航空发动机控制基础精品PPT课件
合集下载
航空发动机控制基础ppt课件

反馈是将输出返回到输入量的入口
结构简图
f 放大元件
执行元件
供油元件
发动机
Hale Waihona Puke pmwfn
敏感元件
y
闭环控制:
控制比较精确,在现代飞机上被广泛使 用
反应不够及时,被控参数发生偏离,才 开始动作,干扰量连续变化,系统工作不稳 定
偏离原理控制
开环控制:
开环系统是一种最简单的控制方式,特点 是在控制器和被控对象之间只有正向作用, 而没有反馈,即系统的输出量对控制量没有 影响。
航空发动机对控制装置的基本要求
➢可更改性好,满足先进发动机对控制不 断增加的要求
航空发动机对控制装置的基本要求
➢ 结构简单、重量轻、体积小、安装方便
第二章 民航发动机的控制
内容
➢自动控制的基本概念 ➢民航发动机控制的内容
自动控制的基本概念
被控对象:发动机 控制装置:转速控制器(虚线内部分) 控制系统:被控对象+控制装置 被控参数:转速 可控变量:用来改变被控参数大小的因素 干扰作用量:作用在被控对象/控制装置上,
航空发动机对控制装置的基本要求
➢ 良好的动态品质 控制的动态过程要有较好的快速性,而且
过程要平稳
航空发动机对控制装置的基本要求
➢ 可靠性高,维护性好 采用分布式结构降低控制系统的复杂性 将控制器安装在远离发动机的区域 采用砷化镓和碳化硅制造电子元器件 提高系统的耐高温、抗振动和抗电磁干扰的能 力
内容
➢齿轮泵的工作原理 ➢油泵供油量的调节特性
供油元件:燃油泵
❖油泵:是一种将机械能转化为液压能的机械。
❖ 根据用途分类: 燃油泵 特殊需要的
力油
能够引起被控参数变化的外部作用量 给定值:驾驶员的指令值
航空发动机基本原理PPT课件

第50页/共82页
第51页/共82页
第52页/共82页
第53页/共82页
第54页/共82页
第55页/共82页
第56页/共82页
第57页/共82页
带有外涵道的桨扇发动机
第58页/共82页
第59页/共82页
新型的HK-93涵道浆扇发动机(俄罗斯)
优点:涵道比大,省油; 增加10%推力; 减少噪音。 缺点:造价提高。
第60页/共82页
第61页/共82页
第62页/共82页
第63页/共82页
9.真空能发动机
现代物理学认为:真空不是一无所有,“真空 是物质的凝聚态”(李政道语),真空是能量海,蕴藏 着极大的能量。有人说1立方厘米真空里面含有 1095克的能量,通过质能互换定理(E=mc2),可以 把真空中的能量看成无穷大。
第40页/共82页
第41页/共82页
第42页/共82页
6.涡轮轴发动机(功率大,直升机用)
动力输出
高压压气机
回流燃烧系统
低压压气机
普通涡轮
自由动力涡轮
进气道 双轴涡轮轴发动机(带自由动力涡轮的)
燃烧室
第43页/共82页
第44页/共82页
第45页/共82页
7.涡轮螺旋桨发动机(噪音小,寿命长,中低速飞机用)
小平同志亲自批示,太行发动机正式立项。 2009年,吴大观在北京去世。
第35页/共82页
5.涡轮风扇发动机(油耗低,难度高,大型民用客机用)
靠涡轮驱动
冷却引擎,降 低引擎噪音
靠涡轮驱动
中心轴
第36页/共82页
非加力式涡扇发动机
第37页/共82页
第38页/共82页
加力式涡扇发动机
第51页/共82页
第52页/共82页
第53页/共82页
第54页/共82页
第55页/共82页
第56页/共82页
第57页/共82页
带有外涵道的桨扇发动机
第58页/共82页
第59页/共82页
新型的HK-93涵道浆扇发动机(俄罗斯)
优点:涵道比大,省油; 增加10%推力; 减少噪音。 缺点:造价提高。
第60页/共82页
