|sin x|,关于x的方程有以下结论:①当a≥0时,方程在[0,2π]内最多有3个不等实根;②当时,方程在[0,2π]内有两个不等实根;③若方程在[0,6π]内根的个数为偶数,则所有根之和为15π.④若方程在[0,6π]内根的个数为偶数,则所有根之和为36π.其中所有正确结论的序号是()A.②④B.①④C.①③D.①②③【分析】先研究f(x)在[0,2π]内的图象,求其值域,进而研究方程两根的取值范围,结合图象研究四个命题的正误.解:由已知得f(x)=sin x+2|sin x|,做出图象如下:由得:..显然a≥0,∴t1≥1,t2<0(舍).原方程的根看成y=t1与y=f(x)的交点的横坐标.对于①,如图所示:因为t1≥1,当a=0时,t1=1,y=t与y=f(x)恰好有三个交点;当a>0时,分别有2个、1个、0个交点,故①正确;对于②,结合①可知,a=0时,有3个根,故②错误;对于③,如图所示,由题意,只能满足:y=t1只与y=f(x)在[0,π],[2π,3π],[4π,5π]上的图象各有两个交点.易知这六个零点分别关于对称,所以六个根的和为:.故③正确,④错误.故正确命题的序号是①③.故选:C.【点评】本题考查函数零点的求法,利用数形结合思想、函数与方程思想、转化思想解决问题的能力,属于较难的题目.三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.如图,在正四棱柱ABCD﹣A1B1C1D1中,∠B1AB=60°.(1)求直线A1C与平面ABCD所成的角的大小;(2)求异面直线B1C与A1C1所成角的大小.【分析】(1)由A1A⊥平面ABCD,A是垂足,得∠A1CA是A1C与平面ABCD所成的角,由此能求出A1C与平面ABCD所成的角的大小.(2)由A1C1∥AC,得∠B1CA是异面直线B1C与A1C1所成角,由此能求出异面直线B1C与A1C1所成角的大小.解:(1)设AB=1,∵在正四棱柱ABCD﹣A1B1C1D1中,∠B1AB=60°,∴AB1=2,BB1,AC,∵A1A⊥平面ABCD,A是垂足,∴∠A1CA是A1C与平面ABCD所成的角,∵tan∠A1CA,∴∠A1CA=arctan.∴A1C与平面ABCD所成的角的大小为.(2)∵A1C1∥AC,∴∠B1CA是异面直线B1C与A1C1所成角,∵AB1=B1C=2,AC,∴cos∠B1CA,∴∠B1CA=arccos.∴异面直线B1C与A1C1所成角的大小为arccos.【点评】本题考查线面角的大小的求法,考查异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.18.已知函数.(1)若函数y=f(x)的图象关于直线x=a(a>0)对称,求a的最小值;(2)若存在,使mf(x0)﹣2=0成立,求实数m的取值范围.【分析】(1)先利用降幂公式进行化简,然后利用辅助角公式将f(x)化成,最后根据正弦函数的对称性求出对称轴,求出a的最小值即可;(2)根据的范围求出2x0的范围,再结合正弦函数单调性求出函数的值域,从而可求出m的范围.解:(1)因为所以函数f(x)的图象的对称轴由下式确定:从而.由题可知当k=0时,a有最小值;(2)当时,,从而,则f(x0)∈[﹣1,2]由mf(x0)﹣2=0可知:m≥1或m≤﹣2.【点评】本题主要考查了正弦函数的对称性,以及正弦函数的值域,属于基础题.19.上海市某地铁项目正在紧张建设中,通车后将给更多市民出行带来便利.已知该线路通车后,地铁的发车时间间隔t(单位:分钟)满足2≤t≤20,t∈一、选择题*.经测算,在某一时段,地铁载客量与发车时间间隔t相关,当10≤t≤20时地铁可达到满载状态,载客量为1200人,当2≤t<10时,载客量会减少,减少的人数与(10﹣t)的平方成正比,且发车时间间隔为2分钟时载客量为560人,记地铁载客量为p(t).(1)求p(t)的表达式,并求在该时段内发车时间间隔为6分钟时,地铁的载客量;(2)若该时段这条线路每分钟的净收益为(元),问当发车时间间隔为多少时,该时段这条线路每分钟的净收益最大?【分析】(1)由题意知p(t),t∈N,(k为常数),再由p(2)=560求得k,则p(t)可求,进一步求得p(6)得答案;(2)由Q,可得Q,分段求最值得答案.解:(1)由题意知p(t),t∈N,(k为常数),∵p(2)=1200﹣k(10﹣2)2=560,∴k=10,∴p(t),∴p(6)=1200﹣10(10﹣6)2=1040;(2)由Q,可得Q,当2≤t<10时,Q=6[140﹣10()]≤6(140﹣10×12)=120,当且仅当t=6时等号成立;当10≤t≤20时,Q384﹣360=24,当t=10时等号成立,∴当发车时间间隔为t=6分钟时,该线路每分钟的净收益最大,最大为120元.答:当发车时间间隔为t=6分钟时,该线路每分钟的净收益最大,最大为120元.【点评】本题考查简单的数学建模思想方法,考查利用基本不等式求最值,考查计算能力,是中档题.20.(16分)已知椭圆的左、右焦点分别是F1,F2,其长轴长是短轴长的2倍,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,证明为定值,并求出这个定值;(3)点P是椭圆C上除长轴端点外的任一点,设∠F1PF2的角平分线PM交椭圆C的长轴于点M(m,0),求m的取值范围.【分析】(1)由长轴长是短轴长的2倍,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.可得a,b的值,进而求出椭圆的方程;(2)设直线l的方程,与椭圆联立,由直线与椭圆有且仅有一个交点可得判别式为0,可得k与P的横纵坐标的关系,再由P在椭圆上得横纵坐标的关系,求出直线PF1,PF2的斜率分别为k1,k2与P的坐标的关系,进而可得为定值﹣8;(3)设P的坐标,由(1)可得焦点F1,F2的坐标,求出直线PF1,PF2的方程,由角平分线的性质,M到两条直线的距离相等,及点到直线的距离公式,可得m与P的横坐标的关系,再由P在椭圆上可得P的横坐标的取值范围求出m的范围.解:(1)由于c2=a2﹣b2,将x=﹣c代入椭圆方程,得.由题意知,即a=2b2.又,a2=b2+c2,所以a=2,b=1.所以椭圆C的方程为.(2)设P(x0,y0)(y0≠0),则直线l的方程为y﹣y0=k(x﹣x0).联立得,整理得由题意得△=0,即.又,所以,故.又知,所以,因此为定值,这个定值为﹣8.(3)设P(x0,y0)(y0≠0),又,,所以直线PF1,PF2的方程分别为,.由题意知.由于点P在椭圆上,所以.所以.因为,﹣2<x0<2,可得,所以,因此.【点评】本题考查求椭圆的方程,及直线与椭圆的综合及角平分线的性质,属于中档题.21.(18分)对于无穷数列{a n}、{b n},n∈N*,若b k=max{a1,a2,…,a k}﹣min{a1,a2,…,a k},k∈N*,则称数列{b n}是数列{a n}的“收缩数列”.其中max{a1,a2,…,a k}、min{a1,a2,…,a k}分别表示a1,a2,…,a k中的最大项和最小项.