高一模拟试题8
2023-2024学年福建省厦门市高一上册期末教学质量数学模拟试题(附解析)

2023-2024学年福建省厦门市高一上学期期末教学质量数学模拟试题考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版必修第一册第一章~第五章第4节.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 已知集合,,且,则(){}9,3A m ={}2,9B m =A B =m =A. 0B. 3C. D. 3或03±2. 已知扇形的圆心角为,半径为5,则扇形的弧长为( )1rad 5A. B. 1C. 2D. 4123. “”是“”的()1a >0a >A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 若,,,则( )ln x π=51log 3y =12z e -=A. B. C. D. x y z<<z x y<<z y x<<y z x<<5. 函数①;②,;③,中,2πcos 2y x x ⎛⎫=- ⎪⎝⎭sin y x =[]0,2πx ∈sin 2y x =[]π,πx ∈-奇函数的个数为( )A 0B. 1C. 2D. 36. 已知幂函数的图象过点,则函数在区间上的()f x x α=15,5⎛⎫ ⎪⎝⎭()(3)()g x x f x =-1,13⎡⎤⎢⎥⎣⎦最小值是( )A. -1B. -2C -4D. -87. 已知函数则的大致图像是( )(),1,ln ,1,x x f x x x ⎧≤⎪=⎨⎪->⎩()2y f x =-A.B.C.D.8. 已知函数在区间上单调递增,则的取值范围是( π()sin (0)4f x x ⎛⎫=+> ⎪⎝⎭ωωπ,π2⎡⎤⎢⎥⎣⎦ω)A. B. C. D. 59,84⎡⎤⎢⎥⎣⎦13,24⎡⎤⎢⎥⎣⎦10,4⎛⎤ ⎥⎝⎦(0,2]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知角与角的终边相同,则角可以是( )θ5π3-θA. B. C. D. 7π3-1π34π313π310. 下列说法错误的是()A. 函数与函数表示同一个函数xy x =1y =B. 若是一次函数,且,则()f x ()()165=+f f x x ()41f x x =-C. 函数的图象与y 轴最多有一个交点()f x D. 函数在上是单调递减函数11y x =+()(),11,-∞--+∞ 11. 下列函数中,以为最小正周期,且在上单调递减的为( )ππ,π2⎛⎫ ⎪⎝⎭A. B.C.D.cos 2y x=sin y x=cos y x=tan y x=12. 设函数的定义域为,为奇函数,为偶函数,当时,()f x R ()1f x -()1f x +[]1,1x ∈-,则下列结论正确的是()()21f x x =-+A. 7324f ⎛⎫= ⎪⎝⎭B. 为奇函数()7f x +C.在上为减函数()f x ()6,8D. 方程仅有6个实数解()lg 0f x x +=三、填空题:本题共4小题,每小题5分,共20分.13. 已知且,则的终边在第__________象限.tan 0x <cos 0x <x 14. 函数的零点为______.()32x f x =-15. 已知一元二次不等式对一切实数x 都成立,则k 的取值范围是23208kx kx ++>___________.16. 若函数在区间上的最大值为,最小值为,则()()22211x f x x +=+[]2023,2023-M m ______.M m +=四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知为钝角,且.α4cos 5α=-(1)求,的值;sin αtan α(2)求的值sin(π)cos(2π)3πcos tan(π)2αααα-+-⎛⎫-++ ⎪⎝⎭18. 已知x >0,y >0,且2x +8y -xy =0,求:(1)xy 的最小值;(2)x +y 的最小值..19. 已知定义在上的偶函数,当时,,且.R ()f x 0x ≥()()3x f x a a =-∈R ()326f -=(1)求的值;a (2)求函数的解析式;()f x (3)解不等式:.()2f x >20. 已知函数.π()sin 213f x x ⎛⎫=++ ⎪⎝⎭(1)求的最小正周期及单调递增区间;()f x (2)当时,求的最大值和最小值及取得最大值、最小值时x 的值.ππ,44x ⎡⎤∈-⎢⎥⎣⎦()f x 21. 深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的,在神经网络优化中,指数衰减的学习率模型为,其中L 表示每一轮优化时()()00nG L n L Dn =∈N 使用的学习率,表示初始学习率,D 表示衰减系数,n 表示训练迭代轮数,表示衰减0L 0G 速度.