第61页/共82页
第62页/共82页
第63页/共82页
9.真空能发动机
现代物理学认为:真空不是一无所有,“真空 是物质的凝聚态”(李政道语),真空是能量海,蕴藏 着极大的能量。有人说1立方厘米真空里面含有 1095克的能量,通过质能互换定理(E=mc2),可以 把真空中的能量看成无穷大。
第40页/共82页
第41页/共82页
第42页/共82页
6.涡轮轴发动机(功率大,直升机用)
动力输出
高压压气机
回流燃烧系统
低压压气机
普通涡轮
自由动力涡轮
进气道 双轴涡轮轴发动机(带自由动力涡轮的)
燃烧室
第43页/共82页
第44页/共82页
第45页/共82页
7.涡轮螺旋桨发动机(噪音小,寿命长,中低速飞机用)
小平同志亲自批示,太行发动机正式立项。 2009年,吴大观在北京去世。
第35页/共82页
5.涡轮风扇发动机(油耗低,难度高,大型民用客机用)
靠涡轮驱动
冷却引擎,降 低引擎噪音
靠涡轮驱动
中心轴
第36页/共82页
非加力式涡扇发动机
第37页/共82页
第38页/共82页
加力式涡扇发动机
航空发动机状态控制系统课件

系统发展历程与趋势
发展历程
航空发动机状态控制系统经历了从机械液压式到全权限数字电子控制(FADEC )的发展过程,技术不断升级换代。
趋势
未来发展方向包括更加智能化的控制算法、更加精确的传感器技术以及更加可 靠的网络通信技术等。
02 航空发动机状态检测技术
传感器技术
01
02
03
传感器类型
温度、压力、振动、位移 等传感器用于监测航空发 动机的工作状态。
自适应鲁棒控制
自适应鲁棒控制是一种结合了自适应控制和鲁棒控制的算法,它 能够根据系统的不确定性和扰动情况,自动调整控制器参数,以
保证系统的稳定性和性能。
04 航空发动机状态控制系统设计
系统架构设计
系统架构概述
01
介绍航空发动机状态控制系统的整体架构,包括各组成部分及
其功能。
分层架构设计
02
详细描述系统架构中的各层,包括感知层、控制层、执行层等
航空发动机状态控制系 统课件
目录
Contents
• 航空发动机状态控制系统概述 • 航空发动机状态检测技术 • 航空发动机状态控制算法 • 航空发动机状态控制系统设计 • 航空发动机状态控制系统实现与验
证 • 航空发动机状态控制系统案例分析
01 航空发动机状态控制系统概述
系统定义与功能
定义
航空发动机状态控制系统是用于监测 、控制和优化航空发动机性能的一套 综合系统。
功能
实时监测发动机状态参数,如温度、 压力、转速等;控制燃油流量、点火 时刻等关键参数;对发动机性能进行 优化,确保安全、高效运行。
系统重要性及应用领域
重要性
航空发动机状态控制系统是保障 飞行安全和提高飞行效率的关键 技术之一。
航空发动机控制系统

第11页/共39页
• 如何通过调节油门给定转速 • 当推油门时,则通过传动臂,齿轮,齿套等来改变调准弹簧力转速给定值改 变 • 控制器相应地调节供油量,将转速调到给定值 • 具体工作原理 • 思考
第12页/共39页
• 闭环控制的优缺点 • 控制器感受的不是外界的干扰量,而是直接感受发动机(被控对象)的被控 参数(转速) • 当被控参数有了偏离后,才被控制器感受,再进行控制,使被控参数重新恢 复到给定值 • 由于它是按被控参数的偏离信号而工作的,故称闭环控制的工作原理为偏离 原理。 • 它的优点是控制比较准确,但控制不及时,滞后
第18页/共39页
• 8.2 液压机械式发动机控制系统 • 发动机控制系统分类 • 液压机械式 • 监控型电子式 • 全功能数字电子式 • 液压机械式及气动机械式燃油控制器 • 目前为止民用航空发动机上使用最多的控制器 • 它有良好的使用经验和较高的可靠性 • 它除控制供往燃烧室的燃油外,还操纵控制发动机可变几何形状,例如 可调静子叶片、放气活门、放气带等,保证发动机工作稳定和提高发动 机性能
