图论图的着色

合集下载

chap12 图的着色

chap12 图的着色

点着色的应用
课程安排问题 某大学数学系要为这个夏季安排课程表。所要开设 的课程为:图论(GT), 统计学(S),线性代数(LA), 高等 微积分(AC), 几何学(G)和近世代数(MA)。现有10名 学生(如下所示)需要选修这些课程。根据这些信息, 确定开设这些课程所需要的最少时间段数,使得学 生选课不会发生冲突。(学生用Ai表示)
5
K可着色的图例
v1
1
v2
G
v3 v4
v5
2 3
S
:V(G) →S,满射 是正常3着色,G是3可着色的。
6
K色图
定义12.1.2 图G的正常k着色中最小的k称为G的色
数,记为(G),即(G)=min{k|G存在正常k着色}。
若(G) =k,则称G是k色图。 显然,含环的图不存在正常着色,而多重边与一条 边对正常着色是等价的。以后总设G为简单图。 问题:已知一个图G(p,q),如何求色数(G)?
又因k>0, 所以与(G)定义矛盾。结论成立。 注意此定理与定理12.1.2的区别。 定理12.1.2 若G是一个临界图,则(G) ≤(G)+1
21
Brooks 定理
定理12.1.5 若连通图G既不是奇回路,也不是完全 图,则(G) (G) . 例如,对Petersen图应用Brooks定理,可得: (G) (G) =3 . 此定理说明只有奇回路 或完全图这两类图的色 数才是(G) +1。
第一步:建图。 把每门课程做为图G的顶点,两顶点连线当且仅当 有某个学生同时选了这两门课程。
色给同一时 段的课程顶点染色,那么,问 题转化为在状态图中求点色数 问题。
MA
S
G
AC 选课状态图
LA

四色定理-

四色定理-

四色定理四色定理是数学领域的一道经典难题,也是著名的图论问题之一。

该问题能够被描述为:如果一幅地图被分为若干个不重叠的区域,且相邻的区域颜色必须不同,那么至多需要使用四种颜色才能使所有区域都被正确着色。

简言之,该问题需要解决的就是如何用最少的颜色来着色地图,而不发生相邻区域颜色相同的情况。

四色定理的历史可以追溯到18世纪,当时的欧洲地图繁多、国界复杂,着色问题引起了人们的兴趣。

1786年,欧洲地图着色问题第一次在数学界被提出。

自那时以来,许多数学家花费了大量的时间和精力来尝试解决它。

在数学家们的长期探索中,有两种主要的方法被使用:一种是通过手工着色,即一张一张地着色来探索它的规律;另一种是通过建模并使用计算机进行仿真模拟来验证其正确性。

如今,这两种方法已经发展到了一定的成熟程度,成为了研究四色定理的多种手段。

在20世纪初期,四色定理开始受到广泛的关注。

当时的一些数学家就开始思考这个问题,并通过手工着色和自动推断发现了许多有趣的规律。

例如,发现了不同类型的地图样式可以用同样的着色方法来解决问题:方格状地图只需要四种颜色,而其他的复杂地图则需要更多的颜色。

这一发现为解决四色定理提供了重要线索。

然而,在后来的研究过程中,四色定理的复杂性逐渐表现出来。

当时,数学家们尝试使用多种方法来证明其正确性,但不论是哪种方式,都需要很高的数学造诣和极度复杂的计算,使得这个问题变得异常艰深。

在20世纪40年代,数学家们开始逐渐发展出一种全新的数学研究方法:计算机模拟。

由于计算机的出现,许多数学问题的解决变得越来越容易。

此时,数学家们尝试了用计算机模拟方法来验证四色定理,他们用计算机对地图进行极其复杂的分割,最终发现所有的复杂分割都可以用最多四种颜色来着色。

这就是四色定理的重要结论:世界上任何一张地图都可以用最多四种颜色来着色。

四色定理是数学领域的一项里程碑式的成就,它不仅是数学史上重要的一个难题,也对计算机科学和其他领域产生了深远的影响。

图的平面性与图的着色问题

图的平面性与图的着色问题

图的平面性与图的着色问题在图论中,图的平面性与图的着色问题是两个重要的研究方向。

图的平面性指的是一种特殊的图的布局方式,使得图的边不相交。

而图的着色问题是指如何给图的顶点进行染色,使得相邻的顶点颜色不相同。

本文将分别介绍图的平面性和图的着色问题,并对其进行详细讨论。

一、图的平面性(Planarity of Graphs)图的平面性是图论中一个经典的问题,研究的是如何将一个图画在平面上,使得图的边不相交。

具体而言,如果一个图可以被画在平面上,且不同边的交点只有顶点,那么我们称该图是一个平面图。

而对于不能在平面上画出来的图,则被称为非平面图。

定理1:一个图是平面图,当且仅当它不包含任何的子图同构于以下两种图之一:K5(五个没有共同边的顶点)或K3,3(六个节点,其中任意两个节点之间都有边相连但不交叉)。

