用加减消元法解二元一次方程组练习
加减消元法解二元一次方程组(1)

基本思路:二元
一元
五、分层练习,自我提升
1、已知方程组
2 x y 10 ① 中,①+②,得5x=5,解得x= 1 3x y 5 ②
.
3x 3 y 6 2、解方程组 3x 2 y 5
①
②
,发现x的系数特点是 相同 ,
只要将这两个方程相 减 ,便可消去未知数
4x +10y=3.6 ① 15x -10y=8
② ①+②消去y
3x +10 y=2.8 ①
15x -10 y=8
②
解:把 ①+②得: 18x=10.8 x=0.6 把x=0.6代入①,得: 3×0.6+10y=2.8 解得:y=0.1 所以这个方程组的解是
x 0.6 y 0.1
基本思路: 加减消元: 二元 一元
主要步骤:
加减
消去一个元
求解
写解
分别求出两个未知数的值
写出方程组的解
1、方程组
① ,①-②得(B ) ② 5y 8 5 y 8 B、5 y 8 C、 A、
2 x 3 y 5 2 x 8 y 3
5 y 8 D、
2 x - 4 y 8 2、用加减法解方程组3x 4 y 2
加减消元法的概念
两个二元一次方程中同一未知数 的系数相反或相等时,将两个方 程的两边分别相加或相减,就能 消去这个未知数,得到一个一元 一次方程,这种方法叫做加减消 元法,简称加减法(addition- subtraction method)。
试一试,你会解吗?
用加减法解下列方程:
3u 2t 7 (1) 6u 2t 11
3.3(2)二元一次方程组的解法(加减消元)及典型例题

有相
这样可以通过第一个方程组求出x和y的值,再将 这两个值代入第二个方程,求关于a和b的二元 一次方程组。
9、 关于x、y的方程组 解满足3x+2y=19,求原方程组的解。
解:
的
分别把m=1代入到 x=7m、y=-m中, 得: x=7 ,y=-1 ∴原方程组的解为:
①+②,得: 2x=14m x=7m
4 x 2 y 14 (2) 5 x y 7
x 3 y 20 (3) 3 x 7 y 100
2 x 3 y 8 (4) 5 y 7 x 5
归纳小结
1、解二元一次方程组的基本方法:加减法和代入法 2、基本思路:消元 3、加减法解方程组的一般步骤: (1)变换系数; (2)加减消元(同号减,异号加); (3)回代求解; (4)写出方程组的解。
x=2
• 8、若方程组
同的解,求a和b的值。 分析:将两个方程组中的四个方程重新组合:
b ax y 2 4x y 1 2 , 2x y 3 a x by 1 2
4x y 1 2x y 3 ,a b ax y 2 x by 1 2 2
把
代入(1)得, x
22 23
∴
加减法解二元一次方程组的一般步骤:
1。把一个方程(或两个方程)的两边都乘以一个 适当的数,使两个方程的一个未知数的系数的绝对 值相等; 2。把一个未知数系数绝对值相等的两个方程的两边 分别相加(或相减),得到一个一元一次方程,求得 一个未知数的值; 3。把这个未知数的值代入原方程组的任何一个方程, 求得另一个未知数的值; 4。写出方程组的解。
6、若方程5x 求m 、n 的值.