已知数列{a n}的前n项和为S n,数列{b n}是数列{a n}的“收缩数列”.(1)若a n=3n﹣1,求数列{b n}的前n项和;(2)证明:数列{b n}的“收缩数列”仍是{b n};(3)若S1+S2+…+S n,求所有满足该条件的数列{a n}.【分析】(1)判断{a n}为递增数列,由“收缩数列”的定义求得b n=3n﹣3,再由等差数列的求和公式,可得所求和;(2)由题意可得max{a1,a2,…,a n}≤max{a1,a2,…,a n+1}(n=1,2,3,…),min{a1,a2,…,a n}≥min{a1,a2,…,a n+1}(n=1,2,3,…),推得b n+1≥b n(n=1,2,3,…),结合“收缩数列”的定义,即可得证;(3)由题意计算a1,a2,a3,猜想:满足的数列{a n}是:.n∈N*,再由反证法,通过推理论证得到矛盾,即可得到结论.解:(1)由a n=3n﹣1,可得{a n}为递增数列,所以b n=max{a1,a2,…,a n}﹣min{a1,a2,…,a n}=a n﹣a1=3n﹣1﹣2=3n﹣3,故{b n}的前n项和为;(2)证明:因为max{a1,a2,…,a n}≤max{a1,a2,…,a n+1}(n=1,2,3,…),min{a1,a2,…,a n}≥min{a1,a2,…,a n+1}(n=1,2,3,…),所以max{a1,a2,…,a n+1}﹣min{a1,a2,…,a n+1}≥max{a1,a2,…,a n}﹣min{a1,a2,…,a n},所以b n+1≥b n(n=1,2,3,…),又因为b1=a1﹣a1=0,所以max{b1,b2,…,b n}﹣min{b1,b2,…,b n}=b n﹣b1=b n,所以{b n}的“收缩数列”仍是{b n};(3)由,可得当n=1时,a1=a1;当n=2时,2a1+a2=3a1+b2,即b2=a2﹣a1,所以a2≥a1;当n=3时,3a1+2a2+a3=6a1+3b3,即3b3=2(a2﹣a1)+(a3﹣a1)(*),若a1≤a3<a2,则b3=a2﹣a1,所以由(*)可得a3=a2,与a3<a2矛盾;若a3<a1≤a2,则b3=a2﹣a3,所以由(*)可得a3﹣a2=3(a1﹣a3),所以a3﹣a2与a1﹣a3同号,这与a3<a1≤a2矛盾;若a3≥a2,则b3=a3﹣a1,由(*)可得a3=a2.猜想:满足的数列{a n}是:.n∈N*,经验证,左边,右边.下面证明其它数列都不满足(3)的题设条件.由上述n≤3时的情况可知,n≤3时是成立的.假设a k是首次不符合的项,则a1≤a2=a3=…=a k≠a k,﹣1由题设条件可得(*),若a1≤a k<a2,则由(*)式化简可得a k=a2与a k<a2矛盾;若a k<a1≤a2,则b k=a2﹣a k,所以由(*)可得,所以a k﹣a2与a1﹣a k同号,这与a k<a1≤a2矛盾;所以a k≥a2,则b k=a k﹣a1,所以由(*)化简可得a k=a2.这与假设a k≠a2矛盾.所以,所有满足该条件的数列{a n}的通项公式为,n∈N*.【点评】本题考查数列的新定义的理解和运用,考查列举法和反证法的运用,以及化简运算能力、推理能力,是一道难题.。

2020届上海市青浦区高三二模数学试题(解析版)

2020届上海市青浦区高三二模数学试题(解析版)

2020届上海市青浦区高三二模数学试题一、单选题1.已知,a b ∈R ,则“0b ≥”是“20a b +≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0b ≥时,一定有20a b +≥,而20a b +≥时,不一定有0b ≥,从而可得结论 【详解】解:因为20a ≥,0b ≥,所以20a b +≥,当20a b +≥时,若2,3a b ==-满足条件,但0b ≥不成立, 所以“0b ≥”是“20a b +≥”的充分不必要条件, 故选:A 【点睛】此题考查充分条件和必要条件的判断,属于基础题2.我国古代数学著作《九章算术》中记载问题:“今有垣厚八尺,两鼠对穿,大鼠日一尺,小鼠日半尺,大鼠日增倍,小鼠日自半,问几何日相逢?”,意思是“今有土墙厚8尺,两鼠从墙两侧同时打洞,大鼠第一天打洞一尺,小鼠第一天打洞半尺,大鼠之后每天打洞长度比前一天多一倍,小鼠之后每天打洞长度是前一天的一半,问两鼠几天打通相逢?”两鼠相逢需要的最少天数为( ) A .3 B .4C .5D .6【答案】B【解析】求得前几天两只老鼠打洞长度的和,由此确定需要的天数. 【详解】依题意可知,大老鼠每天打洞的长度是首项11a =,公比为2的等比数列;大小老鼠每天打洞的长度是首项112b =,公比为12的等比数列.设n S 是前n 天两只老鼠打洞长度的和.第1天,1111131,,1222a b S ===+=;第2天,222131152,,24244a b S ===++=; 第3天,3331151634,,48488a b S ===++=;第4天,4418,16a b ==,4S 显然大于8.所以两鼠相逢需要的最少天数为4天. 故选:B 【点睛】本小题主要考查等比数列,考查中国古代数学文化,属于基础题.3.记椭圆221441x ny n +=+围成的区域(含边界)为(1,2)n n Ω=,当点(,)x y 分别在12,,ΩΩ上时x y +的最大值分别是1M ,2M ,…,则lim n n M →∞=( ) A.2 B .4C .3D.【答案】D【解析】通过221441x nyn +=+的参数方程2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),可得:()2cos x y θθθϕ+=+=+,从而max ()x y +=,求极限即可得解. 【详解】椭圆221441x ny n +=+的参数方程为:2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数) ,所以:()()2cos x y θθθϕθϕ+=++=+,所以:max ()x y +=,所以:lim lim n n n M →∞==故选:D.【点睛】本题考查了椭圆的参数方程,考查了辅助角公式求三角函数最值,考查了转化思想,也考查了极限的运算,属于中档题.4.已知函数()sin 2sin f x x x =+,关于x 的方程2()()10f x a f x --=有以下结论:①当0a ≥时,方程()()210f x a f x --=在[0]2π,最多有3个不等实根; ②当6409a ≤<时,方程()()210f x a f x --=在[0]2π,内有两个不等实根; ③若方程()()210f x a f x --=在[0,6]π内根的个数为偶数,则所有根之和为15π; ④若方程()()210fx a f x --=在[]0,6π根的个数为偶数,则所有根之和为36π.其中所有正确结论的序号是( ) A .②④ B .①④C .①③D .①②③【答案】C【解析】先研究()f x 在[0,2]π内的图象,求其值域,进而研究方程2()()10f x a f x --=两根的取值范围,结合图象研究四个命题的正误.