这个定理被称为Kuratowski定理,它为我们判断一个图是否是平面图提供了一个有效的方法。

根据Kuratowski定理,我们可以使用该定理的逆否命题,即如果一个图中包含K5或K3,3,则该图一定是非平面图。

除了Kuratowski定理之外,还有一种判断图的平面性的方法,称为Euler公式。

Euler公式表达了平面图的顶点数、边数和面数之间的关系:V - E + F = 2其中V表示顶点数,E表示边数,F表示面数。

根据Euler公式,对于简单连接图(无环,无孤立点),如果它的顶点数大于等于3且边数大于等于3,且满足Euler公式,则该图是一个平面图。

二、图的着色问题(Graph Coloring)图的着色问题是指如何给一个图的顶点进行染色,使得相邻的顶点颜色不相同。

这里的相邻指的是有边相连的顶点。

在图论中,颜色通常表示为正整数,颜色数则表示为给定图所需的最小颜色数。

对于任意图G,G的最小颜色数被称为G的色数。

如果图G的色数为k,则称图G是可k着色的。

求解一个图的最小色数是一个复杂的问题,称为顶点着色问题(Vertex Coloring Problem),它是一个NP 完全问题。

第8节图论应用实例_图着色问题

第8节图论应用实例_图着色问题

第8节图论应用实例_图着色问题预备知识_回溯法回溯法:在实际生活中,有些问题是不能用数学公式去解决的,它需要通过一个过程,此过程要经过若干个步骤才能完成,每一个步骤又分为若干种可能;同时,为了完成任务,还必须遵守一些规则,但这些规则无法用数学公式表示,对于这样一类问题,一般采用搜索的方法来解决,回溯法就是搜索算法(广度优先、深度优先等)中的一种控制策略,它能够解决许多搜索中问题。

回溯法基本思想:试探法,撞了南墙就回头。

(一般采用深度优先搜索策略) 搜索策略:深度优先(不撞南墙不回头)。

在搜索过程中,如果求解失败,则返回搜索步骤中的上一点,去寻找新的路径,以求得答案。

要返回搜索,前进中的某些状态必须保存,才能使得退回到某种状态后能继续向前。

白话搜索:如果用数组存放搜索信息,i表示数组下标(当前状态), ++i表示往前走(下一个状态),--i表示回溯(往回退,返回上一次状态)。

第8节图论应用实例_图着色(graph coloring)问题数学定义:给定一个无向图G=(V, E),其中V为顶点集合,E为边集合,图着色问题即为将V分为k个颜色组(k为颜色数),每个组形成一个独立集,即其中没有相邻的顶点。

其优化版本是希望获得最小的k值。

典型应用:地图的着色、调度问题等。

k-着色判定问题:给定无向连通图G和k种不同的颜色。

用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色,例四色问题。

设有如图1的地图,每个区域代表一个省,区域中的数字表示省的编号,现在要求给每个省涂上红、蓝、黄、白四种颜色之一,同时使相邻的省份以不同的颜色区分。

课外拓展:搜索“四色问题”,了解四色问题相关知识。

5674231图1问题分析:(1)属于图的搜索问题。

将问题简化:将每个省抽象为一个点,省之间的联系看为一条边,可以得到图2。

16751432图2(2)用邻接矩阵表示各省之间的相邻关系,二维数组实现:1 表示省i与省j相邻, ,,ri,j,,0 表示省i与省j不相邻,由图2可以得到如下矩阵:(对称矩阵)1 2 3 4 5 6 71 0 1 0 0 0 0 12 1 0 1 1 1 1 13 0 1 0 1 0 0 04 0 1 1 0 1 0 05 0 1 0 1 0 1 06 0 1 0 0 1 0 17 1 1 0 0 0 1 0 为一对称矩阵。