人教版七年级数学下册 第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组 同步练习题 含答案

第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组1. 若二元一次方程组的解为则a-b 等于( ) A. B. C. 3 D. 12. 方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 得到的方程是( ) A .y =4 B .7y =-14 C .7y =4 D .y =143. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( ) A.⎩⎪⎨⎪⎧x =5y =1 B. ⎩⎪⎨⎪⎧x =-5y =-1 C. ⎩⎪⎨⎪⎧x =4y =2 D.⎩⎪⎨⎪⎧x =-4y =-2 4. 若方程组的解满足x+y=0,则k 的值为( )A. -1B. 1C. 0D. 不能确定5. 用加减法解方程组⎩⎪⎨⎪⎧2a +2b =3,①3a +b =4,②最简单的方法是( ) A .①×3-②×2 B .①×3+②×2 C .①+②×2 D .①-②×26.解方程组⎩⎪⎨⎪⎧0.2x -0.3y =2,0.5x -0.7y =-1.5最合适的方法是( ) A .试值法 B .加减消元法 C .代入消元法 D .无法确定7. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则列方程组为( )A.⎩⎪⎨⎪⎧7y =x -38y =x +5B.⎩⎪⎨⎪⎧7y =x +38y =x -5C.⎩⎪⎨⎪⎧7y =x +38y +5=xD.⎩⎪⎨⎪⎧7y =x +38y =x +5 8. 对于非零的两个实数a,b,规定a ⊕b=am-bn,若3⊕(-5)=15,4⊕(-7)=28,则(-1)⊕2的值为( )A. -13B. 13C. 2D. -29. 已知则= .10. 二元一次方程组x +y 2=2x -y 3=x +2的解是________.11. 观察下列两方程组的特征:①⎩⎪⎨⎪⎧4x -3y =5,4x +6y =4; ②⎩⎪⎨⎪⎧y =3x +4,3x +5y =0. 其中方程组①采用______消元法较简单,而方程组②采用____消元法较简单.12. 已知方程组⎩⎪⎨⎪⎧2x -3y =4,①3x +2y =1,②用加减法消去x 的方法是_____________;用加减法消去y 的方法是______________.13. 根据图中的信息可知,一件上衣的价格是____元,一条短裤的价格是____元.14. 解下列方程组:(1)⎩⎪⎨⎪⎧x -3y =1,x +2y =6;(2)⎩⎪⎨⎪⎧3x +y =7,2x -y =3.15. 用加减法解下列方程组:(1)⎩⎪⎨⎪⎧x +y =5,2x +3y =11;(2)⎩⎪⎨⎪⎧3x +2y =4,4x -3y =11;(3)⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,2(x +y )+(x -y )=15.16. 甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一组解为⎩⎪⎨⎪⎧x =1,y =-1,乙把ax -by =7看成ax -by =1,求得一组解为⎩⎪⎨⎪⎧x =1,y =2,求a 2-2ab +b 2的值.17. 小丽购买了6支水彩笔和3本练习本共用了21元;小明购买了同样的12支水彩笔和5本练习本共用了39元.已知水彩笔与练习本的单价不同.(1)求水彩笔与练习本的单价;(2)小刚要买4支水彩笔和4本练习本,共需多少钱?18. A,B两地相距20 km,甲从A地向B地前进,同时乙从B地向A地前进,2 h 后两人在途中相遇,相遇后,甲返回A地,乙仍然向A地前进,甲回到A地时,乙离A地还有2 km,求甲、乙两人的速度.19. 某种水果的价格如表:张欣两次共购买了25 kg这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?答案:1---8 ABCBD BAA9. -310. ⎩⎪⎨⎪⎧x =-5y =-111. 加减 代入12. ①×3-②×2 ①×2+②×313. 40 2014. 解:(1)⎩⎪⎨⎪⎧x =4,y =1. (2)⎩⎪⎨⎪⎧x =2,y =1. 