【详解】由已知得3sin ,[0,]()sin 2|sin |sin ,(,2]x x f x x x x x πππ∈⎧=+=⎨-∈⎩,做出图象如下:由2()()10f x a x -=得:()4a a f x ++=4a a -+ 令1244a a a a t t ++-+=0a ,11t ∴,20t <(舍). 原方程的根看成1y t =与()y f x =的交点的横坐标. 对于①,如图所示:因为11t ,当0a =时,11t =,y t =与()y f x =恰好有三个交点;当0a >时,分别有2个、1个、0个交点,故①正确;对于②,结合①可知,0a =时,有3个根,故②错误;对于③,如图所示,由题意,只能满足:1y t =只与()y f x =在[0,]π,[2π,3]π,[4π,5]π上的图象各有两个交点.易知这六个零点分别关于59,,222x x x πππ===对称,所以六个根的和为:5922215222ππππ⨯+⨯+⨯=. 故③正确,④错误. 故正确命题的序号是①③. 故选:C . 【点睛】本题考查函数零点的求法,利用数形结合思想、函数与方程思想、转化思想解决问题的能力,属于较难的题目.二、填空题5.已知全集U =R ,集合(,2)A =-∞,则集合UA_____________.【答案】[2)+∞,【解析】直接利用补集的定义求解即可 【详解】解:因为全集U =R ,集合(,2)A =-∞, 所以UA [2)+∞,,故答案为:[2)+∞,【点睛】此题考查集合的补集运算,属于基础题6.已知i 为虚数单位,复数2z i =+的共轭复数z =______________. 【答案】2i -【解析】根据定义直接得到共轭复数即可. 【详解】根据共轭复数的定义得:2z i =-. 故答案为:2i -. 【点睛】本题考查共轭复数的概念,是基础题. 7.已知函数()11f x x=+,则方程()12f x -=的解x =_____________. 【答案】32【解析】根据互为反函数的两个函数间的关系知,欲求满足1()2f x -=的x 值,即求(2)f 的值.【详解】 解:13(2)122f =+=, 所以32x =. 故答案为:32.【点睛】本题考查原函数与反函数之间的关系,即原函数过点(,)x y ,则反函数过点(,)y x ,基础题.8.若()51ax +的展开式中3x 的系数是80,则实数a 的值是 【答案】2【解析】【详解】试题分析:由题意3x 的系数是,解得.【考点】二项式定理的应用.9.双曲线2214x y -=一个焦点到一条渐近线的距离为______【答案】1【解析】求出双曲线的渐近线方程,用点到直线的距离公式,即可求解. 【详解】根据对称性,2214x y -=焦点坐标5),0F ,渐近线方程为12y x =,即20x y -=, 25112=+.故答案为:1 【点睛】本题考查双曲线简单几何性质,属于基础题.10.用一平面去截球所得截面的面积为23cm π,已知球心到该截面的距离为1cm ,则该球的表面积是___________2cm . 【答案】16π【解析】由已知求出小圆的半径,然后利用勾股定理求出球的半径,即可求出球的表面积 【详解】解:因为用一平面去截球所得截面的面积为23cm π, 3cm , 因为球心到该截面的距离为1cm , 221(3)2+=cm , 所以球的表面积为24216S ππ=⨯=2cm , 故答案为:16π【点睛】此题考查球的截面的半径、球心到截面的距离与球的半径间的关系,属于基础题 11.已知0,0x y >>,且21x y +=,则11x y+的最小值为________. 【答案】322+【解析】先把11x y+转化为11112(2)()3y x x y x y x y x y +=++=++,然后利用基本不等式可求出最小值 【详解】解:∵21x y +=,0,0x y >>,∴11112(2)()3322y x x y x y x y x y +=++=++≥+(当且仅当2y xx y=,即2x =时,取“=”).又∵21x y +=,∴2121x y ⎧=⎪⎨=-⎪⎩∴当21x =,212y =-时,11x y +有最小值,为322+.故答案为:322+ 【点睛】此题考查利用基本不等式求最值,利用1的代换,属于基础题. 12.已知平面向量a b ,满足(1,1)a =-,||1b =,22a b +=,则a 与b 的夹角为________. 【答案】34π【解析】将|2|2a b +=两边同时平方后展开,结合平面向量数量积运算及模的运算,即可求得a 与b 的夹角的余弦值,进而求得a 与b 的夹角即可. 【详解】因为(1,1)a =-,则2a =因为|2|2a b +=,等式两边同时平方可得22442a a b b +⋅+=代入2a =,||1b =可得1a b ⋅=-设,a b 夹角为α,则由平面向量数量积的定义可得221cos a b a bα⋅==-⨯⋅=因为0απ≤≤ 所以34πα=故答案为: 34π 【点睛】本题考查了平面向量数量积的定义及简单应用,向量夹角的求法,属于基础题.13.设5{}13a ∈,,,6{}24b ∈,,,则函数()1b af x log x=是减函数的概率为_____________. 【答案】23【解析】由复合函数的单调性推出1ba>,即可利用古典概型概率公式进行计算. 【详解】{1,3,5},{2,4,6}a b ∈∈,∴基本事件总数339n =⨯=,函数()1baf x log x =是减函数,且函数1y x=在()(),0,0,-∞+∞上单调递减, 1ba ∴>,则函数()1b af x log x =是减函数包含的基本事件(),a b 有:(1,2),(1,4),(1,6),(3,4),(3,6),(5,6),共6个,∴函数()1baf x log x =是减函数的概率为6293=. 故答案为:23【点睛】本题考查古典概型,涉及对数函数的单调性、复合函数的单调性,属于基础题.14.已知函数()f x =0x 满足()00f f x x =⎡⎤⎣⎦,则实数a 的取值范围是_____________. 【答案】14a ≤【解析】判断()y f x =在定义域内递增,结合条件可得()y f x =的图象与直线y x =有x =有解,运用参数分离和二次函数的值域求法,可得所求范围. 【详解】函数()f x =[a ,)+∞递增,若存在实数0x 满足00[()]f f x x =,可得()y f x =的图象与直线y x =有交点,x =有解.(0)x x =,可得2x a x -=,即有2211()24a x x x =-=--+,而211()24y x =--+在[0,1)2递增,1(2,)+∞递减,可得211()24y x =--+的最大值为14,此时12x =,则14a,即a 的取值范围是(-∞,1]4.故答案为:14a ≤. 【点睛】本题考查方程存在性问题解法,注意运用转化思想和参数分离,以及二次函数的图象和性质,考查运算能力和推理能力.15.已知正三角形ABC 的三个顶点均在抛物线2x y =上,其中一条边所在直线的斜率,则ABC 的三个顶点的横坐标之和为_____________.