西电电院通信原理大作业

合集下载

通信原理大作业

通信原理大作业

通信原理⼤作业通信原理⼤作业2ASK信号传输仿真⼀、选题意义2ASK(⼆进制振幅键控)是⼀种最简单的数字信号的载波传输,通过对2ASK 的仿真可以更好的理解数字调制系统的组成以及各模块的功能。

⼆、仿真实验任务1.掌握2ASK 调制解调原理及其实现⽅法。

2.按照2ASK产⽣模型和解调模型分别产⽣2ASK信号和⾼斯⽩噪声,经过信道传输后进⾏解调。

3.测试2ASK传输信号加⼊噪声后的误码率,分析2ASK传输系统的抗噪声性能;三、仿真原理本实验主要是利⽤MATLAB集成环境下的Simulink仿真平台,设计⼀个2ASK 调制与解调系统.⽤⽰波器观察调制前后的信号波形; ⽤频谱分析模块观察调制前后信号频谱的变化;加上各种噪声源,⽤误码测试模块测量误码率;最后根据运⾏结果和波形来分析该系统性能。

通过Simulink的仿真功能摸拟到了实际中的2ASK调制与解调情况。

3.1 2ASK调制与解调原理3.1.1 2ASK调制原理振幅键控是正弦载波的幅度随数字基带信号⽽变化的数字调制。

当数字基带信号为⼆进制时,则为⼆进制振幅键控。

设发送的⼆进制符号序列由0、1序列组成,发送0符号的概率为P,发送1符号的概率为1-P,且相互独⽴。

该⼆进制符号序列可表⽰为2()()cos()[()]cos ASK c n s cne t s t w t a g t nT w t==-∑(1)其中:⼆进制振幅键控信号时间波形如图1 所⽰。

由图1 可以看出,2ASK信号的时间波形e2ASK(t)随⼆进制基带信号s(t)通断变化,所以⼜称为通断键控信号(OOK信号)。

图1 ⼆进制振幅键控信号时间波形在⼆进制数字振幅调制中,载波的幅度随着调制信号的变化⽽变化,实现这种调制的⽅式有两种:(1)模拟相乘法:通过相乘器直接将载波和数字信号相乘得到输出信号,这种直接利⽤⼆进制数字信号的振幅来调制正弦载波的⽅式称为模拟相乘法,其电路如图2所⽰。

在该电路中载波信号和⼆进制数字信号同时输⼊到相乘器中完成调制。

西电通院专业教育大作业

西电通院专业教育大作业

西电通院专业教育大作业第一篇:西电通院专业教育大作业《专业教育》(第三学期)课程大作业专业:通信工程班级:学号:姓名:通信工程专业教育 1通信工程专业培养目标及发展通信工程专业培养学生掌握通信工程类专业坚实的基础理论、相关的专业基础和专业知识,能从事通信理论、通信系统、通信设备以及信息系统类的研究、设计、开发、制造、运营和管理的高素质的高级工程技术人才和现代化建设人才。

本专业以数理、外语和通信基本理论为基础。

现有人才培养方案是围绕培养德、智、体全面发展,适应社会主义现代化建设需要,既有扎实的基础理论、较强的计算机和外语应用能力,熟练掌握通信与信息系统、信息处理和通信网络等方面的专业理论和工程技术,又有具备在信息与通信工程领域从事科学研究,工程设计,设备制造、运营和维护和管理工作,并具有一定创新精神和研发能力的高级工程技术人才。

毕业后可从事通信系统、通信工程技术和通信新产品研究开发、调试和运营等工作,也可从事IT及相关专业的科学研究与技术开发工作。

通信工程专业主要研究信号的产生、信息的传输、交换和处理,以及在计算机通信、光纤通信、无线通信、交换与通信网等方面的理论和工程应用问题,培养从事通信工程、电子信息技术及计算机网络系统的研究、制造、开发和应用的高级人才。