15. (1) 解:⎩⎪⎨⎪⎧x +y =5,①2x +3y =11,②①×3-②,得x =4,把x =4代入①,得y =1, ∴方程组的解为⎩⎪⎨⎪⎧x =4,y =1.(2) 解:⎩⎪⎨⎪⎧3x +2y =4,①4x -3y =11,②①×3+②×2,得17x =34,解得x =2, 把x =2代入①,得6+2y =4,解得y =-1,∴方程组的解为⎩⎪⎨⎪⎧x =2,y =-1.(3) 解:⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,①2(x +y )+(x -y )=15,②①+②×5,得13(x +y)=91,解得x +y =7,把x +y =7代入①,得x -y =1.解方程组⎩⎪⎨⎪⎧x +y =7,x -y =1, 得⎩⎪⎨⎪⎧x =4,y =3,∴方程组的解为⎩⎪⎨⎪⎧x =4,y =3. 16. 解:由题意,得⎩⎪⎨⎪⎧a +b =7,a -2b =1,解得⎩⎪⎨⎪⎧a =5,b =2. ∴a 2-2ab +b 2=52-2×5×2+22=9.17. 解:(1)设水彩笔与练习本的单价分别为x 元和y 元,由题意, 得⎩⎪⎨⎪⎧6x +3y =21,12x +5y =39,解得⎩⎪⎨⎪⎧x =2,y =3. 则水彩笔与练习本的单价分别为2元和3元.(2)小刚买4支水彩笔和4本练习本共需2×4+3×4=20(元).18. 解:设甲的速度为x km/h ,乙的速度为y km/h ,由题意, 得⎩⎪⎨⎪⎧2x +2y =20,(2+2)y +2=20,解得⎩⎪⎨⎪⎧x =5.5,y =4.5. 则甲的速度为5.5 km/h ,乙的速度为4.5 km/h.19. 解:设张欣第一次、第二次分别购买了这种水果x kg ,y kg , 因为第二次购买多于第一次,则x<12.5<y.①当x ≤10时,⎩⎪⎨⎪⎧x +y =25,6x +5y =132,解得⎩⎪⎨⎪⎧x =7,y =18. ②当10<x<12.5时,⎩⎪⎨⎪⎧x +y =25,5x +5y =132,此方程组无解, ∴张欣第一次、第二次分别购买了这种水果7 kg ,18 kg.。
用加减消元法解二元一次方程组练习题

是通常的加法和乘法运算,已知 3*5=15,4*7=28,则 a+b=
.
6.将方程 1 x+2y=1 中的 x 项的系数化为 2,则下列结果中正确的是( ) 3
A、2x+6y=1 B、2x+2y=6 C、2x+6y=3 D、2x+12y=6
7.某校课外小组的学生准备分组外出活动,若每组 7 人,则余下 3 人;若每组 8 人,则最后一组只有 3 人,设课外小组的人数为 x,分成的组数为 y.依题意
2x+3y=6 ②
(2)
5x-5y=7 ① 15x+20y=7 ②
10.已知代数式 x2+bx+c,当 x=-3 时,它的值为 9,当 x=2 时,它的值为 14,当 x=-8 时,求代数式的值。
11.若∣m+n-5∣+(2m+3n-5)2=0,求(m+n)2 的值
12.甲、乙两个小马虎,在练习解方程组
可得方程组为( )
A、 7y=x+3 B、 8y+5=x
7x+3=y 8ቤተ መጻሕፍቲ ባይዱ-5=y
C、 7y=x-3 8y=x+5
D、 7y=x+3 8y=x+5
8.用代入法解下列方程组: (1) y=x+6 ①
2x+3y=8 ②
2x+3y=-19 ① x+5y=1 ②(2)
9.用加减法解下列方程组: (1) 2x+5y=12 ①
了方程组中的 a,得到方程组的解为 x=1
程组的解为
y=6
问原方程组的解为多少?
ax+y=10 x+by=7 时,由于粗心,甲看错 ;乙看错了方程组中的 b,得到方
x=-1 y=12
用加减消元法解二元一次方程组练习题
1.用代入法解方程组3xx8yy
3(1) 14(2)
由①可得
.
8.2《消元——解二元一次方程组》同步练习题(2)及答案

。
二. 选择题 10. 若 y=kx+b中,当 x=-1 时,y=1;当 x=2 时,y=-2,则 k 与 b 为( )
k 1 A. b 1
k 1 B. b 0
k 1 C. b 2
k 1 D. b 4
x 1
ax by 0
8.2《消元——解二元一次方程组》同步练习题(2)
知识点:
1、代入法:用代入消元法解二元一次方程组的步骤: (1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用 含另一个未知数的式子表示出来. (2)把(1)中所得的方程代入另一个方程,消去一个未知数.