第13页/共39页
• 开环控制 • 控制器与发动机的关系以及信号传递的关系形成一个开路,故称为开环控制 系统 • 被控对象的输出量是发动机的转速n,控制器的输入量是干扰量f; 而控 制器的输出量是qmf
第14页/共39页
• 敏感元件(膜盒) • 感受进气总压; 进气总压是飞行高度和飞行马赫数的函数;
第24页/共39页
• (1)容积式泵
• 容积式泵是依靠泵的抽吸元件作相对运动,交替改变元 件间的自由容积进行吸油、排油的
• 供油量取决于元件一次循环运动中自由容积变化的大小。 在一定的供油量下,泵根据出口处的液体流动阻力来建 立压力。这类泵在航空发动机上应用最广,如:柱塞泵、 齿轮泵、旋板泵(叶片泵)
• 如何通过调节油门给定转速 • 当推油门时,则通过传动臂,齿轮,齿套等来改变调准弹簧力转速给定值改 变 • 控制器相应地调节供油量,将转速调到给定值 • 具体工作原理 • 思考
第12页/共39页
• 闭环控制的优缺点 • 控制器感受的不是外界的干扰量,而是直接感受发动机(被控对象)的被控 参数(转速) • 当被控参数有了偏离后,才被控制器感受,再进行控制,使被控参数重新恢 复到给定值 • 由于它是按被控参数的偏离信号而工作的,故称闭环控制的工作原理为偏离 原理。 • 它的优点是控制比较准确,但控制不及时,滞后
第18页/共39页
• 8.2 液压机械式发动机控制系统 • 发动机控制系统分类 • 液压机械式 • 监控型电子式 • 全功能数字电子式 • 液压机械式及气动机械式燃油控制器 • 目前为止民用航空发动机上使用最多的控制器 • 它有良好的使用经验和较高的可靠性 • 它除控制供往燃烧室的燃油外,还操纵控制发动机可变几何形状,例如 可调静子叶片、放气活门、放气带等,保证发动机工作稳定和提高发动 机性能
第13页/共39页
• 开环控制 • 控制器与发动机的关系以及信号传递的关系形成一个开路,故称为开环控制 系统 • 被控对象的输出量是发动机的转速n,控制器的输入量是干扰量f; 而控 制器的输出量是qmf
第14页/共39页
• 敏感元件(膜盒) • 感受进气总压; 进气总压是飞行高度和飞行马赫数的函数;
第24页/共39页
• (1)容积式泵
• 容积式泵是依靠泵的抽吸元件作相对运动,交替改变元 件间的自由容积进行吸油、排油的
• 供油量取决于元件一次循环运动中自由容积变化的大小。 在一定的供油量下,泵根据出口处的液体流动阻力来建 立压力。这类泵在航空发动机上应用最广,如:柱塞泵、 齿轮泵、旋板泵(叶片泵)
《航空发动机结构》PPT课件

2020/12/31
h
18
燃气涡轮发动机的基本机理---喷气推进原理: 喷气推进是牛顿第三定律(作用在物体上的每一
2020/12/31
h
12
4、WZ发动机
主要部件:进气道、压气机、燃烧室、动力涡 轮、自由涡轮、尾喷管
特点:通常带有自由涡轮,而其他形式的涡轮 喷气发动机一般没有自由涡轮。
2020/12/31
h
13
5 桨扇发动机
螺桨风扇发动机是一种介于涡扇发动机和涡桨 发动机之间的一种发动机形式。它既可看作带除去 外涵道的大涵道比涡扇发动机,又可看作高速先进 螺桨的涡桨发动机,因而兼有前者飞行速度高和后 者耗油率低的优点。目前正处于研究和实验阶段。
航空发动机结构分析
1. 目录
2. 绪论 3. 压气机 4. 涡轮 5. 燃烧室 6. 尾喷管 7. 总体结构 8. 受力分析
2020/12/31
h
西北工业大学装置。自从人类尝试进行