已知某个指数衰减的学习率模型,,且当训练迭代轮数为18时,学()102L =018G =习率衰减为.25(1)求该学习率模型的表达式;(2)要使学习率衰减到以下(不含),至少需训练迭代多少轮?(参考数据1515)lg 20.3010≈22.已知函数.424()log 1,()log f x g x x ⎛⎫=-= ⎪⎝⎭(1)求的定义域,并证明的图象关于点对称;()f x ()f x (2,0)(2)若关于x 的方程有解,求实数a 的取值范围.()()f x g x =数学答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. A解析:由得,解得或,A B =23m m =3m =0m =当时,,不满足元素的互异性,舍去;3m =39m =当时,成立.0m =A B =故选:A.2. B解析:因为扇形的圆心角为,半径为5,1rad 5所以由弧长公式得扇形的弧长为.1515l r α=⋅=⨯=故选:B.3. D 解析:因为或,11a a >⇔<-1a >又时,不能得出;1a <-0a >时,不能得出;0a >1a <-所以“”是“”的既不充分也不必要条件.1a >0a >故选: D.4. D解析:,,,ln 1π> 51log 03<120e 1-<<.y z x ∴<<故选:D.5. B解析:根据奇函数定义,②中违背了定义域要关于原点对称这一要求,所以排除[]0,2πx ∈②;对于①,,是奇22πcos sin 2y x x x x ⎛⎫=-= ⎪⎝⎭()()()()22sin sin f x x x x x f x -=--=-=-函数;对于③,,是偶函数.sin 2y x=()()sin 2sin 2f x x x f x -=-==故选:B .6. D解析:因为幂函数的图像过点,所以,得,()f x x α=15,5⎛⎫ ⎪⎝⎭155α=1α=-所以,则显然在区间上单调递增,1()f x x =3()(3)()1g x x f x x =-=-1,13⎡⎤⎢⎥⎣⎦所以所求最小值为.11983g ⎛⎫=-=- ⎪⎝⎭故选:D 7. A解析:函数,则(),1,ln ,1,x x f x x x ⎧≤⎪=⎨⎪->⎩()()2,1,2ln 2, 1.x x y f x x x -⎧≥⎪=-=⎨--<⎪⎩根据复合函数的单调性,当时,函数单调递减;1x ≥()2f x -当时,函数单调递增,只有A 符合1x <()2f x -故选:A.8. C解析:由题意得,则,π,π2x ⎡⎤∈⎢⎥⎣⎦ππππ,4244x ωωπω⎡⎤+∈++⎢⎥⎣⎦则,,πππππ,π2π,2π24422k k ωω⎡⎤⎡⎤++⊆-++⎢⎥⎢⎥⎣⎦⎣⎦Z k ∈当时,由,解得,又,故;0k =πππ242πππ42ωω⎧+≥-⎪⎪⎨⎪+≤⎪⎩3124ω-≤≤0ω>104ω<≤当时,由,得无解,同理当时,无解.1k =ππ3π242π5ππ42ωω⎧+≥⎪⎪⎨⎪+≤⎪⎩ω2,Z k k ≥∈ω故选:C二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. BD解析:依题意,5π2π,3k k θ=-+∈Z 当时,,1k =π3θ=当时,,3k =13π3θ=所以BD 选项符合,AC 选项不符合.故选:BD 10. ABD解析:A :函数的定义域为,函数的定义域为R ,xy x =(,0)(0,)-∞+∞ 1y =所以这两个函数不表示同一个函数,故A 符合题意;B :设,则,()(0)f x kx b k =+≠2(())()()f f x f kx b k kx b b k x kb b =+=++=++又,所以,解得或,(())165f f x x =+2165k kb b ⎧=⎨+=⎩41k b =⎧⎨=⎩453k b =-⎧⎪⎨=-⎪⎩所以或,故B 符合题意;()41f x x =+5()43f x x =--C :由函数的定义知,函数图象至多与y 轴有一个交点,故C 不符合题意;D :函数在上是单调递减函数,故D 符合题意.11y x =+(,1),(1,)-∞--+∞故选:ABD11. BD解析:作出函数的图象,如图1,显然A 错误;cos 2y x =作函数图象,如图2,故B 正确;sin y x=作函数图象,如图3,故C 错误;cos y x=作函数图象,如图4,故D 正确.tan y x=故选:BD 12. BD 解析:因为为偶函数,所以,()1f x +()()11f x f x +=-+所以,即,(11)((1)1)f x f x -+=--+()(2)f x f x =-+因为为奇函数,所以,()1f x -()()11f x f x -=---所以,即,(31)((3)1)f x f x -+-=---+-(2)(4)f x f x -+=--所以,所以,()(4)f x f x =--(4)(44)(8)f x f x f x -=---=--所以,所以,即函数的一个周期为.