图论 图的着色

图论 图的着色

X(G(V1,V2))=
X(G)=2 G为二部图
Th5.1:如果图G的顶点次数≤ρ,则G是ρ+1可着色的。
Th5.2:如果G是一个简单连通的非完全图,如果它的最大顶点次 数为ρ(ρ≥3),则称G为ρ可着色的。
下面的讨论的图为平面图:
Th5.3:每个平面图都是6可着色的。 Th5.4:每个平面图都是5可着色的。 Th5.5:每个平面图都是4可着色的。
ρ ≤ X’(G)≤ ρ+1
对任意图判断X’(G)= ρ 或X’(G)= ρ+1没有解决,但对于一些特殊图, 答案是清楚的。
对于n个点圈图: 2 or 3
.13:对于n(n>1)的完全图,
X’(kn)=n (n为奇数)X’(kn)=n-1(n为偶数) Th5.15:如G为具有最大顶点次数ρ的二部图,则X’(G)= ρ。
Corollary 5.9:地图4色定理 平面图的4色定理。 Th5.10:设G为一张每个顶点都是3次的地图,则 G为3可面着色G的每个面皆被偶数条边所围 Th5.11:如果每个3正规的地图是4可面着色的,则4色定理成立。
5.3 边的着色
G是k可边着色的:如果图G的所有的边皆可用k种颜色着色,使得 任何两条相邻的边均具有不同的颜色,则称G是k边着色的。 k为G的边色数:如果G为k可边着色的,但不是k-1可边着色的,则 称k为G的边色数,记为:X’(G)。 Th5.12:如果G为简单图且它的最大顶点次数为ρ
第五章 图的着色
5.1 色数 5.2 地图的着色 5.3 边的着色
5.1 色数
G为k可着色的:设G是一个无自环图,如果对它的每个顶点可以用 k种颜色之一着色,使得没有两个相邻的顶点有相同的颜色,则称G 是k可着色的。

《图论》第6章-图的着色

《图论》第6章-图的着色
第七页,编辑于星期六:八点 一分。
6.1 色数
[定理6-1-1] k-临界图 G=(V, E), =min{deg(vi)|viV}, 则
k-1。
[证明]反证法:设 G 是一个 k-临界图且 <k-1。又设v0V, deg(v0)= 。由 k-临界图的定义,Gv0 是 (k1)可着色的, 在一种 k1着色方案下,Gv0 的顶点可按照颜色划分 成 V1,V2, …, Vk-1 共 k1块,块 Vi 中的顶点被涂以颜色 ci。由于deg(v0)< k1,v0 至少与其中一块 Vj 不邻接即与 Vj 中的任何顶点不邻接。此时可将 v0 涂以颜色 cj,
12
第十二页,编辑于星期六:八点 一分。
6.1 色数
[五色定理] (1890, Heaword) 任何简单平面图都是 5-可着色的。 [证明]设简单平面图 G=(V, E),对 n=|V| 作归纳。
n 5时容易讨论结论成立。
设 n = k1时,结论成立。 当 n = k 时,由[定理5-1-8]简单平面图 G 至少有一个顶点的度 小于6。故可设 v0V,deg(v0) 5。设 G=Gv0,由归纳假设
何顶点的度不小于 k-1。又 G 为 k 色图,其中至少有 k 个顶点。
9
第九页,编辑于ቤተ መጻሕፍቲ ባይዱ期六:八点 一分。
6.1 色数
[推论2] 对 G=(V, E), =max{deg(vi)|viV},有 (G) +1。
[证明] 设 (G)=k,由推论1,有 vV,使得 deg(v) k-1
又: deg(v) 故: k-1 或 (G)-1 即: (G) +1
图所示。
13
第十三页,编辑于星期六:八点 一分。