有翼飞行器飞行以来,经历了无数次失败,只是在使 用了活塞式内燃机以后,才在20世纪初把第一架飞机 送上蓝天。
• 对单转子发动机来讲,就是指压气机、主燃烧 室的带动压气机的涡轮;
• 对双转子发动机来讲,就是指高压压气机、主 燃烧室和高压涡轮。
以核心机为基础,增添不同类型的部件 就可以发展成不同类型的发动机。
2020/12/31
h
17
燃气涡轮发动机的主要性能参数 推力 单位推力 推重比 单位迎面推力 单位燃油消耗率 增压比涡轮前燃气温度涵道比
桨扇发动机的概念研 究始于70年代中期。80年 代后半期已完成地面和飞 行验证试验,基本达到预 期目标。由于航空公司的 综合经济因素和公众接受 心理等种种原因,桨扇发 动机尚未进入实用阶段。
《航空发动机原理》课件

润滑系统故障
润滑油压力低、油温过高或过低、漏油等。
冷却系统问题
冷却水流量不足、水温过高、散热器堵塞等 。
故障诊断方法
振动分析
通过测量和分析发动机的振动 信号,判断是否存在异常。
性能参数监测
定期检查发动机的性能参数, 如功率、油耗、排气温度等, 以便及时发现异常。
油液分析
通过对润滑油和冷却水的成分 和状态进行检测,判断是否存 在故障。
指航空发动机将吸入的空气进行压缩的过 程。
压缩方式
航空发动机的压缩方式主要有两种,即等 熵压缩和等压压缩。不同的压缩方式会对
发动机的性能和效率产生影响。
压缩比
压缩比是指航空发动机压缩后的空气压力 与压缩前的空气压力的比值。压缩比的大 小会影响发动机的性能和效率。
压缩热
在空气被压缩的过程中,会产生大量的热 量,这些热量需要得到及时的散发和冷却 ,否则会影响发动机的性能和寿命。
随着环保意识的日益增强,航空发动机 的绿色环保发展趋势愈发重要。
VS
详细描述
为了降低航空发动机对环境的影响,未来 的发展将更加注重节能减排、降低噪音和 减少废弃物等方面。新型燃烧室设计、排 放控制技术和先进冷却技术等将有助于实 现这一目标。同时,生物燃料和电力驱动 等替代能源的研究和应用也将为航空发动 机的绿色发展提供更多可能性。
预防性维护
根据实际情况制定合理的维护计划,确保发 动机始终处于良好状态。
05
CATALOGUE
航空发动机的发展趋势与未来展望
高性能与高效率的发展趋势
总结词
随着科技的不断进步,航空发动机的高性能与高效率发展趋 势日益明显。
详细描述
为了满足现代航空工业对飞行器性能的更高要求,航空发动 机在设计和制造过程中不断追求更高的推力、更轻的重量、 更低的油耗和更高的可靠性。
航空发动机PPT课件

星形发动机
直立式发动机
V形发动机
2020/2/19
活塞式航空发动6 机
航空航天概论
第3章 飞行器动力系统
活塞8发动机 双排14缸星形气冷发动机
2020/2/19
7
航空航天概论
第3章 飞行器动力系统
3.2.4 航空活塞式发动机主要性能指标
发动机功率——
发动机可用与驱动螺旋桨的功率称为有效功率(kW)
航空航天概论
第3章 飞行器动力系统
2020/2/19
1
3.1 发动机的分类及特点
冲压 喷气发 燃动气机
涡轮喷气发动机 涡轮风扇发动机 涡轮螺桨发动机
活塞式
涡轮发
涡轮桨扇发动机
发动机
航发空动航机天 动机
涡轮轴发动机 垂直起落发动机
火箭
航空航天
冲压发 动机
组合
涡轮
发动机
火箭 发动机
化学 液体火箭发动机 火箭发 固体火箭发动机 动机 固-液混合火箭发动机
涡轮喷气发动机 涡轮螺桨发动机 涡轮轴发动机
涡轮风扇发动机 涡轮桨扇发动机 垂直起落发动机
2020/2/19
空气喷气发动11 机
航空航天概论
第3章 飞行器动力系统
1、涡轮喷气发动机
组成部件
进气道、压气机、燃烧室、涡轮、尾喷管
进气道系统