()(8)f x f x =-(8)()f x f x +=()f x 8在中,令,得,()(2)f x f x =-+72x =7732222f f f ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在中,令,得,()()11f x f x -=---12x =-3111222f f f ⎛⎫⎛⎫⎛⎫-=--=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又,所以,故A 错误;1131244f ⎛⎫-=-+=⎪⎝⎭73132224f f f ⎛⎫⎛⎫⎛⎫=-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为,所以,(8)()f x f x +=()()71f x f x +=-所以,从而为奇()()()()()711187f x f x f x f x f x -+=--=--=--+=-+()7f x +函数,故B 正确;因为在区间上是增函数,且的一个周期为,()21f x x =-+(1,0)-()f x 8所以在上单调递增,在上不为减函数.故C 错误;()f x ()7,8()6,8因为为奇函数,所以的图象关于点对称,()1f x -()f x (1,0)-因为为偶函数,所以的图象关于直线对称,()1f x +()f x 1x =又当时,,[]1,1x ∈-()21f x x =-+作出与的大致图象,如图所示.()f x lg y x =-其中单调递减且,所以两函数图象有6个交点,lg y x =-lg121-<-故方程仅有6个实数解,故D 正确.()lg 0f x x +=故选:BD.三、填空题:本题共4小题,每小题5分,共20分.13.二解析:由,得角的终边所在的象限是第二、四象限,tan 0x <x 因为,所以角的终边在第二、三象限或轴非正半轴上,cos 0x <x x 由于上述条件要同时成立,所以的终边在第二象限;x 故答案为:二14. 3log 2解析:令,则,即,()320x f x =-=32x =3log 2x =所以函数的零点为.()32x f x =-3log 2故答案为:3log 215. {}03k k <<解:因为不等式为一元二次不等式,所以,23208kx kx ++>0k ≠又一元二次不等式对一切实数x 都成立,23208kx kx ++>所以有,解得,即,22034208k k k >⎧⎪⎨∆=-⨯⨯<⎪⎩003k k >⎧⎨<<⎩03k <<所以实数k 的取值范围是,{}03k k <<故答案为:.{}03k k <<16. 4解析:因为,()()222222124242111x x x x f x x x x +++===++++令,则,()[]24,2023,20231x g x x x =∈-+()()2f x g x =+又因为,所以函数为奇函数,()()()()224411x x g x g x x x ---===-+-+()g x 因为奇函数的图象关于原点对称,所以在上的最大值和最小值之和为0,即,()g x []2023,2023-max min ()()0g x g x +=所以.max min ()2()24M m g x g x +=+++=故答案为:4四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. (1)解:因为为钝角,α所以,3sin 5α===故.3sin 35tan 4cos 45ααα===--(2)原式.sin cos sin tan αααα-+=-+将,,代入,3sin 5α=4cos 5α=-3tan 4α=-得原式.342855332754--==--18. (1)∵, , ,0x >0y >280x y xy +-=∴,当且仅当时取等号,28xy x y =+≥=28x y =8≥∴,当且仅当时取等号,64xy ≥416x y ==故的最小值为64.xy (2)∵,则 ,28x y xy +=281y x +=又∵, ,0x >0y >∴,2828()(101018x y x y x y y x y x +=++=++≥+=当且仅当时取等号,212x y ==故的最小值为18.x y +19. (1)因为是定义在上的偶函数,且,()f x R ()326f -=所以,即,()()3326f f =-=3326a -=解得.1a =(2)当时,,0x ≥()31x f x =-设,则,则,0x <0x ->()()31x f x f x -=-=-故()31,031,0x x x f x x -⎧-<=⎨-≥⎩(3)由是偶函数,等价于,即,()f x ()2f x >()2f x >312x->得,得,解得或,33x >1x >1x <-1x >故的解集是.