【答案】10-【解析】设点()()()222,,,,,A a aB b bC c c ,则可得ABka b =+,BC k b c =+,AC k a c =+,不妨设AB k ,且直线AB 的倾斜角为α,可得tan ,tan 33BC AC k k ππαα⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭,然后利用()11tan tan 2233AB BC AC a b c k k k ππαα⎫⎛⎫⎛⎫++=++=++- ⎪ ⎪⎪⎝⎭⎝⎭⎭算出答案即可. 【详解】 设点()()()222,,,,,A a aB b bC c c ,则22ABa b k a b a b -==+-,22BC b c k b c b c -==+-,22AC a c k a c a c-==+-不妨设AB k =AB 的倾斜角为α 因为ABC ∆是等边三角形,所以tan ,tan 33BC AC k k ππαα⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭ 所以()11tan tan 2233AB BC AC a b c k k k ππαα⎫⎛⎫⎛⎫++=++=++- ⎪ ⎪⎪⎝⎭⎝⎭⎭tan tantan tan1133221tan tan 1tan tan 33ππααππαα+-=⋅+⋅=-+故答案为:10- 【点睛】本题以抛物线为载体,考查了直线的斜率和三角函数的和差公式,属于较难题. 16.定义函数(){{}}f x x x =,其中{}x 表示不小于x 的最小整数,如{}1.42=,{}2.32-=-,当*(0,]()x n n N ∈∈时,函数()f x 的值域为n A ,记集合n A 中元素的个数为n a ,则n a =_____________. 【答案】(1)2n n + 【解析】根据{}x 的定义,依次求出数列{}n a 的前5项,再归纳出1n n a a n -=+,利用累加法求出n a 即可 【详解】解:由题意得,当1n =时,由于(0,1]x ∈,所以{}1x =,所以{{}}1x x =, 则11{1},1A a ==,当2n =时,由于(1,2]x ∈,所以{}2x =,所以{{}}(2,4]x x ∈, 则22{1,3,4},3A a ==,当3n =时,由于(2,3]x ∈,所以{}3x =,所以{{}}(6,9]x x ∈, 则33{1,3,4,7,8,9},6A a ==,当4n =时,由于(3,4]x ∈,所以{}4x =,所以{{}}(12,16]x x ∈, 则44{1,3,4,7,8,9,13,14,15,16},10A a ==,以此类推,得1n n a a n -=+, 利用累加法得,(1)2n n n a +=, 故答案为:(1)2n n + 【点睛】此题考查了新定义,递推关系,累加求和的方法,考查推理能力与计算能力,属于较难题三、解答题17.如图,在正四棱柱1111ABCD A B C D -中,160B AB ∠=︒(1)求直线1A C 与平面ABCD 所成的角的大小; (2)求异面直线1B C 与11A C 所成角的大小. 【答案】(1)6arctan(2)2. 【解析】(1)由1A A ⊥平面ABCD ,A 是垂足,得1ACA ∠是1A C 与平面ABCD 所成的角,由此能求出1A C与平面ABCD所成的角的大小.(2)由11AC AC∥,得1B CA∠是异面直线1B C与11A C所成角,由此能求出异面直线1B C与11A C所成角的大小.【详解】解:(1)设1AB=,∵在正四棱柱1111ABCD A B C D-中,160B AB∠=︒,∴12AB=,13BB=22112AC=+=,∵1A A⊥平面ABCD,A是垂足,∴1ACA∠是1A C与平面ABCD所成的角,∵1136tan22AAACAAC∠===∴16arctan2ACA∠=.∴1A C与平面ABCD所成的角的大小为6arctan(2)如图所示:连接AC,∵11AC AC∥,∴1B CA∠是异面直线1B C与11A C所成角,∵112AB B C==,2AC=∴22211112cos24222B C AC ABB CAB C AC+-∠===⋅⨯⨯,∴12arccos4B CA∠=.∴异面直线1B C与11A C所成角的大小为2.【点睛】考查线线角和线面角的求法,中档题.18.已知函数()22sin sin 3x f x x x π⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦. (1)若函数()y f x =的图象关于直线(0)x a a =>对称,求a 的最小值; (2)若存在05012x π⎡⎤⎢⎥⎣∈⎦,,使0()20mf x -=成立,求实数m 的取值范围. 【答案】(1)12π;(2)(,2][1,)m ∈-∞-⋃+∞.【解析】(1)用三角函数的降幂公式、辅助角公式将()y f x =化简,得2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,根据正弦函数的对称轴可得到答案;(2)由02()m f x =,结合0x 得到01sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭,再求0()f x 、m 的范围. 【详解】 (1)()22sin sin cos 3f x x x x x π⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦()2sin sin cos x x x x x =++()22sin cos x x x x =)222sin cos cos sin x x x x =-sin 222sin 23x x x π⎛⎫=+=+ ⎪⎝⎭,()232a k k Z πππ+=+∈,,212k a k Z ππ∴=+∈ 又0a >∴a 的最小值为12π(2)()()0002120sin 23mf x m f x x π-=⇒==⎛⎫+ ⎪⎝⎭ 00570,,212336x x ππππ⎡⎤∈≤+≤⎢⎥⎣⎦01sin 2123x π⎛⎫∴-≤+≤ ⎪⎝⎭ 则(][),21,m ∈-∞-⋃+∞【点睛】本题主要考查用三角函数公式进行化简、正弦型三角函数的图象和性质.19.常州地铁项目正在紧张建设中,通车后将给市民出行带来便利.已知某条线路通车后,地铁的发车时间间隔 t (单位:分钟)满足220t ≤≤,N t ∈.经测算,地铁载客量与发车时间间隔t 相关,当1020t ≤≤时地铁为满载状态,载客量为1200人,当210t ≤<时,载客量会减少,减少的人数与(10)t -的平方成正比,且发车时间间隔为2分钟时的载客量为560人,记地铁载客量为()p t .⑴ 求()p t 的表达式,并求当发车时间间隔为6分钟时,地铁的载客量; ⑵ 若该线路每分钟的净收益为6()3360360p t Q t-=-(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大? 