整理进入发动机的气流,消除旋涡,保证发动机 所需的空气量;将高速气流逐渐降下来,尽量将动能 转变为压力势能,保证压气机有良好的工作条件
2020/2/19
涡轮喷气发动机
航空航天概论
第3章 飞行器动力系统
空气喷气发动26 机
尾喷管 整流锥
支板
整理燃烧后的气流
航空发动机学 _发动机控制系统

第四章 发动机控制系统
•发动机在地面条件下工作时受到最大转速、贫油熄火、涡轮前燃气总温 的最高值及压气机喘振边界的限制,如图4-1所示。 •发动机在空中条件下工作时受到的限制有: 高空低速时受燃烧室高空熄火 的限制,这是因为高空空气稀薄,燃油雾化质量差,难以稳定燃烧。低空高 速时受压气机超压限制。
第四章 发动机控制系统
• 计量活门进、出口的压差保持不变,改变燃油的流通面积,改变 向燃烧室的供油量因为
• 式中: - qm.f燃油流量;- u流量系数;- A计量活门的面积; - p燃油密度; -△p 计量活门进、出口的压差。 • 活动套筒的位置由旋转的计量活门的操纵活门控制。 • 计算系统的功用是: 感受各种参数,在发动机所有工作阶段控制计 量部分的输出。 • 感受参数有发动机转速n,压气机出口总压P2,压气机出口总温 T2,压气机进口总温T1 ,油门杆角度等。
第四章 发动机控制系统
• 4.1.1 发动机控制系统的功用 • 发动机控制系统的功用包括下述几个方面: • 1、燃油流量控制 • 根据发动机的不同状态,将清洁的,无蒸气的,经 过增压的,计量好的燃油供给燃烧室。在控制中要求: 不能喘振;不能超温;不能超转;不能富油熄火;不 能贫油熄火。为满足上述安全限制,燃油调节器应在 这些限制之内工作。 • 控制分为: 稳态控制和过渡态控制和安全限制。 • 2、放气活门VBV和导向叶片VSV的控制。 • 3、涡轮间隙TCC的控制。
第四章 发动机控制系统
当外界条件变化引起进入发动机的空气流量增加时, 则调节过程相反。 • 当推油门时,则通过传动臂,齿轮,齿套等来改变 调准弹簧力,转速给定值改变,控制器相应地调节供 油量,将转速调到给定值。 • 控制器感受的不是外界的干扰量,而是直接感受发 动机(被控对象)的被控参数(转速)。当被控参数 有了偏离后,才被控制器感受,再进行控制,使被控 参数重新恢复到给定值。由于它是按被控参数的偏离 信号而工作的,故称闭环控制的工作原理为偏离原理。 • 它的优点是控制比较准确,但控制不及时,滞后。 •
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
涉及的内容控制理论、发动机原理、气体 动力学、工程热力学、机械、液压、电子、 计算机等各方面的知识。
9
航空发动机对控制装置的基本要求
➢保证最有效的使用发动机,最大限度地发 挥其潜力 最大状态 巡航 慢车
10
航空发动机对控制装置的基本要求
➢ 保证动力装置稳定工作,控制精度高
有极强的抗干扰能力 调节的准确度要高
Wf 燃油流量
Ae 喷管出口面积
33
控制方案(调节规律或调节计划)
根据外界干扰(飞行高度和速度的变化)和 驾驶员的指令来改变可控变量,以保证发动 机被控参数不变或者按预定的规律变化,从 而达到控制发动机推力的目的。
不带加力的单转子涡喷发动机
Wf
n
双、三转子的涡喷和涡扇发动机
Wf
nH
Wf
EPR
Wf
πc*
11
航空发动机对控制装置的基本要求
➢ 良好的动态品质
控制的动态过程要有较好的快速性,而且过 程要平稳
12
航空发动机对控制装置的基本要求
➢ 可靠性高,维护性好
采用分布式结构降低控制系统的复杂性 将控制器安装在远离发动机的区域 采用砷化镓和碳化硅制造电子元器件 提高系统的耐高温、抗振动和抗电磁干扰的能 力