图论讲义第6章-图的着色问题


| c1 (ν ) | = 1 ,其中 ci (υ ) 表示 υ 阶第 i 类图的集合。这 v →∞ | c (ν ) ∪ c (ν ) | 1 2
vk
… v3 v2
i4 i3 i2
u
… H2
ik i0

im ik
i1
vm
v1
v
但是,因 vk 在 H 1 中的度为 2(恰与一条 i0 色边和一条 ik 色边相关联) ,故它在 H 2 中的 。这与 H 2 是奇圈矛盾。 (注意 vk 必在分支 H 2 中,因它与 度为 1(仅与一条 i0 色边相关联) 。由此可知反证法假设不能成立。证毕。 vk-1 有 i0、ik 交错路( H 1 的一段)相连) 对于有重边的图 G,设 μ (G ) 表示 G 中边的最大重数,Vizing 实际上证明了一个更一般 的结论: Δ (G ) ≤
(其中 v0 点的关联边有可能是同一种色) 。按这 样可得 G*的一个边 2-染色 c = ( E1 , E 2 ) , 种办法给 G*的边染色后,去掉 v0 及其关联的边,便得到 G 的一个边 2-染色。对于 G 中偶 度点,它关联的边及其颜色与 G*中相同;对 G 的任何奇度点 v,在 G 中比在 G*中少关联一 条边,但只要 d G ( v ) > 1 , 便有 d G ( v ) ≥ 3 , 故由染色的方法知,与 v 点关联的边中两种颜色 的都有。这说明 G 的边 2-染色 c = ( E1 ∩ E (G ), E 2 ∩ E (G )) 即为所求的边 2-染色。证毕。
… H1 vk-1
ikik i0
( Δ + 1) 边染色。由引理 6.1.2, G[ Ei′0 ∪ Ei′k ] 中含有 u 的那个分支 H 1 是个奇圈。

图论课件第七章图的着色

总结词
平面图的着色问题是一个经典的图论问题,其目标是在满足相邻顶点颜色不同 的条件下,使用最少的颜色对平面图的顶点进行着色。
详细描述
平面图的着色问题可以使用欧拉公式和Kuratowski定理进行判断和求解。此外 ,也可以使用贪心算法、分治策略等算法进行求解。
树图的着色问题
总结词
树图的着色问题是一个经典的图论问 题,其目标是使用最少的颜色对树图 的顶点进行着色,使得任意两个相邻 的顶点颜色不同。
分支限界算法
总结词
分支限界算法是一种在搜索树中通过剪枝和 优先搜索来找到最优解的算法。
详细描述
在图的着色问题中,分支限界算法会构建一 个搜索树,每个节点代表一种可能的着色方 案。算法通过优先搜索那些更有可能产生最 优解的节点来加速搜索过程,同时通过剪枝 来排除那些不可能产生最优解的节点。分支 限界算法可以在较短的时间内找到最优解,
尤其适用于大规模图的着色问题。
03
图的着色问题的复 杂度
计算复杂度
确定图着色问题的计算复杂度为NP-完全,意味着该问题在多项式时间 内无法得到确定解,只能通过近似算法或启发式算法来寻找近似最优解 。
图着色问题具有指数时间复杂度,因为对于n个顶点的图,其可能的颜色 组合数量为n^k,其中k为每个顶点可用的颜色数。
02
图的着色算法
贪心算法
总结词
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选 择,从而希望导致结果是最好或最优的算法。
详细描述
贪心算法在图的着色问题中的应用是通过逐个对顶点进行着色,每次选择当前未 被着色的顶点中颜色数最少的颜色进行着色,直到所有顶点都被着色为止。这种 算法可以保证最小化使用的颜色数量,但并不保证得到最优解。