【答案】(1)1040;(2)120【解析】(1)根据题意得到()p t 的解析式即可,然后根据解析式可得当发车时间间隔为6分钟时地铁的载客量;(2)由题意得到净收益为Q 的表达式,然后根据求分段函数最值的方法得到所求的最值. 【详解】(1)由题意知()()2120010,2101200,1020k t t p t t ⎧--≤<⎪=⎨≤≤⎪⎩,N t ∈,(k 为常数),∵()()221200102120064560p k k =--=-=, ∴10k =,∴()()2210200200,21012001010,2101200,10201200,1020t t t t t p t t t ⎧⎧-++≤<--≤<⎪==⎨⎨≤≤≤≤⎪⎩⎩, ∴()()261200101061040p =-⨯-=,故当发车时间间隔为6分钟时,地铁的载客量1040人. (2)由()63360360p t Q t-=-,可得()236610200200336084060,210360,21038403840360,1020360,1020t t t t t t t Q t t t t ⎧⎧-++-⎛⎫-+≤<⎪ ⎪-≤<⎪⎪⎪⎝⎭==⎨⎨⎪⎪-≤≤-≤≤⎪⎪⎩⎩,①当210t ≤<时,36840608406012120Q t t ⎛⎫=-+≤-⨯= ⎪⎝⎭,当且仅当6t =时等号成立;②当1020t ≤≤时,7200336036038436024Q t-=-≤-=,当10t =时等号成立,∴当发车时间间隔为6t =分钟时,该线路每分钟的净收益最大,最大为120元. 答:当发车时间间隔为6t =分钟时,该线路每分钟的净收益最大,最大为120元. 【点睛】(1)本题考查分段函数模型在实际中的应用,对于分段函数模型的最值问题,应该先求出每一段上的最值,然后比较大小后可得分段函数的最值.(2)在利用基本不等式求解最值时,一定要检验等号成立的条件,也可以利用函数单调性求解最值.20.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,其长轴长是短轴长的2倍,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线1PF 、2PF 的斜率分别为1k 、2k ,若0k ≠,证明:1211kk kk +为定值,并求出这个定值; (3)点P 是椭圆C 上除长轴端点外的任一点,设12F PF ∠的角平分线PM 交椭圆C 的长轴于点()0M m ,,求m 的取值范围. 【答案】(1)2214x y +=;(2)12118kk kk +=-,证明见解析;(3)3322-<<m . 【解析】(1)由长轴长是短轴长的2倍,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1.可得a ,b 的值,进而求出椭圆的方程;(2)设直线l 的方程,与椭圆联立,由直线与椭圆有且仅有一个交点可得判别式为0,可得k 与P 的横纵坐标的关系,再由P 在椭圆上得横纵坐标的关系,求出直线1PF ,2PF 的斜率分别为1k ,2k 与P 的坐标的关系,进而可得1211kk kk +为定值8-;(3)设P 的坐标,由(1)可得焦点1F ,2F 的坐标,求出直线1PF ,2PF 的方程,由角平分线的性质,M 到两条直线的距离相等,及点到直线的距离公式,可得m 与P 的横坐标的关系,再由P 在椭圆上可得P 的横坐标的取值范围求出m 的范围. 【详解】(1)由于222c a b =-,将x c =-代入椭圆方程22221x y a b+=,得2by a =±.由题意知221b a=,即22a b =.又12b a =,222a bc =+,所以2a =,1b =. 所以椭圆C 的方程为2214x y +=.(2)设0(P x ,00)(0)y y ≠,则直线l 的方程为00()y y k x x -=-. 联立得220014()x y y y k x x ⎧+=⎪⎨⎪-=-⎩,整理得222222000000(14)8()4(21)0k x ky k x x y kx y k x ++-+-+-= 由题意得△0=,即2220000(4)210x k x y k y -++-=.又220014x y +=,所以22200001680y k x y k x ++=,故004x k y =-.又知00012000211x x x k k y y y ++=+=, 所以001212004211111()()8y x kk kk k k k x y +=+=-=-,因此1211kk kk +为定值,这个定值为8-. (3)设0(P x ,00)(0)yy ≠,又1(F ,2F ,所以直线1PF ,2PF的方程分别为1000:(0PF l y x x y -=,2000:(0PF l y x x y -=.=.由于点P 在椭圆上,所以220014x y +=.=.因为m <<,022x -<<=所以034=m x , 因此3322-<<m .【点睛】本题主要考查求椭圆的方程,考查直线与椭圆的位置关系及综合,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.21.对于无穷数列*{},{},n n a b n N ∈,若{}1212max{,,,min ,,,}k k k b a a a a a a =-,*k N ∈,则称数列{}n b 是数列{}n a 的“收缩数列”,其中1212max{,,}min{,,}k k a a a a a a 、分别表示12k a a a ,,…,中的最大项和最小项,已知数列{}n a 的前n 项和为n S ,数列{}n b 是数列{}n a 的“收缩数列” (1)若31,n a n =-求数列{}n b 的前n 项和; (2)证明:数列{}n b 的“收缩数列”仍是{}n b ; (3)若()()()121111,2,322n n n n n n S S S a b n +-+++=+=,求所有满足该条件的数列{}n a . 【答案】(1)3(1)2n n -;(2)证明见解析;(3)所有满足该条件的数列{}n a 的通项公式为1212n a n a a n =⎧=⎨≥⎩,21a a ≥,*n ∈N .【解析】(1)根据{}n a 为递增数列以及收缩数列的定义可得结果; (2)根据12121max{,,,}max{,,,}n n a a a a a a +≤,12121min{,,,}min{,,,}n n a a a a a a +≥以及不等式的性质可得1n n b b +≤,再根据收缩数列的定义可得结果; (3)在()()()121111,2,322n n n n n n S S S a b n +-+++=+=中,令1,2,3n n n ===可得321a a a =≥,猜测12,1,2n a n a a n =⎧=⎨≥⎩,21a a ≥,*n N ∈,再证明证明其它数列都不满足(3)的题设条件,可得解. 