38
第三章 燃油泵
内容
成熟 全权限监控——以安全为主兼顾性能和经济性
未来 全权限数字电子控制——以安全为主兼顾性能、经济性和 环保性
6
CFM56 FADEC系统的功能
7
航空动力装置控制包括: 进气道控制、发动机[核心机]控制、排气装 置控制
8
航空发动机控制基础 aircraft engine control 根据自动控制原理运用机械、液压、气压、 电气等控制装置使航空发动机自动地按预定 规律工作,以便发动机在各种飞行条件下能 安全工作并获得最佳的或接近最佳的性能。
34
过渡控制
目的:过渡过程能迅速、稳定、可靠的进行 启动控制 加速控制 减速控制 压气机防喘控制 加力接通及关闭控制等
35
压气机控制 在启动、加速和减速过程中保证压气机稳定工作,不发生 喘振
控制方案(程序控制) 1 按转速n的压气机控制。 2 按压比进行控制 3 按n2和压气机进口温度控制VBV、VSV 4 按相似转速控制 5 按照n1、n2、大气总温、进口温度、环境压力、飞行马赫数、
航空发动机控制基础
航空工程学院
1
航空发动机(燃气涡轮发动机)推力 工作原理
进气道
压气机
燃烧室
涡轮
喷管
飞机在不同的飞行阶段,需要不同的推力 起飞、爬升、巡航、下降、进近、着陆、复飞 此外,飞行条件也在不断变化。
2
➢控制发动机的推力或功率输出以满足飞机的 需要。 燃油系统将清洁的、无蒸汽的、经过增压的、 计量好的燃油输送给燃烧室。 燃油量的多少要由燃油控制器给出
反馈是将输出返回到输入量的入口
结构简图
f
放大元件 p 执行元件 m 供油元件 w f 发动机
n
y
敏感元件
22
闭环控制:
控制比较精确,在现代飞机上被广泛使用 反应不够及时,被控参数发生偏离,才开 始动作,干扰量连续变化,系统工作不稳定 偏离原理控制
23
24
开环控制:
开环系统是一种最简单的控制方式,特点是 在控制器和被控对象之间只有正向作用,而 没有反馈,即系统的输出量对控制量没有影 响。
➢保证发动机的安全工作。
不熄火、不超温、不超载、不喘振、不超转 防止压气机的喘振(VBV variable bleed valve、 VSV variable stator vane) 提高发动机的性能(涡轮间隙控制TCC)
3
4
5
早期: 单变量控制——基本的安全考虑
发展: 多变量监控——以安全为主兼顾性能
能够引起被控参数变化的外部作用量 给定值:驾驶员的指令值
19
控制作用量:能改变给定值大小的作用量 调准和调准机构:改变控制作用量的过程及其
机构 过渡过程和平衡稳定过程 结构简图
r
20
21
控制系统的基本控制方式:
开环控制 闭环控制
闭环控制特点:在控制器输入量和被控对象之 间,不仅存在正向作用,而且存在反馈作用
13
航空发动机对控制装置的基本要求
➢可更改性好,满足先发动机对控制不
断增加的要求
14
航空发动机对控制装置的基本要求
➢ 结构简单、重量轻、体积小、安装方便
15
16
第二章 民航发动机的控制
内容
➢自动控制的基本概念 ➢民航发动机控制的内容
17
自动控制的基本概念
18
被控对象:发动机 控制装置:转速控制器(虚线内部分) 控制系统:被控对象+控制装置 被控参数:转速 可控变量:用来改变被控参数大小的因素 干扰作用量:作用在被控对象/控制装置上,
30
发动机控制的目的
➢稳态控制:保持既定发动机的稳定工作点 ➢过渡控制:快速而又稳定可靠 ➢极限控制:保证发动机的主要参数不超出
安全限制
31
稳态控制
➢目的:为了获得所需要的推力和功率
转速控制 压力比控制 慢车控制 反推力控制 加力控制 进气道控制
32
被控参数和可控变量
表征发动机推力的量 N1 EPR