(3)解所得到的一元一次方程,求得一个未知数的值.
13. 对于方程组 4x 5y 17 ,用加减法消去 x,得到的方程是(
)
A. 2y=-2
B. 2y=-36 C. 12y=-2 D. 12y=- 36
14.
将方程-
1 2
x+y=1中
x
的系数变为
5,则以下正确的是(
)
A. 5x+y=7
B. 5x+10y=10 C. 5x-10y=10 D. 5x-10y=-10
∴原方程组解为 x 2 y 2
(4)解:由②得:x=3y-7……③ ③代入① :2(3y-7)+5y=8 11y=22 y=2
把 y=2代入③得 x=-1 ∴原方程组解为
x 1 y 2
16. (1)解:②×4-①×3 得:11y=-33 ∴y=-3 把 y=-3 代入①得:4x-9=3 x=3
7. 二元一次方程组 kx 2 y 5 的解是方程 x-y=1的解,则 k=
。
加减消元法—二元一次方程组的解法

加减消元法—二元一次方程组的解法设二元一次方程组为:ax + by = c (1)dx + ey = f (2)其中a,b,c,d,e,f为已知数,x,y为未知数。
首先我们可以尝试将方程(1)乘以e,将方程(2)乘以b,然后将两个方程相减,以消去y的项:aex + bey = ce (3)- bdx - bey = -bf (4)方程(3)与方程(4)相减后,得到:(ae - bd)x = ce - bf (5)移项,得:x = (ce - bf) / (ae - bd) (6)进而,将x的值代入方程(1)或(2)中任意一个,可以求出y的值。
假设我们将x的值代入方程(1)中,得到:a((ce - bf) / (ae - bd)) + by = c (7)整理方程(7),可以得到:y = (ac -ae(ce - bf) / (ae - bd)) / b(ae - bd) (8)综上所述,加减消元法可以通过将两个方程相加或相减,消去其中一个未知数,从而求解出另一个未知数的值。
以下是一个具体的例子,展示加减消元法的步骤和求解过程:例子1:解方程组2x+3y=7(9)4x-5y=-8(10)首先,我们将方程(9)乘以5,将方程(10)乘以3,然后将两个方程相加,以消去x的项:10x+15y=35(11)12x-15y=-24(12)将方程(11)与方程(12)相加后,得到:22x+0y=11(13)由于0y项消失,我们可以得到:22x=11(14)移项,得:x=11/22=1/2(15)将x的值代入方程(9)中,可以求出y的值:2*(1/2)+3y=7整理方程,得:y=7-1=6因此,方程组的解为x=1/2,y=6。
二元一次方程组加减消元法练习题

解二元一次方程组(加减法)练习题一、基础过关1、用加、减法解方程组,若先求x得值,应先将两个方程组相_______;若先求y得值,应先将两个方程组相________、2、解方程组用加减法消去y,需要( )A、①×2-②B、①×3-②×2 C、①×2+② D、①×3+②×23、已知两数之与就就是36,两数之差就就是12,则这两数之积就就是( )A、266 B、288 C、-288 D、-1244、已知x、y满足方程组,则x:y得值就就是( )A、11:9B、12:7C、11:8D、-11:85、已知x、y互为相反数,且(x+y+4)(x-y)=4,则x、y得值分别为()A、 B、 C、 D、6、已知a+2b=3-m且2a+b=-m+4,则a-b得值为()A、1B、-1C、0D、m-17、若x5m+2n+2y3与-x6y3m-2n-1得与就就是单项式,则m=_______,n=________、8、用加减法解下列方程组:(1) (2)(3) (4)二、综合创新9、(综合题)已知关于x、y得方程组得解满足x+y=-10,求代数m2-2m+1得值、10、(应用题)(1)今有牛三头、羊二只共1900元,牛一头、羊五只共850元,•问每头牛与每只羊各多少元?(2)将若干只鸡放入若干个鸡笼中,若每个鸡笼放4只,则有一只鸡无笼可放;•若每个鸡笼放5只,则有一个笼无鸡可放,那么有鸡多少只?有鸡笼多少个?11、(创新题)在解方程组时,哥哥正确地解得,弟弟因把c写错而解得,求a+b+c得值、12、(1)(2005年,苏州)解方程组(2)(2005年,绵阳)已知等式(2A-7B)x+(3A-8B)=8x+10对一切实数x都成立,•求A、B得值、三、培优训练13、(探究题)解方程组14、(开放题)试在9□8□7□6□5□4□3□2□1=23得八个方框中,•适当填入“+”或“-”号,使等式成立,那么不同得填法共有多少种?