【详解】(1)由31,n a n =-可得{}n a 为递增数列, 所以1212max{,,,}min{,,,}n n n b a a a a a a =-131233n a a n n =-=--=-,所以12(033)3(1)22n n n n n b b b +--+++==. (2)因为12121max{,,,}max{,,,}n n a a a a a a +≤,12121min{,,,}min{,,,}n n a a a a a a +≥,所以12121min{,,,}min{,,,}n n a a a a a a +-≤-所以1212121121max{,,,}min{,,,}max{,,,}min{,,,}n n n n a a a a a a a a a a a a ++-≤-,所以1n n b b +≤,又因为1110b a a =-=, 所以12121max{,,,}min{,,,}n n n n b b b b b b b b b -=-=,所以数列{}n b 的“收缩数列”仍是{}n b . (3)由()()()121111,2,322n n n n n n S S S a b n +-+++=+=,可知当1n =时,11a a =,当2n =时,121223a a a b +=+,则221b a a =-,因为210b b ≥=,所以21a a ≥, 当3n =时,123133263a a a a b ++=+,即3213132()()b a a a a =-+-(), 若132a a a ≤<,则321b a a =-,所以由()可得32a a =,与32a a <矛盾; 若312a a a <≤,则323b a a =-,所以由()可得32133()a a a a -=-,即32a a -与13a a -同号,这与312a a a <≤相矛盾;若32a a ≥,则331b a a =-,所以由()可得32a a =,符合, 猜想,满足()()()121111,2,322n n n n n n S S S a b n +-+++=+=的数列为12,1,2n a n a a n =⎧=⎨≥⎩,21a a ≥,*n N ∈,经验证左边121212(1)(1231)2n n n S S S na n a na a -=+++=+++++-=+, 右边1121(1)(1)(1)(1)()2222n n n n n n n n n a b a a a +-+-=+=+-12(1)2n n na a -=+, 下面证明其它数列都不满足(3)的题设条件, 由上述3n ≤的情况可知,3n ≤时是成立的, 假设k a 是首次不符合12,1,2n a n a a n =⎧=⎨≥⎩,21a a ≥的项,则1231k k a a a a a -≤===≠,由题设条件可得121(1)(1)(1222)22k k k k k k ka k k a a a b +-++++-+-+=+, 即21212(1)(1)222k k k k k k k k ka a a a b --+-++=+(), 若12k a a a ≤<,则21k b a a =-,所以由()式化简可得2k a a =与2k a a <矛盾, 若12k a a a <≤,则2k k b a a =-,所以由()式化简可得21(1)()2k k k k a a a a --=-,所以2k a a -与1k a a -同号,这与12k a a a <≤矛盾,若21k a a a >≥,则1k k b a a =-,所以由()化简可得2k a a =,这与21k a a a >≥矛盾, 所以假设不成立,所以其它数列都不满足(3)的题设条件,所以所有满足条件的数列{}n a 的通项公式为12,1,2n a n a a n =⎧=⎨≥⎩,21a a ≥,*n N ∈.【点睛】本题考查了数列中的新定义,考查了分类讨论思想,考查了等差数列的求和公式,考查了归纳推理能力,考查了反证法,考查了数列的单调性,解题关键是对新定义的理解和运用,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青浦区2019学年高三年级第二次学业质量调研测试数学学科 试卷(时间120分钟,满分150分) Q2020.05一、填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分. 1.已知全集U =R ,集合(,2)A =-∞,则集合UA =__________.2.已知i 为虚数单位,复数2i z =+的共轭复数z =__________. 3.已知函数()11f x x=+,则方程()12f x -=的解x =__________. 4.若5(1)ax +的展开式中3x 的系数是80,则实数a 的值是__________.5.双曲线22144x y -=的一个焦点到一条渐近线的距离是__________.6.用一平面去截球所得截面的面积为23πcm ,已知球心到该截面的距离为1cm ,则该球的表面积是__________2cm . 7.已知,0x y >且21x y +=,则11x y+的最小值为__________. 8.已知平面向量a b ,满足(1,1)a =-,||1b =,|2|2a b +=,则a 与b 的夹角为_________.9.设{}1,3,5a ∈,{}2,4,6b ∈,则函数1()log baf x x=是减函数的概率为_________.10.已知函数()f x =,若存在实数0x 满足00)]([x x f f =,则实数a 的取值范围是_______.11.已知正三角形ABC 的三个顶点均在抛物线2x y =则△ABC 的三个顶点的横坐标之和为__________.12.定义函数{}{}()f x x x =,其中{}x 表示不小于x 的最小整数,如{}1.42=,{}2.32-=-,当()(0,]x n n N*∈∈时,函数()f x 的值域为nA ,记集合nA 中元素的个数为na ,则n a =_______.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.已知,a b ∈R ,则“0b ≥”是“20a b +≥”的………………………………………( ).(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件14.我国古代数学著作《九章算术》中记载问题:“今有垣厚八尺,两鼠对穿,大鼠日一尺,小鼠日半尺,大鼠日增倍,小鼠日自半,问几何日相逢?”,意思是“今有土墙厚8尺,两鼠从墙两侧同时打洞,大鼠第一天打洞一尺,小鼠第一天打洞半尺,大鼠之后每天打洞长度比前一天多一倍,小鼠之后每天打洞长度是前一天的一半,问两鼠几天打通相逢?”两鼠相逢需要的最少天数为………………………………………………………………………………………… ( ).(A )3 (B )4 (C )5 (D )6 15.记椭圆221441x ny n +=+围成的区域(含边界)为(1,2,)n n Ω=,当点(,)x y 分别在1Ω,2Ω,上时,x y +的最大值分别是1M ,2M ,,则lim n n M →∞=………………………( ). (A )25+(B )4(C )3(D )2216.