()2f x >()(),11,-∞-⋃+∞20. (1)因为,π()sin 213f x x ⎛⎫=++ ⎪⎝⎭所以函数的周期,2ππ2T ==令,πππ2π22πZ 232k x k k -+≤+≤+∈,得,5ππππ,Z 1212k x k k -+≤≤+∈所以函数的最小正周期为,单调递增区间为.π5ππ[π,π],Z 1212k k k -++∈(2)当时,ππ,44x ⎡⎤∈-⎢⎥⎣⎦则,ππ5π2636x -≤+≤故当,即时,;ππ236x +=-π4x =-min 11()122f x =-+=当,即当时,.ππ232x +=π12x =max ()2f x =即,此时;,此时.max ()2f x =π12x =min 1()2f x =π4x =-21. (1)由条件可得,指数衰减的模型为,()1812n L n D =当时,,代入可得,解得,18n =()25L n =18182152D =45D =所以该学习率模型的表达式()181425n L n ⎛⎫=⨯ ⎪⎝⎭(2)由学习率衰减到以下(不含),可得,151518141255n ⎛⎫⨯< ⎪⎝⎭即,所以,即184255n ⎛⎫< ⎪⎝⎭452log 185n >45218log 5n >,()()452lglg 21lg 22lg 2lg 52lg 21518log 1818181873.9452lg 2lg 52lg 21lg 23lg 21lg 5----=⨯=⨯=⨯=⨯≈----所以,则,即至少需训练迭代74轮.73.9n >74n =22. (1)由题设可得,解得,故的定义域为,410x ->04x <<()f x (0,4)而,4444444()(4)log 1log 1log log 044x x f x f x x x x x -⎛⎫⎛⎫⎛⎫⎛⎫+-=-+-=+= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭故的图象关于点对称.()f x (2,0)(2)法一:因为关于x 的方程即有()()f x g x=4244log 1log log ()x a x ⎛⎫-==+ ⎪⎝⎭解,故在上有解.41x ax -=+(0,4)x ∈下面求在上有解时实数a 的取值范围.41a x x +=-(0,4)x ∈因为与在区间上都是减函数,4y x =y x =-(0,4)所以函数在区间上也是减函数,4y x x =-(0,4)所以时,的取值范围是.04x <<4xx -(3,)-+∞令,解得.13a +>-4a >-因此,所求实数a 的取值范围是.(4,)-+∞法二:,即,()()f xg x =4244log 1log log ()x a x ⎛⎫-==+ ⎪⎝⎭因为有解,故在上有解,()()f x g x =4x x a x -=+(0,4)整理得到在上有解,2(1)40x a x ++-=(0,4)设,显然,则或2()(1)4h x x a x =++-(0)40h =-<(4)0,104,2h a >⎧⎪⎨+<-<⎪⎩(4)0,10.2h a >⎧⎪⎨+-≤⎪⎩解得.4a >-故实数a 的取值范围为. (4,)-+∞。
2022-2023学年宁夏银川一中高一数学第一学期期末经典模拟试题含解析

【详解】(1)由 ,解得 ,
由 ,解得 ,
∴ .
(2)当 时,函数 在 上单调递增.
∵ ,
∴ ,即 .
于是 .
要使 ,则满足 ,解得 .
∴ .
当 时,函数 在 上单调递减.
∵ ,
∴ ,即 .
于是
要使 ,则满足 ,解得 与 矛盾.
∴ .
综上,实数 的取值范围为 .
解得: ,
综上: .
【点睛】本题考查了二次函数的图象与性质、指数函数的图象与性质,考查了整体换元的思想方法,还考查了学生理解新定义的能力.
18、(1)
(2)
【解析】(1)根据命题为真可求不等式的解.
(2)根据条件关系可得对应集合的包含关系,从而可求参数的取值范围.
【小问1详解】
因为p为真命题,故 成立,故 .
【详解】如图设 为地面,圆 为摩天轮,其旋转半径30米,最高点距离地面70米.
则摩天轮的最低点 离地面10米,即
以 所在直线为 轴, 所在直线为 轴,建立平面直角坐标系.
某人在最低点 的位置坐上摩天轮,则第 分钟时所在位置的高度为
则
由题意, ,则 ,所以
当 时,
故答案为:55
15、
【解析】先求出 的值,然后再运用对数的运算法则求解出 和 的值,最后求解答案.