推力杆角度等进行逻辑控制。 FADEC
36
安全限制
❖超转限制 ❖超温限制 ❖超压限制 ❖超功率限制
37
民航发动机的控制类型
❖机械液压式控制 ❖JT8D JT9D-7J PT6T
监控型电子式控制
❖JT9D-7R4 CFM56-3 RB211-535E4 全权限数字电子控制 PW4000 V2500 CFM56-5 Trent GE90
f
敏感元件
➢放大元件
p放大元件 m放大元件 wf放大元件
n
25
开环控制: 反应及时,控制系统和被控对象(发动机) 同时感受外界所有的干扰量变化,控制装置 变化与发动机变化同步,稳定性好。
控制精度差 不能感受所有的干扰量 对发动机内部的变化无法感知
26
开环与闭环控制系统的比较 闭环系统引入了反馈,精度高,可以采用成 本较低,精度不太高的元件构成精度较高的 控制系统
开环系统没有纠正偏差的能力,当受到干扰 时,会引起系统精度降低,它的精度完全取 决于系统元器件的精度和调整的准确度
27
复合控制
指令机构 敏感元件
放大元件
执行元件
供油元件
敏感元件
发动机
28
思考题
闭环控制的原理是什么
29
民航发动机控制的内容
发动机控制内容有: 燃油流量控制 空气流量控制 涡轮间隙控制 冷却控制 其它系统控制 涡桨、涡轴发动机控制 超音速民航机控制
9
航空发动机对控制装置的基本要求
➢保证最有效的使用发动机,最大限度地发 挥其潜力 最大状态 巡航 慢车
10
航空发动机对控制装置的基本要求
➢ 保证动力装置稳定工作,控制精度高
有极强的抗干扰能力 调节的准确度要高
Wf 燃油流量
Ae 喷管出口面积
33
控制方案(调节规律或调节计划)
根据外界干扰(飞行高度和速度的变化)和 驾驶员的指令来改变可控变量,以保证发动 机被控参数不变或者按预定的规律变化,从 而达到控制发动机推力的目的。
不带加力的单转子涡喷发动机
Wf
n
双、三转子的涡喷和涡扇发动机
Wf
nH
Wf
EPR
Wf
πc*
11
航空发动机对控制装置的基本要求
➢ 良好的动态品质
控制的动态过程要有较好的快速性,而且过 程要平稳
12
航空发动机对控制装置的基本要求
➢ 可靠性高,维护性好
采用分布式结构降低控制系统的复杂性 将控制器安装在远离发动机的区域 采用砷化镓和碳化硅制造电子元器件 提高系统的耐高温、抗振动和抗电磁干扰的能 力
38
第三章 燃油泵
内容
成熟 全权限监控——以安全为主兼顾性能和经济性
未来 全权限数字电子控制——以安全为主兼顾性能、经济性和 环保性
6
CFM56 FADEC系统的功能
7
航空动力装置控制包括: 进气道控制、发动机[核心机]控制、排气装 置控制
8
航空发动机控制基础 aircraft engine control 根据自动控制原理运用机械、液压、气压、 电气等控制装置使航空发动机自动地按预定 规律工作,以便发动机在各种飞行条件下能 安全工作并获得最佳的或接近最佳的性能。
34
过渡控制
目的:过渡过程能迅速、稳定、可靠的进行 启动控制 加速控制 减速控制 压气机防喘控制 加力接通及关闭控制等
35
压气机控制 在启动、加速和减速过程中保证压气机稳定工作,不发生 喘振
控制方案(程序控制) 1 按转速n的压气机控制。 2 按压比进行控制 3 按n2和压气机进口温度控制VBV、VSV 4 按相似转速控制 5 按照n1、n2、大气总温、进口温度、环境压力、飞行马赫数、
航空发动机控制基础
航空工程学院
1
航空发动机(燃气涡轮发动机)推力 工作原理
进气道
压气机
燃烧室
涡轮
喷管
飞机在不同的飞行阶段,需要不同的推力 起飞、爬升、巡航、下降、进近、着陆、复飞 此外,飞行条件也在不断变化。