已知函数()sin 2sin f x x x =+,关于x 的方程2()()10f x a f x --=有以下结论: ①当0a ≥时,方程2()()10f x a f x --=在[]0,2π内最多有3个不等实根; ②当6409a ≤<时,方程2()()10f x a f x --=在[]0,2π内有两个不等实根; ③若方程2()()10f x a f x --=在[]0,6π内根的个数为偶数,则所有根之和为15π. ④若方程2()()10f x a f x --=在[]0,6π内根的个数为偶数,则所有根之和为36π. 其中所有正确结论的序号是………………………………………………………………( ).(A )②④(B )①④(C )①③(D )①②③三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,在正四棱柱1111ABCD A B C D -中,160B AB ∠=︒. (1)求直线1A C 与平面ABCD 所成的角的大小; (2)求异面直线1B C 与11A C 所成角的大小.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数2π()[2sin()sin ]cos 3f x x x x x =++.(1)若函数()y f x =的图像关于直线(0)x a a =>对称,求a 的最小值;(2)若存在05[0,]2π1x ∈,使0()20mf x -=成立,求实数m 的取值范围.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.上海市某地铁项目正在紧张建设中,通车后将给更多市民出行带来便利.已知该线路通车后,地铁的发车时间间隔t (单位:分钟)满足220t ≤≤,*t ∈N .经测算,在某一时段,地铁载客量与发车时间间隔t 相关,当1020t ≤≤时地铁可达到满载状态,载客量为1200人,当210t ≤<时,载客量会减少,减少的人数与(10)t -的平方成正比,且发车时间间隔为2分钟时载客量为560人,记地铁载客量为()p t .(1)求()p t 的表达式,并求在该时段内发车时间间隔为6分钟时,地铁的载客量; (2)若该时段这条线路每分钟的净收益为6()3360360p t Q t-=-(元),问当发车时间间隔为多少时,该时段这条线路每分钟的净收益最大?20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是1F ,2F ,其长轴长是短轴长的2倍,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线1PF ,2PF 的斜率分别为1k ,2k ,若0k ≠,证明1211kk kk +为定值,并求出这个定值;(3)点P 是椭圆C 上除长轴端点外的任一点,设12F PF ∠的角平分线PM 交椭圆C 的长轴于点(),0M m ,求m 的取值范围.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对于无穷数列{}n a 、{}n b ,n ∈*N ,若{}{}1212max ,,,min ,,,k k k a a a a a a b =-,k ∈*N ,则称数列{}n b 是数列{}n a 的“收缩数列”.其中{}12max ,,,k a a a 、{}12min ,,,k a a a 分别表示12,,,k a a a 中的最大项和最小项.已知数列{}n a 的前n 项和为n S ,数列{}n b 是数列{}n a 的“收缩数列”. (1)若31n a n =-,求数列{}n b 的前n 项和; (2)证明:数列{}n b 的“收缩数列”仍是{}n b ; (3)若()()()121111,2,3,22n n n n n n S S S a b n +-+++=+=,求所有满足该条件的数列{}n a .青浦区2019学年第二学期高三年级第二次质量调研测试数学参考答案及评分标准 2020.05说明:1.本解答列出试题一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分. 2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后续部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,但是原则上不应超出后面部分应给分数之半,如果有较严重的概念性错误,就不给分.3.第17题至第21题中右端所注的分数,表示考生正确做到这一步应得的该题分数. 4.给分或扣分均以1分为单位.一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果. 1.[)2,+∞;2.2i -;3.32;4.2; 5.2;6.16π;7.3+; 8.34π; 9.23;10.14a ≤;11.10-;12.(1)2n n n a +=. 二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 13. A ;14. B ; 15. D ;16. C .三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共2小题,第(1)小题6分,第(2)小题8分. 解:(1)因为在正四棱柱1111ABCD A B C D -中,1A A ⊥平面ABCD ,A 是垂足, 所以1ACA ∠是1A C 与平面ABCD 所成的角,设1AB =,又正四棱柱1111ABCD A B C D -中,160B AB ∠=︒,12AB ∴=,113BB AA ==,112AC =+=1136tan 22AA ACA AC ∴∠===∴ 16arctan 2ACA ∠= 1A C ∴与平面ABCD 所成的角的大小为6arctan 2(2)解一:如图所示:连接AC ,11AC AC ∥,1B CA ∴∠是异面直线1B C 与11A C 所成角, 112AB B C ==,2AC =,22211112cos 24222B C AC AB B CA B C AC +-∴∠===⋅⨯⨯,12arccos4B CA ∴∠= 所以异面直线1BC 与11A C 所成角的大小的大小为2arccos4. 18.(本题满分14分)第(1)小题满分6分,第(2)小题满分8分. 解:(1)()2π2sin sin cos 33f x x x x x ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦()2sin 3sin cos 3x x x x x =++-()22sin 3cos 3x x x x =)222sin cos 3cos sin x x x x =- πsin 2322sin 23x x x ⎛⎫=+=+ ⎪⎝⎭,()ππ2π32a k k +=+∈Z ,ππ,212k a k ∴=+∈Z 又0a >∴a 的最小值为π12. (2)因为存在05[0,]12x π∈,使成立,所以()00f x ≠,即()()0002120πsin 23mf x m f x x -=⇒==⎛⎫+ ⎪⎝⎭ 00570,,212336x x ππππ⎡⎤∈≤+≤⎢⎥⎣⎦01sin 2123x π⎛⎫∴-≤+≤ ⎪⎝⎭又0sin 203x π⎛⎫+≠ ⎪⎝⎭, 则(][),21,m ∈-∞-+∞.19.