受工业影响,我国一些较早成立的工科大学就已开设了电报、电话和有线信号传输等相关专业。

新中国成立后,中国工业亟待发展与更新,中国高等教育的工科教育得到了高度的重视。

由于电报、电话、电台和收音机等通信电子产品高速发展,而人才资源又极度匠乏,促使了新中国最早的通信技术相关本科专业的诞生和发展。

同时,我国开始建设系列部委学校。

期间北京邮电学院、重庆邮电学院、成都电讯工程学院、西北电讯工程学院等一些重要的工科高等学校相继成立和建设,与通信技术相关的本科专业开始在全国招生,为我国自主培养了第一批通信技术人才。

如今随着通信与各种新技术结合的层出不穷,涉及的领域越来越广泛,如电信、网络、家电、金融、医疗、航空、工业等等。

西电通信原理大作业

西电通信原理大作业

通信原理大作业班级:021215学号:姓名:一. 第四代移动通信技术综述(4G网络综述)第四代移动通信技术的概念可称为宽带接入和分布网络,具有非对称的超过2Mbit/s的数据传输能力。

它包括宽带无线固定接入、宽带无线局域网、移动宽带系统和交互式广播网络。

第四代移动通信标准比第三代标准具有更多的功能。

第四代移动通信可以在不同的固定、无线平台和跨越不同的频带的网络中提供无线服务,可以在任何地方用宽带接入互联网(包括卫星通信和平流层通信),能够提供定位定时,数据采集、远程控制等综合功能。

此外,对全速移动用户能提供150 Mb/s的高质量影像服务,将首次实现三维图像的高质量传输。

他包括广带无线固定接入、广带无线局域网、移动广带系统和互操作的广播网络(基于地面和卫星系统)。

其广带无线局域网(WLAN)能与B-ISDN和ATM兼容,实现广带多媒体通信,形成综合广带通信网(IBCN),他还能提供信息之外的定位定时、数据采集、远程控制等综合功能。

一4G主要技术要求1. 通信速度提高,数据率超过UMTS,上网速率从2 Mb/s提高到100 Mb /s。

2. 以移动数据为主面向Internet大范围覆盖高速移动通信网络,改变了以传统移动电话业务为主设计移动通信网络的设计观念。

3. 采用多天线或分布天线的系统结构及终端形式,支持手机互助功能,采用可穿戴无线电,可下载无线电等新技术。

4. 发射功率比现有移动通信系统降低10~100倍,能够较好地解决电磁干扰问题。

5. 支持更为丰富的移动通信业务,包括高分辨率实时图像业务、会议电视虚拟现实业务等,使用户在任何地方可以获得任何所需的信息服务,且服务质量得到保证。

第四代移动通信系统是集成多功能的宽带移动通信系统,是宽带接入IP系统。

二、4G的主要特点1. 通信速度更快由于人们研究4G通信的最初目的就是提高蜂窝电话和其他移动装置无线访问Internet的速率,因此4G通信给人印象最深刻的特征莫过于它具有更快的无线通信速度。

西安电子科技大学2021春 通信原理(大作业)题目

西安电子科技大学2021春 通信原理(大作业)题目

学习中心/函授站_姓名学号西安电子科技大学网络与继续教育学院2021学年上学期《通信原理》期末考试试题(综合大作业)题号一二三四总分题分10 30 30 30得分考试说明:1、大作业试题于2021年4月23日公布:(1)学生于2021年4月23日至2021年5月9日在线上传大作业答卷;(2)上传时一张图片对应一张A4纸答题纸,要求拍照清晰、上传完整;2、考试必须独立完成,如发现抄袭、雷同均按零分计;3、答案须用《西安电子科技大学网络与继续教育学院标准答题纸》手写完成,要求字迹工整、卷面干净。