【解析】(1)由单调性定义判断;
(2)根据奇函数的性质由 求得 ,然后再由奇函数定义验证
【详解】(1) 是 上的减函数
设 ,则 ,所以 ,
,即 , ,所以 ,
所以 是 上的减函数
(2)若 是奇函数,则 , ,
时, ,
所以 ,所以 为奇函数
河南省南阳市2023-2024学年高一上学期期末测试英语模拟试题(含答案)

河南省南阳市2023-2024学年高一上学期期末测试英语模拟试题一、阅读理解(本大题共4小题)Four Books about Super ScientistsYou’ll find the lives of these top minds to be as inspiring as they are exciting in the following books.The Extraordinary Life of Alan TuringSecond World War code-breaker Alan Turing features on the Bank of England’s new £50 note as a computer pioneer. This biography follows him from his childhood as a quiet boy who loved maths to becoming one of the most important scientists in history.100 Scientists Who Made HistoryBringing together mini-biographies of 100 scientists and innovators, this book will give you an overview of the history of science. Including astronauts, biologists, chemists, coders, doctors and physicists, it features fun facts about everyone from Hippocrates and Leonardo da Vinci through to Marie Curie and Stephen Hawking.Rosalind Franklin: A Life StoryRosalind Franklin was the scientist whose contribution to a crucial discovery in DNA — the chemical that tells your body how to grow and develop — was not recognized until after her death. This book shines a light on the extraordinary story of her life and achievements, using timelines, illustrations and fascinating facts.40 Inspiring Icons: Super ScientistsEach part of this colourful illustrated book introduces you to a different “super scientist” and their discoveries. This is a fun and easy way to learn about all sorts of ideas, including Louis Pasteur’s vaccinations and Ada Lovelace’s invention of mysterious codes.1.Whose contribution was recognised after death?A.Marie Curie’s.B.Louis Pasteur’s.C.Rosalind Franklin’s.D.Stephen Hawking’s. 2.Which book will attract readers who are interested in computer science?A.Rosalind Franklin: A Life Story B.100 Scientists Who Made HistoryC.40 Inspiring Icons: Super Scientists D.The Extraordinary Life of Alan Turing 3.Where can the text probably be found?A.In a novel.B.In a magazine.C.In a biography.D.In a diary.Nate had spent most of his seventy years in the woods. As a young man, he had the alternative of working in the city with his brother. But he decided that urban life was not for him. He preferred to isolate himself from others and find shelter in nature from the crowds and noise of the city. He was more than willing to give up such advantages as flush toilets and electric blankets for the joy of watching a sunrise illuminate the frozen pines.Because Nate had lived alone for so long, his behavior was unpredictable. For example, one minute he’d be very quiet, and the next he’d talk about his youth. His knowledge of nature was extensive, and so I learned much from him through the years.I will tell you an interesting story that shows how wise he was about the woods and how miserly (吝啬的) he could be with words. One evening Nate, my cousin Arthur, and I were crossing a grassland. Arthur’s interest in some little white mushrooms that were growing there led to this dialogue:“These mushrooms look so good,” said Arthur. “Did you ever use them, Nate?”“Yep,” said Nate. “My mom used to cook them up.”“Great!” said Arthur. Nate’s words seemed to strengthen Arthur s desire for those mushrooms. He gathered about a hundred of them. “How did she prepare them?” he asked Nate.“Cooked them up in sugar water.”“Really? And then you ate them that way?”“Ate them?” Nate was horrified. “You crazy? We used to put them in a bowl on the table to kill flies!”4.Which can make Nate happier?A.Working in the city.B.Quitting flush toilets.C.Using electric blankets.D.Enjoying sunrises in the woods.5.Nate is a man with ________.A.ambition B.courage C.knowledge D.imagination 6.What do we know about the white mushrooms?A.They were delicious.B.Nate ate them very often.C.They might be poisonous.D.Arthur’s mother used to cook them.7.What would be the best title for the passage?A.Far From NatureB.White Mushrooms C.Nate the WoodsmanD.Advantages of Urban LifeOver the next 20 