四、数学世界到底有哪些硬币?“请帮我把1美元得钞票换成硬币”、一位顾客提出这样得要求、“很抱歉”,出纳员琼斯小组仔细查瞧了钱柜后答道:“我这里得硬币换不开”、“那么,把这50美分得硬币换成小币值得硬币行吗?”琼斯小组摇摇头,她说,实际上连25美分、10美分、5美分得硬币都换不开、“您到底有没有硬币呢?”顾客问、“噢,有!”琼斯小组说,“我得硬币共有1、15美元、”钱柜中到底有哪些硬币?注:1美元合100美分,小币值得硬币有50美分、25美分、10美分、5美分与1答案:1、加;减2、C3、B点拨:设两数分别为x、y,则解得∴xy=24×12=288、故选B、4、C5、C 点拨:由题意,得解得故选C、6、A 点拨:②-①得a-b=1,故选A、7、1;-点拨:由题意,得解得8、(1) (2) (3) (4)9、解:解关于x、y得方程组得把代入x+y=-10得(2m-6)+(-m+4)=-10、解得m=-8、∴m2-2m+1=(-8)2-2×(-8)+1=81、10、(1)解:设每头牛x元,每只羊y元,依题意,得解这个方程组,得答:每头牛600元,每只羊50元、(2)解:设有鸡x只,有鸡笼y个,依题意,得解这个方程组,得答:有鸡25只,有鸡笼6个、11、解:把代入得把代入ax+by=2 得-2a+2b=2、解方程组得∴a+b+c=4+5-2=7、点拨:弟弟虽瞧错了系数c,但就就是方程ax+by=2得解、12、(1)解:①×6,得3x-2y-2=6,即3x-2y=8、③②+③,得6x=18,即x=3、③-②,得4y=2,即y=、∴(2)、- 点拨:∵(2A-7B)x+(3A-8B)=8x+10对一切实数x都成立、∴对照系数可得2A-7B=8,3A-8B=10、∴解得即A、B得值分别为、-、13、解:①-②,得x-y=1,③③×2006-①,得x=2、把③代入①,得y=1、∴点拨:由于方程组中得数据较大,所以正确解答本题得关键就就是将两方程相减得出14、解:设式中所有加数得与为a,所有减数得与为b,则a-b=23、又∵a+b=9+8+…+1=45,∴b=11、∴若干个减数得与为11、又11=8+3=7+4=6+5=8+2+1=7+3+1=6+4+1=6+3+2=5+4+2=5+3+2+1、∴使等式成立得填法共有9种、点拨:因为只填入“+”或“-”号,所以可以把加数得与,•减数得与瞧作整体数学世界答案:如果琼斯小姐换不了1美元,那么她钱柜中得50美分硬币不会超过1枚、如果她换不了50美分,那么钱柜中得25美分硬币不会超过1枚,10美分硬币不会超过4枚,10•美分换不了,意味着她得5美分硬币不会超过1枚;5美分换不了,由她得1•美分硬币不超过4枚,因此,钱柜中各种硬币数目得上限就就是:50美分1枚$0、5025美分1枚 0、2510美分4枚 0、405美分1枚0、051美分4枚 0、04$1、24这些硬币还够换1美元(例如,50美分与25美分各1枚,10美分2枚,5美分1枚),•但就就是我们毕竟知道了钱柜中各种硬币得数目不可能比上面列出得更多,•上面这些硬币加起来总共有1、24美元,比我们所知道得钱柜中得硬币总值1、15美元正好多出9美分、现在,组成9美分得唯一方式就就是1枚5美分硬币加上4枚1美分,所以必须把这5枚硬币从上面列出得硬币中除去,余下得就就是1枚50美分、1枚25美分与4枚10美分得硬币、•它们既换不了1美元,也无法把50美分或者25美分、10美分、5•美分得硬币换成小币值得硬币,而且它们得总与正就就是1、15美元,于就就是我们便得到了本题得唯一答案、。
解二元一次方程组(第二课时 加减消元法)(练习)七年级数学下册同步课堂(人教版)(解析版)

第八章二元一次方程组8.2解二元一次方程组(第二课时加减消元法)精选练习答案基础篇一、单选题(共10小题)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为()A .﹣4B .4C .﹣2D .2【答案】B 【详解】试题解析:512{34a b a b +=-=①②,①+②:4a+4b=16则a+b=4,故选B .2.若|321|20x y x y --++-=,则x ,y 的值为()A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩【答案】D 【详解】详解:∵32120x y x y --++-,∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩.故选D .3.以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详解】解:解方程组21x yx y+=⎧⎨-=⎩,得1.50.5xy=⎧⎨=⎩,∴点(1.5,0.5)在第一象限.故选:A.4.用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【答案】D【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.5.方程组3276211x yx y+=⎧⎨-=⎩,的解是()A.15xy=-⎧⎨=⎩,B.12xy=⎧⎨=⎩,C.31xy,=⎧⎨=-⎩D.212xy=⎧⎪⎨=⎪⎩,【答案】D 【详解】解:327 6211x yx y+=⎧⎨-=⎩①②,①+②得:9x=18,即x=2,把x=2代入②得:y=1 2,则方程组的解为:212 xy=⎧⎪⎨=⎪⎩,故选D.6.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A .1B .3C .14-D .74【答案】D 【详解】解:3,354,x y x y +=⎧⎨-=⎩①②+①②,得447x y -=,所以74x y -=,因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=.故选D.7.若方程组31331x y ax y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为()A .﹣1B .1C .0D .无法确定【答案】A 【详解】方程组两方程相加得:4(x+y )=2+2a ,即x+y=12(1+a ),由x+y=0,得到12(1+a )=0,解得:a=-1.故选A .8.用加减法解方程组2333211x y x y +=⎧⎨-=⎩时,有下列四种变形,其中正确的是()A .4669633x y x y +=⎧⎨-=⎩B .6396222x y x y +=⎧⎨-=⎩C .6936411x y x y +=⎧⎨-=⎩D .4639611x y x y +=⎧⎨-=⎩【答案】A 【详解】解:若消去x ,则有:6996422x y x y +=⎧⎨-=⎩;若消去y ,则有:4669633x y x y +=⎧⎨-=⎩;∴用加减消元法正确的是A ;9.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为()A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩【答案】C 【详解】详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩.故选C .10.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是()A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【详解】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩,对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,提升篇二、填空题(共5小题)11.已知x 、y 满足方程组3123x y x y +=-⎧⎨+=⎩,则x y +的值为__________.【答案】1【详解】解:3123x y x y +=-⎧⎨+=⎩①②①2⨯得:262x y +=-③③-②得:55,y =-1,y ∴=-把1y =-代入①:31,x ∴-=-2,x ∴=所以方程组的解是:2,1x y =⎧⎨=-⎩1.x y ∴+=故答案为:1.12.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为.【答案】2【详解】把x 2{y 1==代入方程组mx ny 7{nx my 1+=-=,得:2m n 7{2n m 1+=-=,解得13m 5{9n 5==,∴139m 3n 3855+=+⨯=33m 3n 82+,故答案为2.13.若单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,则m-7n 的算术平方根是_________.