一、选择题(本大题共5小题,每小题2分,共10分)1. 下列调制方式中,属于线性调制方式的有()。

A.AM; B.;FM; C. PM; D. 2FSK。

2. 当基带信号带宽一定时,下面哪一种调制方式所占频带宽度最大()A.SSB; B. VSB; C. AM; D. WBFM。

3. 在相同信噪比的条件下,比较不同调制方式的性能,哪个是正确的()。

A.2FSK优于2PSK; B. 2FSK优于2ASK;C. 2ASK优于2PSK;D. 2DPSK优于2PSK。

4. 在以下通信系统中,需要位同步的通信系统为()。

A.AM调制系统; B. SSB调制系统;C.BPSK调制系统; D. DSB调制系统。

5. 关于PCM与△M,下面哪个描述是正确的。

()A.△M系统中码元速率等于抽样速率; B. △M中可以采用非均匀量化;C.PCM系统中码元速率等于抽样速率; D. PCM系统的量化信噪比高于△M。

二、填空题(本大题共18小题,每空格1分,共30分)6. 数字通信系统的可靠性指标可以用_______来衡量。

7. 在码元速率相同的前提下,八进制码元与四进制码元的信息速率相比,______的更高。

8. 变参信道传输媒介的三个特点是 ①;② ; ③ 。

9. 单边带信号的产生方法有三种:①_____、②_____、③______。

西电通信原理大作业

西电通信原理大作业

西安电子科技大学通信原理大作业蜂窝通信网姓名:班级:学号:蜂窝移动通信网通信网是在多点之间传递信息的通信系统。

通信网的基本组成部分是终端设备、通信链路和交换设备,有些通信网中还包含转发设备。

随着时代的发展,通信网也有着多种不同的应用和技术的进步。

其中移动通信网在我们的生活中起到无可取代的作用,蜂窝网是当前最主要的一种移动通信网,主要由基站、移动台、移动交换中心组成,并与固定电话网相连。

第一代蜂窝网采用模拟调制体制,现已淘汰。

第二段蜂窝网采用数字调制体制,以电话通信为主,目前正在广泛使用中。

我国采用的第二代蜂窝网体制主要是GSM。

第三代蜂窝网正在发展中,它应能满足数据传输和多媒体通信的需求,以及全球漫游。

本文主要介绍蜂窝移动通信网及其相关问题1.蜂窝移动通信系统基本概述蜂窝系统也叫“小区制”系统。

是将所有要覆盖的地区划分为若干个小区,每个小区的半径可视用户的分布密度在1~10km左右。

在每个小区设立一个基站为本小区范围内的用户服务。

并可通过小区分裂进一步提高系统容量。

这种系统由移动业务交换中心(MSC)、基站(BS)设备及移动台(MS)(用户设备)以及交换中心至基站的传输线组成。

目前在我国运行的900MHz第一代移动通信系统(TACS)模拟系统和第二代移动通信系统(GSM)数字系统都属于这一类。

就是说移动台的移动交换中心与公共的电话交换网(就是我们平时所说的电话网PSTN)之间相连,移动交换中心负责连接基站之间的通信,通话过程中,移动台(比如手机)与所属基站建立联系,由基站再与移动交换中心连接,最后接入到公共电话网。

通过把地理区域分成一个个称为小区的部分,蜂窝系统就可以在这个区域内提供无线覆盖。

蜂窝无线系统指的是在地理上的服务区域内,移动用户和基站的全体,而不是将一个用户连到一个基站的单个链路。

1当把频谱分为很多信道,每个小区分配一组信道。

从基站到移动台方向称为前向信道,反之为反向信道。

前向和反向信道共同组成了双工蜂窝信道。

西电通原大作业

西电通原大作业

通信原理大作业班级:021014组员:报告人:指导老师:武斌题目:2ASK信号传输仿真一题目2ASK信号传输仿真:按照2ASK产生模型和解调模型分别产生2ASK信号和高斯白噪声,经过信道传输后进行解调。

对调制解调过程中的波形进行时域和频域观察,并且对解调结果进行误码率测量。

2ASK信号的解调可以选用包络解调或者相干解调法。

二2ASK简介振幅键控:利用载波的幅度变化来传递数字信号,与频率和初始相位无关。

如图:2ASK产生方法:模拟调制法(用乘法器实现)键控法(用二选一选择器控制开关通断)模拟相乘法数字键控法2ASK解调方法:非相干解调(包络检波法)即整流-低通方式相干解调(同步检波法)即相乘-低通非相干解调方式相干解调方式2ASK功率谱密度特点:由连续谱和离散谱两部分组成信号带宽是基带脉冲波形带宽的2倍三仿真过程及结果(演示)名词解释:AWGN(Additive White Ganssian Noise),加性高斯白噪声,均值为零,方差为噪声功率。