2
➢控制发动机的推力或功率输出以满足飞机的 需要。 燃油系统将清洁的、无蒸汽的、经过增压的、 计量好的燃油输送给燃烧室。 燃油量的多少要由燃油控制器给出
反馈是将输出返回到输入量的入口
结构简图
f
放大元件 p 执行元件 m 供油元件 w f 发动机
n
y
敏感元件
22
闭环控制:
控制比较精确,在现代飞机上被广泛使用 反应不够及时,被控参数发生偏离,才开 始动作,干扰量连续变化,系统工作不稳定 偏离原理控制
23
24
开环控制:
开环系统是一种最简单的控制方式,特点是 在控制器和被控对象之间只有正向作用,而 没有反馈,即系统的输出量对控制量没有影 响。
➢保证发动机的安全工作。
不熄火、不超温、不超载、不喘振、不超转 防止压气机的喘振(VBV variable bleed valve、 VSV variable stator vane) 提高发动机的性能(涡轮间隙控制TCC)
3
4
5
早期: 单变量控制——基本的安全考虑
发展: 多变量监控——以安全为主兼顾性能
能够引起被控参数变化的外部作用量 给定值:驾驶员的指令值
19
控制作用量:能改变给定值大小的作用量 调准和调准机构:改变控制作用量的过程及其
机构 过渡过程和平衡稳定过程 结构简图
r
20
21
控制系统的基本控制方式:
开环控制 闭环控制
闭环控制特点:在控制器输入量和被控对象之 间,不仅存在正向作用,而且存在反馈作用
13
航空发动机对控制装置的基本要求
➢可更改性好,满足先发动机对控制不
断增加的要求
14
航空发动机对控制装置的基本要求
➢ 结构简单、重量轻、体积小、安装方便
15
16
第二章 民航发动机的控制
内容
➢自动控制的基本概念 ➢民航发动机控制的内容
17
自动控制的基本概念
18
被控对象:发动机 控制装置:转速控制器(虚线内部分) 控制系统:被控对象+控制装置 被控参数:转速 可控变量:用来改变被控参数大小的因素 干扰作用量:作用在被控对象/控制装置上,
30
发动机控制的目的
➢稳态控制:保持既定发动机的稳定工作点 ➢过渡控制:快速而又稳定可靠 ➢极限控制:保证发动机的主要参数不超出
安全限制
31
稳态控制
➢目的:为了获得所需要的推力和功率
转速控制 压力比控制 慢车控制 反推力控制 加力控制 进气道控制
32
被控参数和可控变量
表征发动机推力的量 N1 EPR
推力杆角度等进行逻辑控制。 FADEC
36
安全限制
❖超转限制 ❖超温限制 ❖超压限制 ❖超功率限制
37
民航发动机的控制类型
❖机械液压式控制 ❖JT8D JT9D-7J PT6T
监控型电子式控制
❖JT9D-7R4 CFM56-3 RB211-535E4 全权限数字电子控制 PW4000 V2500 CFM56-5 Trent GE90
f
敏感元件
➢放大元件
p放大元件 m放大元件 wf放大元件
n
25
开环控制: 反应及时,控制系统和被控对象(发动机) 同时感受外界所有的干扰量变化,控制装置 变化与发动机变化同步,稳定性好。
控制精度差 不能感受所有的干扰量 对发动机内部的变化无法感知
26
开环与闭环控制系统的比较 闭环系统引入了反馈,精度高,可以采用成 本较低,精度不太高的元件构成精度较高的 控制系统
开环系统没有纠正偏差的能力,当受到干扰 时,会引起系统精度降低,它的精度完全取 决于系统元器件的精度和调整的准确度
27
复合控制
指令机构 敏感元件
放大元件
执行元件
供油元件
敏感元件
发动机
28
思考题
闭环控制的原理是什么
29
民航发动机控制的内容
发动机控制内容有: 燃油流量控制 空气流量控制 涡轮间隙控制 冷却控制 其它系统控制 涡桨、涡轴发动机控制 超音速民航机控制