(本题满分14分)本题共2小题,第(1)小题6分,第(2)小题8分.解:(1)由题意知()()2120010,2101200,1020k t t p t t ⎧--≤<⎪=⎨≤≤⎪⎩,N t ∈,(k 为常数),∴()()221200102120064560p k k =--=-=,∴10k =,∴()()2210200200,21012001010,2101200,10201200,1020t t t t t p t t t ⎧⎧-++≤<--≤<⎪==⎨⎨≤≤≤≤⎪⎩⎩,∴()()261200101061040p =-⨯-=,故当发车时间间隔为6分钟时,地铁的载客量1040人. (2)由()63360360p t Q t-=-,可得()236610200200336084060,210360,21038403840360,1020360,1020t t t t t t t Q t t t t ⎧⎧-++-⎛⎫-+≤<⎪ ⎪-≤<⎪⎪⎪⎝⎭==⎨⎨⎪⎪-≤≤-≤≤⎪⎪⎩⎩,①当210t ≤<时,36840608406012120Q t t ⎛⎫=-+≤-⨯= ⎪⎝⎭,当且仅当6t =等号成立;②当1020t ≤≤时,7200336036038436024Q t-=-≤-=,当10t =时等号成立,由①②可知,当发车时间间隔为6t =分钟时,该时段这条线路每分钟的净收益最大,最大为120元.20.(本题满分16分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题6分.解:(1)由于222c a b =-,将x c =-代入椭圆方程22221x ya b+=,得2b y a =±.由题意知221b a=,即22a b =.又12b a =,222a bc =+,所以2a =,1b =. 所以椭圆C 的方程为2214x y +=.(2)设000(,)(0)P y y x ≠,则直线l 的方程为00()y y k x x -=-.联立得220014()x y y y k x x ⎧+=⎪⎨⎪-=-⎩,整理得222222000000(14)8()4(21)0k x ky k x x y kx y k x ++-+-+-=由题意得0∆=,即2220000(4)210x k x y k y -++-=.又220014x y +=,所以22200001680y k x y k x ++=,故004x k y =-.又知00012000211x x x k k y y y ++=+=,所以0012120042111118y x kk kk k k k x y ⎛⎫⎛⎫+=+=-⋅=- ⎪ ⎪⎝⎭⎝⎭, 因此1211kk kk +为定值,这个定值为8-. (3)设000(,)(0)P y y x ≠,又1(F,2F ,所以直线1PF ,2PF的方程分别为1000:(0PF l y x x y -=,2000:(0PF l y x x y -=.=.由于点P 在椭圆上,所以220014x y +=.=.因为m<<,022x-<<=,所以34=m x,因此3322-<<m.21.(本题满分18分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题8分.解:(1)由31na n=-可得{}n a为递增数列,所以{}{}12121max,,,min,,,31233n n n nb a a a a a a a a n n=-=-=--=-,故{}n b的前n项和为()31(033)22n nn n-+-=(2)因为{}{}()12121max,,,max,,,1,2,3,n na a a a a a n+≤=,{}{}()12121min,,,min,,,1,2,3,n na a a a a a n+≥=,所以{}{}{}{} 1211211212 max,,,min,,,max,,,min,,,n n n na a a a a a a a a a a a++-≥-所以()11,2,3,n nb b n+=≥又因为1110b a a=-=,所以{}{}12121max,,,min,,,nn n nb b b b b b b b b-=-=,所以{}n b的“收缩数列”仍是{}n b(3)由()()()121111,2,3,22n nn n n nS S S a b n+-+++=+=可得当1n=时,11a a=;当2n=时,121223a a a b+=+,即221b a a=-,所以21a a≥;当3n =时,123133263a a a a b ++=+,即()()3213132b a a a a =-+-(*), 若132a a a ≤<,则321b a a =-,所以由(*)可得32a a =,与32a a <矛盾; 若312a a a <≤,则323b a a =-,所以由(*)可得()32133a a a a -=-, 所以32a a -与13a a -同号,这与312a a a <≤矛盾; 若32a a ≥,则331b a a =-,由(*)可得32a a =. 猜想:满足()()()121111,2,3,22n n n n n n S S S a b n +-+++=+=的数列{}n a 是:1212,1,1n a n a a a a n =⎧=≥⎨≥⎩,.n ∈*N …………………………………………………14分经验证,左式()()12121211212n n n S S S na n a na a -=+++=++++-=+⎡⎤⎣⎦, 右式()()()()()()1121121111122222n n n n n n n n n n n a b a a a na a +-+--=+=+-=+. ………………………………………………………………………………………16分 下面证明其它数列都不满足(3)的题设条件. 由上述3n ≤时的情况可知,3n ≤时,1212,1,,1n a n a a a a n =⎧=≥⎨>⎩是成立的.假设k a 是首次不符合1212,1,,2n a n a a a a n =⎧=≥⎨≥⎩的项,则1231k k a a a a a -≤===≠,由题设条件可得()()221112222k k k k k k k k a a a b +---+=+(*), 若12k a a a ≤<,则由(*)式化简可得2k a a =与2k a a <矛盾; 若12k a a a <≤,则2k k b a a =-,所以由(*)可得()()2112k k k k a a a a --=-高三数学 第11页 共11页 所以2k a a -与1k a a -同号,这与12k a a a <≤矛盾; 所以2k a a ≥,则1k k b a a =-,所以由(*)化简可得2k a a =. 这与假设2k a a ≠矛盾.所以,所有满足该条件的数列{}n a 的通项公式为1212,1,,2,n a n a a a a n =⎧=≥⎨≥⎩,n ∈*N .。

相关文档
最新文档