SER(Symbol Error Rate),误符号率、误码率。

即错误码元数/传输总码元数BER( Bit Error Rate),误比特率,即错误比特数/传输总比特数在二进制中,两者相等。

NRZ信号的产生:载波信号:2ASK信号:叠加了加性高斯白噪声的2ASK信号在AWGN信道下,误比特率(BER)与误码率(SER)与信噪比Es/N0的关系,以4-ASK为例:在信噪比EsN0=15dB,调制前与解调后的二进制码元的比较以4-ASK为例:错误码元个数为50个左右。

若以8-ASK方式,错误码元个数为50000左右,基本错了一半。

小结:对于M-ASK方式,M越大,抗噪声能力越弱。

四问题与不足1 没有进行频域分析。

2 没有用Simulink来建模仿真。

五程序附录clcclear allclose all%单极性非归零信号的产生N=20;M=2;x=randint(1,N,M); %产生随机二进制代码gridd=300;t=0:1/gridd:length(x)-1/gridd;for i=1:length(x);if(x(i)==1)for j=1:griddy((i-1)*gridd+j)=1;endelsefor j=1:griddy((i-1)*gridd+j)=0;endendendfigure(1)subplot(2,2,1);plot(t,y);grid on,xlabel('t'),title('NRZ信号波形')axis([0,i,min(y)-0.1,max(y)+0.1]);%2ASK信号的产生carr=sin(2*pi*t);subplot(2,2,2);plot(t,carr);grid on,xlabel('t'),title('载波信号波形')axis([0,i,min(carr)-0.1,max(carr)+0.1]);ask=y.*carr;subplot(2,2,3);plot(t,ask);grid on,xlabel('t'),title('2ASK信号波形')axis([0,i,min(ask)-0.1,max(ask)+0.1]);%高斯白噪声与信号的叠加pask=norm(ask).^2/length(t);snr=20;pn=pask./(10.^(snr./10));n=sqrt(pn)*randn(1,length(t));reask=ask+n;figure(2)subplot(2,1,1);plot(t,ask);grid on,xlabel('t'),title('2ASK信号的波形')axis([0,i,min(ask)-0.1,max(ask)+0.1]);subplot(2,1,2);plot(t,reask);grid on,xlabel('t'),title('叠加了高斯白噪声的ASK信号的波形 ') axis([0,i,min(reask)-0.1,max(reask)+0.1]);%误码率与误比特率与信噪比的关系nsymbol=100000; %每种信噪比下的发送符号数T=1; %符号周期fs=100; %每个符号的采样点数ts=1/fs; %采样时间间隔t=0:ts:T-ts; %时间矢量fc=10; %载波频率c=sqrt(2/T)*cos(2*pi*fc*t); %载波信号M=4; %MASK信号graycode=[0 1 3 2]; %Gray编码规则EsN0=0:15; %信噪比Es/N0,dBsnr1=10.^(EsN0/10); %信噪比的线性值msg=randint(1,nsymbol,M); %消息的M进制数msg1=graycode(msg+1); %Gray编码映射msgmod=pammod(msg1,M).'; %MASK调制tx=msgmod*c;tx1=reshape(tx.',1,length(msgmod)*length(c));spow=norm(tx1).^2/nsymbol; %每个符号的平均功率for indx=1:length(EsN0)sigma=sqrt(spow/(2*snr1(indx))); %噪声功率rx=tx1+sigma*randn(1,length(tx1)); %加入高斯白噪声rx1=reshape(rx,length(c),length(msgmod));y=(c*rx1)/length(c); %相关运算y1=pamdemod(y,M); %MASK调制decmsg=graycode(y1+1); %Gray码逆映射[err,ser(indx)]=symerr(msg,decmsg); %误符号率[err,ber(indx)]=biterr(msg,decmsg,log2(M)); %误比特率endfigure(3)semilogy(EsN0,ber,'-ko',EsN0,ser,'-k*',EsN0,1.5*qfunc(sqr t(0.4*snr1))); % qfunc为Marcum Q函数axis([0,indx,10^-4,1]);title('MASK载波调制信号在AWGN信道下的性能 ')xlabel('Es/N0');ylabel('误比特率和误符号率')legend('误比特率','误符号率','理论误符号率')%信噪比EsN0为15%调制前与调制后的二进制码元比较figure(4)stem(msg,'b*')hold onstem(decmsg,'ro')legend('调制前','调制后')grid on xlabel('t'),title('调制前与调制后的二进制码元比较') axis([0 50 -1 3])SERN=sum((msg-decmsg)~=0) %错误码元个数。