离散数学中的图着色与图分割

离散数学中的图着色与图分割离散数学是数学的一个分支,它研究的是离散的结构和对象。

在离散数学中,图论是一个非常重要的领域。

而图着色与图分割是图论中的两个基本概念。

一、图着色图着色是指给定一个图的每个顶点分配一种颜色,并且要求相邻的顶点不能有相同的颜色。

这个问题可以看作是一种涂色问题,我们希望用最少的颜色来对图的顶点进行着色。

1.1 色数与染色多项式图的色数是指给定一个图所需的最少颜色数。

一个图的色数通常用符号χ(G)表示。

图的染色多项式是对于给定的图G,它与对应的染色问题有关。

1.2 四色问题四色问题是图论中一个经典的问题,它说的是任何平面地图都可以用四种颜色进行着色,使得相邻的地图区域颜色互不相同。

这个问题虽然在1976年得到了解决,但它的证明过程非常复杂,需要运用大量的数学定理和方法。

二、图分割图分割是指将一个图分割成多个不相交的子图。

图分割在图论和组合优化中具有广泛的应用。

2.1 最小割最小割是指可以将图分割成两个不相交的子图,并且两个子图之间的边的权重之和最小。

最小割问题可以通过最大流最小割定理来解决。

2.2 图分割算法图分割算法是指用于将图分割成多个子图的算法。

常用的图分割算法包括谱图分割算法、k-means算法等。

这些算法可以根据图的特点和需求来选择合适的方法。

三、图着色与图分割的应用3.1 地图着色图着色在地图着色中有着广泛的应用。

通过给地图的每个区域进行着色,可以实现不同区域之间的边界清晰,便于观察和分析。

3.2 电路布线在电路布线中,图着色可以用于解决信号线的冲突问题,保证信号线之间不会相互干扰。

3.3 图像分割图分割在图像处理中有着重要的应用。

通过将图像分割成多个子图,可以实现目标检测、边缘提取等算法的实现。

四、总结离散数学中的图着色与图分割是图论中的两个重要概念。

图着色是将图的顶点着色的过程,目标是用尽量少的颜色进行着色。

图分割是将图分割成多个子图的过程,通过选择合适的算法可以得到满足要求的子图。

图的着色与染色问题

图的着色与染色问题图的着色与染色问题是图论中的一个经典问题,旨在寻找一种给图中的每个顶点染上不同颜色的方法,使得相邻的顶点具有不同颜色。

本文将介绍图的着色和染色问题的基本概念,讨论几种常见的着色算法,并探讨该问题在实际应用中的一些应用场景。

一、基本概念在介绍图的着色与染色问题之前,首先需要了解一些基本概念。

图是由一组顶点和一组边组成的数据结构,表示了顶点之间的关系。

图可以分为有向图和无向图,其中无向图的边没有方向性,有向图的边具有方向性。

对于图中的每个顶点,可以对其进行染色,也就是给顶点赋予一个颜色值。

染色是为了满足一个重要的条件:相邻的顶点不能具有相同的颜色。

相邻顶点是指在图中由一条边连接的两个顶点。

二、着色算法在解决图的着色问题时,常用的算法有贪心算法、回溯算法和深度优先搜索算法。

下面将分别介绍这三种算法的基本思想和应用场景。

1. 贪心算法贪心算法是一种简单而高效的着色算法。

该算法会选择一个顶点,为其染上一个颜色,然后遍历与该顶点相邻的顶点,为其染色。

不断重复该过程,直到所有顶点都被染色。

贪心算法的应用场景包括地图着色问题和课程表问题。

在地图着色问题中,顶点表示不同的地区,边表示不同地区之间的邻接关系。

要求相邻的地区颜色不同,使用贪心算法可以高效地解决这个问题。

在课程表问题中,顶点表示不同的课程,边表示课程之间的先修关系。

贪心算法可以帮助安排合理的课程表。

2. 回溯算法回溯算法是一种递归的算法,它通过尝试所有可能的颜色组合,直到找到满足条件的染色方案为止。

如果在尝试的过程中发现无法满足条件,则会回溯到上一个状态,重新选择颜色。

回溯算法常用于解决复杂的着色问题,例如地图染色问题和调度问题。

在地图染色问题中,回溯算法可以找到一种合理的地图着色方案。

在调度问题中,回溯算法可以帮助制定一种合理的调度方案,例如安排会议或任务的时间表。

3. 深度优先搜索算法深度优先搜索算法是一种遍历算法,通过从起始顶点开始,沿着一条路径一直搜索到底,然后回溯到上一个顶点,继续搜索其他路径,直到所有顶点都被访问。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
在对G正常边着色时,着相同颜色的边集称为该正常 着色的一个色组。
(二)、几类特殊图的边色数
1、偶图的边色数
定理1 (Km,n )
证明:设 X x0, x1,..., xm1 Y y0, y1,..., yn1
又设Δ=n。设颜色集合设为{0,1,2,…,n-1}, п是 Km,n的一种n着色方案,满足:
进一步地,我们可以说明,上面的路P不含点u。
因为,如果P含有点u, 那么P必然是一条长度为偶数的 路,这样,P+uv是G中的奇圈,这与G是偶图矛盾!
既然P不含点u, 所以我们可以交换P中着色,而不破坏 G1的正常边着色。但交换着色后,u与v均缺色i, 于是由 情形1,可以得到G的Δ正常边着色,即证明:(G)
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
图论及其应用
应用数学学院
1
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