years, we are going to send more and better robots to Mars. Those robots will send back better pictures, maps, samples, and weather reports. There is a limit to what robots can tell us, though, so eventually we will have to send people to study the planet. Before people can visit Mars, we need to invent a ceship that can take us there. Mars is very far away. Depending on where Mars and Earth are in their orbits (轨道) around the sun, it could take between six months to a year to get there.The moon is much closer, and we were there, 25 years ago. Over the next 10 years, we are going to work on building a new cecraft that can go to the moon. Using this craft, we will practise the skills we need to go to Mars.Once we get to the moon, we are going to build a station so that people can live and work on the moon for months at a time. This is important so that we have a place to start from when we want to visit Mars, but it is also important because it gives us practice with living away from Earth.By the time you are old enough to be an astronaut, we will have people spending months on the moon. By the time you are old enough to be a commander of a ce mission we will be taking trips to Mars. By the time your kids are old enough to be astronauts, we may have people living on Mars. Wouldn’t it be cool to get a postcard from someone who was building a house on Mars? Wouldn’t it be cooler if it was you who sent the postcard?8.We eventually have to send people to Mars because_________.A.the pictures that robots have sent back are not very clearB.robots can’t tell us all we want to knowC.robots are controlled by us humansD.the samples robots have sent back are not good enough9.From the first paragraph we can see the distance between Earth and Mars________ .A.is not always the sameB.is nearly the sameC.is unchangeableD.never changes very much10.A ce station on the moon is important because________ .A.people can learn to adapt to living on other planetsB.people can practise planting crops in itC.the new cecraft can only land in itD.astronauts can practise skills they need to go to Mars11.The author of the passage________.A.thinks that trips to the moon are an unrealistic dreamB.encourages kids to be astronautsC.hopes to receive a postcard from MarsD.is sure people’s dream of living on Mars will come trueThe situation of the world’s plants is not good. One fifth of the kinds of plants are in danger of disappearing, according to a report.“Plants are very vital to human beings,” said Kathy Willis, who led the new report. “Plants provide us with everything—food, fuel, and medicine, and they are very important for our climate controlling. Without plants we would not be here.”In Dong Qiang's opinion, a professor at Peking University, Modiano has been a celebrated writer in France ever since.Nobel, since it was only six years ago that another French writer, Le Clezio, took the prize.Born in a western Paris suburb in July 1945—two months after World War Europe—Modiano spenFrance.Raymondlife in France and studied in Paris, the top preparatoryIn the first interview Modiano gave after winning the Nobel, he explained that writing for him was a natural thing that he started quite young, “ 18 ”1968.Modianopublished about 30 works, including novels, film scripts and children's books, since his first book, La Place de l′ toile, in 1968.Modiano's works focus on the occupation of France during World War Ⅱ.19Jin Longge, who has translated three books by Modiano into Chinese, says, “ 20 But they are not detective novels, because the answers to the riddles set out in his novels usually remain untold and the reader is left to find his own answers.”A.He had a major influence on him.B.His works read like detective novels.C.It was not a surprise that he won the prize.D.It's something that's been part of my life.E.They will be published in the coming months.F.They invite the reader to seek identity through memory and history.G.Many of his readers came to know of him and started to read his works.