西电电院电磁兼容原理大作业

西电电院电磁兼容原理大作业

电磁兼容原理与技术大作业班级:021215学号:0212软件抗干扰技术之单片机软件抗干扰技术随着单片机应用的普及,采用单片机控制的产品与设备日益增多,而某些设备所在的工作环境往往比较恶劣,干扰严重,这些干扰会严重影响设备的正常工作,使其不能正常运行。

因此,为了保证设备能在实际应用中可靠地工作,必须要周密考虑和解决抗干扰的问题。

本文对单片机应用中的软件抗干扰技术作详细介绍,文中所用单片机为MCS51。

一、数字量输入输出中的软件抗干扰数字量输入过程中的干扰,其作用时间较短,因此在采集数字信号时,可多次重复采集,直到若干次采样结果一致时才认为其有效。

例如通过A 价转换器测量各种模拟量时,如果有干扰作用于模拟信号上,就会使A/D 转换结果偏离真实值。

这时如果只采样一次A/D 转换结果,就无法知道其是否真实可靠,而必须进行多次采样,得到一个A/D 转换结果的数据系列,对这一系列数据再作各种数字滤波处理,最后才能得到一个可信度较高的结果值。

本书第八章将给出各种具体的数字滤波算法及程序。

如果对于同一个数据点经多次采样后得到的信号值变化不定,说明此时的干扰特别严重,已经超出允许的范围,应该立即停止采样并给出报警信号。

如果数字信号属于开关量信号,如限位开关、操作按扭等,则不能用多次采样取平均值的方法,而必须每次采样结果绝对一致才行。

这时可编写一个采样子程序,程序中设置有采样成功和采样失败标志,如果对同一开关量信号进行若干次采样,其采样结果完全一致,则成功标志置位;否则失败标志置位。

后续程序可通过判别这些标志来决定程序的流向。

单片机控制的设备对外输出的控制信号很多是以数字量的形式出现的,如各种显示器、步进电机或电磁阀的驱动信号等。

即使是以模拟量输出,也是经过D/A 转换而获得的。

单片机给出一个正确的数据后,由于外部干扰的作用有可能使输出装置得到一个被改变了的错误数据,从而使输出装置发生误动作。

对于数字量输出软件抗干扰最有效的方法是重复输出同一个数据,重复周期应尽量短。

通信原理大作业(1)

通信原理大作业(1)

16-QAM 基带传输系统 1. 引言随着通信业迅速的发展,传统通信系统的容量已经越来越不能满足当前用户的要求,而可用频谱资源有限,业不能靠无限增加频道数目来解决系统容量问题。

另外,人们亦不能满足通信单一的语音服务,希望能利用移动电话进行图像等多媒体信息的通信。

但由于图像通信比电话需要更大的信道容量。

高效、可靠的数字传输系统对于数字图像通信系统的实现很重要,正交幅度调制QAM 是数字通信中一种经常利用的数字调制技术,尤其是多进制QAM 具有很高的频带利用率,在通信业务日益增多使得频带利用率成为主要矛盾的情况下,正交幅度调制方式是一种比较好的选择。