第七章 图的着色
主要内容
一、图的边着色 二、图的顶点着色 三、与色数有关的几类图和完美图 四、色多项式
11
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
2、简单图的边色数
引理:设G是简单图,x与y1是G中不相邻的两个顶点,п 是G的一个正常k边着色。若对该着色п,x,y1以及与x相邻 点均至少缺少一种颜色,则G+xy1是k边可着色的。
x 缺色 y1 缺色
x1 缺色 x2
五、List着色与全着色
10学时讲授本章
2
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
本次课主要内容
图的边着色 (一)、相关概念 (二)、几类特殊图的边色数 (三)、边着色的应用
3
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
情形2 如果u缺色i, 而v缺色j,但不缺色i。
10
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
设H (i, j) 表示G1中由i色边与j色边导出的子图。显然, 该图每个分支是i色边和j色边交替出现的路或圈。
对于H(i, j)中含点v的分支来说,因v缺色j, 但不缺色i, 所以,在H(i, j)中,点v的度数为1。这说明,H(i ,j)中含v 的分支是一条路P。
则:i+ j ( mod n)=i +k ( mod n),得到j=k,矛盾! 所以,上面着色是正常作色。所以:
(Km,n ) n
又显然 (Km,n ) n ,所以,(Km,n )
例1 用最少的颜色数对K3,4正常边着色。
8
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
于是,问题转化为如何在G中将边集E划分为互不相交 的p个匹配,且使得p最小。
如果每个匹配中的边用同一种颜色染色,不同匹配中 的边用不同颜色染色,则问题转化为在G中给每条边染 色,相邻边染不同色,至少需要的颜色数。
4
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
xi y j E(Km,n ), (xi y j ) (i j)(mod n)
7
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
我们证明:上面的着色是正常边着色。
对K m, n中任意的两条邻接边xiyj和xiyk。若
(xi y j ) (xi yk )
0.6 0.4 x 0.2
x0
x1
x2
y0
y1
y2
y3
定义3 设п是G的一种正常边着色,若点u关联的边的 着色没有用到色i,则称点u缺i色。
定理2 (哥尼,1916)若G是偶图,则 (G) 证明:我们对G的边数m作数学归纳。
当m=1时,Δ=1,有 (G) 1
9
1
0.5 n 0
0.5
1 2 1.5 t1
(一)、相关概念
现实生活中很多问题,可以模型为所谓的边着色问题 来处理。例如排课表问题。
排课表问题:设有m位教师,n个班级,其中教师xi要 给班级yj上pij节课。求如何在最少节次排完所有课。
建模:令X={x1,x2,…,xm}, Y={y1,y2,…,yn},xi与yj间 连pij条边,得偶图G=(X, Y).
缺色
xk 缺色
正常k边着色图G
x y1
x1
x2
xk
正常k边着Leabharlann 图G11210.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
定理3 (维津定理,1964) 若G是单图,则:
(G) 或(G) +1
证明:只需要证明 (G) +1 即可。
采用对G的边数m作数学归纳证明。 当m=1时,Δ=1, (G)=1<+1 设当边数少于m时,结论成立。下面考虑边数为m≥2的 单图G。 设xy ∈E(G),令G1=G-xy。由归纳假设有:
0.5
00
1 0.8
0.6 0.4 x 0.2
(G) 3
注:对图的正常边着色,实际上是对G的边集合的一 种划分,使得每个划分块是G的一个边独立集(无环时是 匹配);图的边色数对应的是图的最小独立集划分数。
因此,图的边着色,本质上是对应实际问题中的“划 分”问题或“分类”问题。
6
1
0.5 n 0
0.5
这就需要我们研究所谓的边着色问题。
定义1 设G是图,对G的边进行染色,若相邻边染不同 颜色,则称对G进行正常边着色;
如果能用k中颜色对图G进行正常边着色,称G是k边 可着色的。
正常边着色
定义2 设G是图,对G进行正常边着色需要的最少颜色 数,称为G的边色数,记为:(G)
5
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
设对于小于m条边的偶图来说命题成立。
设G是具有m条边的偶图。
取uv∈ E(G), 考虑G1=G-uv,由归纳假设有:
(G1) (G1) (G)
这说明,G1存在一种Δ(G)边着色方案п。对于该着 色方案,因为uv未着色,所以点u与v均至少缺少一种色。
情形1 如果u与v均缺同一种色i, 则在G1+uv中给uv着色 i, 而G1其它边,按п方案着色。这样得到G的Δ着色方案, 所以: (G)
相关文档
最新文档