三、完形填空(本大题共1小题)Tim, a blind and deaf man, boarded a six-hour flight, travelling from Boston to Los Angeles by himself. He 21 him.After as no one was able to communicate with him.After flight attendants (服务人员) looked for anyone 22 sign language, Clara Daly came to Tim’s 23 and talked to him in the only way he knew. Signing each 24 letter, Clara was able to have a conversation with him. Her heart-warming act 25 the attention of a passenger Lynette Scribner,who recorded the whole thing.The flight attendants 26 communicate.Theyhim, but had no way to communicate.They took his hands and 27 use.Thoseto communicate with him, but of no use.Those sitting next to Tim also helped get his foodtoilet.That and led him to the toilet.That was when this lovely young woman 28 .Clara learned American sign language because she had dyslexia (诵读困难) and it was the 29 foreign language for her to learn. So for the rest of the flight, she took care of Tim and made sure his needs were 30 . She signed one 31 at a time into his hand. He was able to 32 her signing and they carried on a lively conversation.Lynette was touched by the strangers’ 33 as everyone did their best to help Tim. She said, “All of us in the 34 rows enjoyed his pleasure of having someone to talk to. Actually it was a beautiful 35 that there are still kind-hearted people who are willing to help others.”16.A.escaped B.suffered C.walked D.failed 17.A.knowing B.writing C.inventing D.teaching 18.A.offer B.call C.mind D.help19.A.funny B.strange C.single D.large 20.A.fixed B.needed C.caught D.missed 21.A.shyly B.sincerely C.suddenly D.finally 22.A.prepared B.determined C.learned D.tried 23.A.answered B.continued C.disagreed D.appeared 24.A.funniest B.easiest C.best D.newest 25.A.made B.divided C.met D.noticed 26.A.letter B.mark C.vocabulary D.usage27.A.feel B.hear C.accept D.read 28.A.honesty B.kindness C.expression D.happiness 29.A.short B.middle C.neighbouring D.straight 30.A.idea B.example C.accident D.suggestion四、语法填空(本大题共1小题)阅读下面短文,在空白处填入1个适当的单词或括号内单词的正确形式。
杭州高级中学2015-2016学年高一新生分班模拟考试数学试题(解析版)

浙江省杭州高级中学2015-2016学年高一新生分班模拟考试数学试题一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列结论正确的是()A.3a2b﹣a2b=2B.单项式﹣x2的系数是﹣1C.使式子有意义的x的取值范围是x>﹣2D.若分式的值等于0,则a=±12.在下列艺术字中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A.B.C.D.4.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是5.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.6.如图是自行车骑行训练场地的一部分,半圆O的直径AB=100,在半圆弧上有一运动员C 从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A点停止.设运动时间为t,点B到直线OC的距离为d,则下列图象能大致刻画d与t之间的关系是()A.B.C.D.7.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.48.如图,分别过点P i(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点A i,交直线于点B i.则的值为()A.B.2 C.D.二、填空题9.如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=度.10.定义新运算“*”规则:a*b=,如1*2=2,*=,若x2+x﹣1=0两根为x1,x2,则x1*x2=.11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc >0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论是.(写出正确命题的序号)12.已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c在a,b,c三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作,(1)若a=1,b=3,按上述规则操作三次,扩充所得的数是;(2)若p>q>0,经过6次操作后扩充所得的数为(q+1)m(p+1)n﹣1(m,n为正整数),则m+n的值为.三、解答题(本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.)13.先化简,再求值:( +)÷,其中a=﹣1.(2)已知关于x,y的二元一次方程的解满足x<y,求m的取值范围.14.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.15.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA=,求BH的长.16.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?17.如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.浙江省杭州高级中学2015-2016学年高一新生分班模拟考试数学试题参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列结论正确的是()A.3a2b﹣a2b=2B.单项式﹣x2的系数是﹣1C.使式子有意义的x的取值范围是x>﹣2D.若分式的值等于0,则a=±1【考点】二次根式有意义的条件;合并同类项;分式的值为零的条件.菁优网版权所有【分析】根据二次根式有意义的条件、单项式、合并同类项、分式有意义的条件解答.【解答】解:3a2b﹣a2b=2a2b,A错误;单项式﹣x2的系数是﹣1,B正确;使式子有意义的x的取值范围是x≥﹣2,C错误;若分式的值等于0,则a=1,错误,故选:B.2.在下列艺术字中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.菁优网版权所有【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,也不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.3.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A.B.C.D.