为了加深对QAM 调制解调数字传输系统的理解,本实验对整个16-QAM 基带传输系统的仿真,结构框图如图1所示:2. QAM 调制解调原理2.1 QAM 调制正交幅度调制QAM 是数字通信中一种经常利用的数字调制技术,尤其是多进制QAM 具有很高的频带利用率,在通信业务日益增多使得频带利用率成为主要矛盾的情况下,正交幅度调制方式是一种比较好的选择。

正交幅度调制(QAM )信号采用了两个正交载波tf t f c c ππ2sin 2cos 和,每一个载波都被一个独立的信息比特序列所调制。

发送信号波形如图2.1.1所示,2sin )(2cos )()(t f t g A t f t g A t u c T ms c T mc m ππ+=M m ,...,2,1=图2.1.1 M=16QAM 信号星座图式中{mc A }和{ms A }是电平集合,这些电平是通过将k 比特序列映射为信号振幅而获得的。

例如一个16位正交幅度调制信号的星座图如下图所示,该星座是通过用M =4PAM 信号对每个正交载波进行振幅调制得到的。

利用PAM 分别调制两个正交载波可得到矩形信号星座。

QAM 可以看成是振幅调制和相位调制的结合。

因此发送的QAM 信号波形可表示为),2cos()()(n c T m mn t f t g A t u θπ+= ,,....,2,11M m = ,,....,2,12Mn = 如果,211kM =,222k M=那么QAM 方法就可以达到以符号速率)(21k k R B +同时发送2221log M M k k =+个二进制数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通信原理大作业班级:学号:姓名:一、大作业第一题移动通信中纠错编码技术的应用和发展摘要:移动通信系统采取了多种行之有效的关键技术来提高系统抗衰落和干扰的能力,纠错编码即是其中一种。

本文主要介绍了在几代移动通信系统中所使用的不同的纠错编码,旨在阐明纠错编码技术的基本原理及其重要作用。

一、引言移动通信的发展日新月异,从1978年第一代模拟蜂窝通信系统诞生至今,不过20多年的时间,就已经过三代的演变,成为拥有10亿多用户的全球电信业最活跃、最具发展潜力的业务。

尤其是进几年来,随着第三代移动通信系统(3G)的渐行渐近,以及各国政府、运营商和制造商等各方面为之而投入的大量人力物力,移动通信又一次地在电信业乃至全社会掀起了滚滚热潮。

虽然目前由于全球电信业的低迷以及3G系统自身存在的一些问题尚未完全解决等因素, 3G业务的全面推行并不象计划中的顺利,但新一代移动通信网的到来必是大势所趋。

因此,人们对新的移动通信技术的研究的热情始终未减。

移动通信的强大魅力之所在就是它能为人们提供了固话所不及的灵活、机动、高效的通信方式,非常适合信息社会发展的需要。

但同时,这也使移动通信系统的研究、开发和实现比有线通信系统更复杂、更困难。

实际上,移动无线信道是通信中最恶劣、最难预测的通信信道之一。

由于无线电波传输不仅会随着传播距离的增加而造成能量损耗,并且会因为多径效应、多普勒频移和阴影效应等的影响而使信号快速衰落,码间干扰和信号失真严重,从而极大地影响了通信质量。

为了解决这些问题,人们不断地研究和寻找多种先进的通信技术以提高移动通信的性能。

特别是数字移动通信系统出现后,促进了各种数字信号处理技术如多址技术、调制技术、纠错编码、分集技术、智能天线、软件无线电等的发展。

本文将主要关注在几代移动通信系统中所使用的不同的纠错编码技术,以展示纠错编码在现代数字通信中的重要作用。

二、纠错编码基础知识1948年,香农(Shannon)在他那篇著名的论文《通信的数学理论》中提出并证明了:对于一个信道容量为C的有扰信道,消息源产生信息的速率为R,只要R≤C,则总可以找到一种信道编码和译码方式使编码错误概率P随着码长n的增加,按指数下降到任意小的值,表示为,这里E( R )称为误差指数;若R>C,则不存在编译码方式来实现无误传输。