【答案】4【详解】根据同类项定义由单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,可以得到关于m 、n 的二元一次方程4=m ﹣n ,2m+n=2,解得:m=2,n=﹣2,因此可求得m ﹣7n=16,即m ﹣7n 的算术平方根==4,故答案为4.14.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____.【答案】15x y =⎧⎨=⎩【详解】627x y x y +=⎧⎨+=⎩①②,②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为15x y =⎧⎨=⎩15.已知32x y =⎧⎨=-⎩是方程组37ax by bx ay +=⎧⎨+=-⎩的解,则代数式(a+b)(a-b)的值为_________【答案】−8【详解】解:把32x y =⎧⎨=-⎩代入方程组得:323 327a b b a -=⎧⎨-=-⎩①②,①×3+②×2得:5a =−5,即a =−1,把a =−1代入①得:b =−3,则(a+b)(a-b)=a 2−b 2=1−9=−8,故答案为−8.三、解答题(共2小题)16.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩(2)3523153232x y x y x+=⎧⎪-+⎨-=-⎪⎩【答案】(1)12x y =⎧⎨=-⎩(2)2345x y ⎧=-⎪⎪⎨⎪=⎪⎩【详解】(1)31529x y x y +=⎧⎨-=⎩①②,将①式×2+②得6529x x +=+,1111x =,解得1x =,将1x =代入①得:2y =-,故解为:12x y =⎧⎨=-⎩(2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩,将方程组整理得:()()35223135312x y x y x +=⎧⎪⎨--+=-⎪⎩即35231510x y x y +=⎧⎨--=-⎩①②,①+②得:108y -=-,解得:45y =,将45y =代入①得:23x =-,∴解为2345x y ⎧=-⎪⎪⎨⎪=⎪⎩17.用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:解法二:由②,得3(3)2x x y +-=,③由①-②,得33x =.把①代入③,得352x +=.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“⨯”.(2)请选择一种你喜欢的方法,完成解答.【答案】(1)解法一中的计算有误;(2)原方程组的解是12x y =-⎧⎨=-⎩【详解】(1)解法一中的计算有误(标记略)(2)由①-②,得:33x -=,解得:1x =-,把1x =-代入①,得:135y --=,解得:2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.对于方程组 而言,你能设法让两个方程中x的系数相等吗?你的方法是_______;若让两个方程中y的系数互为相反数,你的方法是________.
2.用加减消元法解方程组 将两个方程相加,得( )
A.3x=8 B.7x=2 C.10x=8 D.10x=10
3.用加减消元法解方程组 ,①-②得( )
A.2y=1 B.5y=4 C.7y=5 D.-3y=-3
4.用加减消元法解方程组 正确的方法是( )
A.①+②得2x=5 B.①+②得3x=12
C.①+②得3x+7=5 D.先将②变为x-3y=7③,再①-③得x=-2
5.已知方程组 ,则m=_______,n=_______.
6.在方程组 中,若要消x项,则①式乘以_______得______③; ②式可乘以______得________④;然后再③④两式_______即可.
10.已知 ,则xy的值是( )
A.2 B.1 C.-1 D.2
11.方程组 的解是( )
A.
12.已知 都是方程y=ax+b的解,则a和b的值是( )
A.
13.用加减法解下列方程组:
(1)
7.在 中,①×③得________③;②×4得_____④,这种变形主要是消________.
8. 用加减法解 时, 将程①两边乘以________, 再把得到的方程与②相________,可以比较简便地消去未知数________.
9.方程组 ,②×3-①×2得( )
A.-3y=2 B.4y+1=0 C.y=0 D.7y=-8