这一结论为信道编码指出了方向,但它仅是一个存在性定理,并未给出怎样去寻找这种性能优良的码。

近50年来,在信息技术发展和实际需要的不断推动下,人们一直在寻求实现复杂度合理的更优秀的编译码方法,去逼近Shannon理论的理想界限。

令人鼓舞的是,在这个过程中,已经取得了许多伟大的进展,从早期的分组码、代数码,到RS码,到后来的卷积码,以及今天的Turbo ,LDPC码,所能达到的性能和Shannon限间的距离被不断缩小。

这些方法也已经投入到多个领域的商用中,如卫星通信和深空通信,数据存储,数据传输,移动通信,数字音频和视频传输等。

下面,我们将着重关注移动通信系统,特别是数字移动通信系统中,纠错编码技术的应用情况。

三、移动通信中纠错编码的应用和发展如前所述,移动信道的恶劣性使接收信号展现出非常差的错误率(5-10%),迫使译码器在非常低的信噪比下工作。

另一方面,“频带”是移动通信系统宝贵而紧张的资源,尤其是在用户密集的闹市区和室内通信系统里。

为此,对编译码器的设计就提出了较高要求,驱使译码要充分用到所有已知的信号特点,如信道状态信息、级联、交织和软判决等;而且,会占用带宽的信息“冗余”必须谨慎使用。

但同时,数字电路技术的快速发展也提高了复杂度较高的纠错编码的可行性。

1.模拟移动通信系统中数字信令的BCH编码模拟蜂窝系统中,业务信道主要是传输模拟FM电话以及少量模拟信令,因此未应用数字处理技术。

而控制信道均传输数字信令,并进行了数字调制和纠错编码。

以英国系统为例,采用FSK调制,传输速率为8kb/s。

基站采用的是BCH (40,28)编码,汉明距离d =5, 具有纠正2位随机错码的能力。

之后重发5次,以提高抗衰落、抗干扰能力;移动台采用了BCH(48,36)进行纠错编码,汉明距离d =5,可纠正2个随机差错或纠正1个及检测2个差错,然后也是重复5次发送。

上述纠错编码是提高数字信令传输可靠性必需的,也是行之有效的。

2. GSM的FEC编码GSM系统仍是目前使用最广泛的移动通信系统,也是纠错编码最重要的应用之一。

GSM标准的语音和数据业务使用多种FEC编码,包括BCH编码,FIRE码,CRC码(错误检测,码同步和接入,数据信道)。

这些码都作为级联码的外码,我们这里主要侧重于级联码的内码方案,最初用于全速率语音业务信道。

语音编码后的13kb/s信息,一个时隙20ms包括260bit,分成三个敏感类:78bit对错误不敏感类不加编码保护;50bit特别敏感类加3bit奇偶校验,4bit格图终结尾比特,与其余的132bit,一共189bit用(2,1,5)的非系统卷积码进行编码。

所以一共有378bit,加上未编码78bit,一共456bit,每20ms,总的速率为22.8。

再加上相邻另外1个语音编码块的456bit一起,每组各占57bit*2进行(8*114)交织,分布到TDMA的8个突发中,在移动信道中使用GMSK调制。

这些突发里还包括2bit业务/控制标识比特 , 6bit尾比特,8.25bit保护比特,还有26bit 训练序列,提供给接收端的使用Viterbi算法的MMSE均衡器输出每块456软或硬判决值。

如果按GSM标准规定使用了跳频,那么我们可合理将信道视为统计独立的Rayleigh信道。

这种情况下,如果使用CSI和软值,r=1/2的编码可得到3.1dB 的增益。

3.窄带CDMA系统(IS-95)中的FEC编码CDMA系统是个自干扰的系统,因此FEC编码在对抗多用户干扰(MUI)和多径衰落非常重要。

CDMA(IS-95)系统的纠错编码是分别按反向链路和前向链路来进行设计的,主要包括卷积编码、交织、CRC校验等。

现分述如下:前向链路中除导频信道外,同步信道、寻呼信道和前向业务信道中的信息在传输前都要先进行(2,1,9)的卷积编码,卷积码的生成函数为go=(111101011)和g1=(101110001);接着,同步信道的符号流要经过1次重发,然后进行16*8的块交织;业务和寻呼信道的速率为4.8kbps/2.4kbps/1.2kbps符号流,分别进行1/3/7次重发(9.6kbps数据流不必重发),然后再进行24*16的块交织。

反向链路包括业务信道和接入信道,考虑到移动台的信号传播环境,增加编码长度,对信息进行(3,1,9)的卷积码。

其生成函数为:g0=(101101111),g1=(110110011)和g2=(111001001)。

然后,接入信道经过一次重发后,进行32*18交织;反向业务信道以同前向一样的方式进行重发,再进行32*18的交织。

如果整体考虑纠错编码和扩频调制,则可把扩频看作内码,而信道编码视作外码。

以后向链路为例,编码交织后是64阶正交Walsh函数扩频,然后是被周期为2 -1的长码直接序列扩频。

接收端经相干或不相干Rake接受机进行分集接收后,系统码字(信息比特)就可以用相关的最大值或相关矢量的最大值表示。

接着送到解交织器和外部SOVA Viterbi译码器。

4.3G中的Turbo码3G与2G最重要的不同是要提供更高速率、更多形式的数据业务,所以对其中的纠错编码体制提出了更高的要求(数据业务的差错率要小于10 )。

语音和短消息等业务仍然采用与GSM 和CDMA相似的卷积码,而对数据业务3GPP协议中已经确定Turbo码为其纠错编码方案。

Turbo码又叫并行级联卷积码,由Berrou,Glavieux 和Thtimajshima 1993年首次提出。

Turbo码编码器通过交织器把两个递归系统卷积码并行级联,译码器在两个分量码译码器之间进行迭代译码,译码之间传递去掉正反馈的外信息,整个译码过程类似涡轮(turbo)工作,所以又形象的称为Turbo码。

编码器的输出端包括信息位和两个校验位,这样代表编码速率1/3。

轮流删除两个校验位就可以得到码率是1/2的码。

用不同的校验位生成器或者不同的删除方式就可以得到各种不同速率的Turbo码。

伪随机交织器对信息系列进入第二个校验位生成器之前进行了重排列。

迭代译码是Turbo码性能优异的一个关键因素,如上图所示,DEC1和DEC2分量译码器分别采用MAP或者SOVA算法。

MAP(最大后验概率)算法比Viterbi算法在复杂度上多3倍,对于传统卷积码只有0.5dB 的增益,但是在Turbo码译码器中,它对每一比特给出了最大的MAP估计,这一点在低SNR情况下的迭代译码是至关重要的因素。

一般在应用中,都采用对数化的MAP算法,即LOG-MAP算法,将大部分的乘法运算转化为加法运算,既减小了运算复杂度,又便于硬件实现。

参考文献:姚力,杨平,王力民;无线数传中纠错编码的实现[J];实用测试技术;2012年06期。

贺玉成,杨莉,王新梅;纠错码性能仿真中的误码率估计[J];通信学报;2001年09期。

二、大作业第二题:HDB3码的matlab实现Matlab 代码如下:function y=hdb3(x)n=length(x);last_V=-1;last_one=-1;y=zeros(size(x));count=0;for i=1:nif x(i)==1y(i)=-last_one;last_one=y(i);count=0;elsecount=count+1;if count==4count=0;y(i)=-last_V;last_V=y(i);if y(i)*last_one==-1y(i-3)=y(i);endlast_one=y(i);endendendfigure(1);subplot(2,1,1);a=x;i=0:n-1;stairs(i,a);axis([0,n,0,2]);title('原码型');xlabel('x');ylabel('y');grid onsubplot(2,1,2);a=y;i=0:n-1;stairs(i,a);axis([0,n,-2,2]);title('HDB3码型')xlabel('x');ylabel('y');grid onclcclear all;close all;s=[1,1,0,1,0,0,1,0,0,0,0,0,0,1,1,1];g=hdb3(s)运行结果如下:g =Columns 1 through 131 -1 0 1 0 0 -1 1 0 0 1 0 0Columns 14 through 16-1 1 -1。

相关文档
最新文档