【考点】剪纸问题.菁优网版权所有【分析】根据题意直接动手操作得出即可.【解答】解:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A.4.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是【考点】方差;加权平均数;中位数;众数.菁优网版权所有【分析】根据方差、众数、平均数和中位数的计算公式和定义分别进行解答即可.【解答】解:平均数是:(10+15+10+17+18+20)÷6=15;10出现了2次,出现的次数最多,则众数是10;把这组数据从小到大排列为10,10,15,17,18,20,最中间的数是(15+17)÷2=16,则中位数是16;方差是: [2(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(20﹣15)2]==.则下列说法错误的是C.故选:C.5.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.【考点】锐角三角函数的定义;旋转的性质.菁优网版权所有【专题】压轴题.【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选B.6.如图是自行车骑行训练场地的一部分,半圆O的直径AB=100,在半圆弧上有一运动员C 从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A点停止.设运动时间为t,点B到直线OC的距离为d,则下列图象能大致刻画d与t之间的关系是()A.B.C.D.【考点】动点问题的函数图象.菁优网版权所有【专题】压轴题.【分析】设运动员C的速度为v,则运动了t的路程为vt,设∠BOC=α,当点C从运动到M 时,当点C从M运动到A时,分别求出d与t之间的关系即可进行判断.【解答】解:设运动员C的速度为v,则运动了t的路程为vt,设∠BOC=α,当点C从运动到M时,∵vt==,∴α=,在直角三角形中,∵d=50sinα=50sin=50sin t,∴d与t之间的关系d=50sin t,当点C从M运动到A时,d与t之间的关系d=50sin(180﹣t),故选:C.7.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4【考点】反比例函数综合题.菁优网版权所有【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB≌△FDA≌△BEC,求得A、B的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a的值即可求解.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2.故选:B.8.如图,分别过点P i(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点A i,交直线于点B i.则的值为()A.B.2 C.D.【考点】二次函数综合题.菁优网版权所有【专题】压轴题;规律型.【分析】根据A i的纵坐标与B i纵坐标的绝对值之和为A i B i的长,分别表示出所求式子的各项,拆项后抵消即可得到结果.【解答】解:根据题意得:A i B i=x2﹣(﹣x)=x(x+1),∴==2(﹣),∴++…+=2(1﹣+﹣+…+﹣)=.故选A二、填空题9.如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=60度.【考点】线段垂直平分线的性质;三角形的外角性质.菁优网版权所有【专题】计算题.【分析】由三角形的外角性质知∠ADC=∠BAD+∠B,又已知∠BAC=120°,根据三角形内角和定理易得∠B,而AB的垂直平分线交BC于点D,根据垂直平分线的性质知∠BAD=∠B,从而得解.【解答】解:由AB=AC,∠BAC=120°,可得∠B=30°,因为点D是AB的垂直平分线上的点,所以AD=BD,因而∠BAD=∠B=30°,从而∠ADC=60度.10.定义新运算“*”规则:a*b=,如1*2=2,*=,若x2+x﹣1=0两根为x1,x2,则x1*x2=.【考点】根与系数的关系.菁优网版权所有【专题】新定义.【分析】根据公式法求得一元二次方程的两个根,然后根据新运算规则计算x1*x2的值则可.【解答】解:在x2+x﹣1=0中,a=1,b=1,c=﹣1,∴b2﹣4ac=5>0,所以x1=,x2=或x1=,x2=,∴x1*x2=*=,故答案为.11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc >0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论是①④.(写出正确命题的序号)【考点】二次函数图象与系数的关系.菁优网版权所有【分析】根据抛物线开口方向,对称轴的位置,与x轴交点个数,以及x=﹣1,x=2对应y 值的正负判断即可.【解答】解:由二次函数图象开口向上,得到a>0;与y轴交于负半轴,得到c<0,∵对称轴在y轴右侧,且﹣=1,即2a+b=0,∴a与b异号,即b<0,∴abc>0,选项①正确;∵二次函数图象与x轴有两个交点,∴△=b2﹣4ac>0,即b2>4ac,选项②错误;∵原点O与对称轴的对应点为(2,0),∴x=2时,y<0,即4a+2b+c<0,选项③错误;∵x=﹣1时,y>0,∴a﹣b+c>0,把b=﹣2a代入得:3a+c>0,选项④正确,故答案是:①④.12.已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c在a,b,c三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作,(1)若a=1,b=3,按上述规则操作三次,扩充所得的数是255;(2)若p>q>0,经过6次操作后扩充所得的数为(q+1)m(p+1)n﹣1(m,n为正整数),则m+n的值为21.【考点】推理与论证.菁优网版权所有【分析】(1)a=1,b=3,按规则操作三次,第一次:c=7;第二次c=31;第三次c=255;(2)p>q>0 第一次得:c1=pq+p+q=(q+1)(p+1)﹣1;第二次得:c2=(p+1)2(q+1)﹣1;所得新数大于任意旧数,故经过6次扩充,所得数为:(q+1)8(p+1)13﹣1,故可得结论.【解答】解:(1)a=1,b=3,按规则操作三次,第一次:c=ab+a+b=1×3+1+3=7;第二次,7>3>1所以有:c=3×7+3+7=31;第三次:31>7>3所以有:c=7×31+7+31=255;(2)p>q>0 第一次得:c1=pq+p+q=(q+1)(p+1)﹣1;因为c>p>q,所以第二次得:c2=(c1+1)(p+1)﹣1=(pq+p+q)p+p+(pq+p+q)=(p+1)2(q+1)﹣1;所得新数大于任意旧数,所以第三次可得c3=(c2+1)(c1+1)﹣1=(p+1)3(q+1)2﹣1第四次可得:c4=(c3+1)(c2﹣1)﹣1=(p+1)5(q+1)3﹣1;第五次可得:c5=(p+1)8(q+1)5﹣1;故经过6次扩充,所得数为:(q+1)8(p+1)13﹣1∴m=8,n=13,∴m+n=21.故答案为:255;21.三、解答题(本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.)13.(1)先化简,再求值:( +)÷,其中a=﹣1.(2)已知关于x,y的二元一次方程的解满足x<y,求m的取值范围.【考点】分式的化简求值;二元一次方程组的解;解一元一次不等式.菁优网版权所有【分析】(1)先将括号内通分,计算加法、同时将除法转化为乘法,再约分即可得;(2)先将m看做已知的常数解方程组,再根据x<y得出关于m的不等式,解之可得.【解答】解:(1)原式=[+]•=•=•=,当a=﹣1时,原式==;(2)解方程组得:,∵x<y,∴m﹣<﹣,解得:m<﹣.14.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是30;扇形统计图中的圆心角α等于144°;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【考点】列表法与树状图法;扇形统计图;利用频率估计概率.菁优网版权所有【分析】(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.【解答】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,小红小花 1 2 3 4 51 (2,1)(3,1)(4,1)(5,1)2 (1,2)(3,2)(4,2)(5,2)3 (1,3)(2,3)(4,3)(5,3)4 (1,4)(2,4)(3,4)(5,4)5 (1,5)(2,5)(3,5)(4,5)记小红和小花抽在相邻两道这个事件为A,∴.15.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA=,求BH的长.【考点】圆的综合题.菁优网版权所有【专题】证明题.【分析】(1)由圆周角定理和已知条件证出∠ODB=∠ABC,再证出∠ABC+∠DBF=90°,即∠OBD=90°,即可得出BD是⊙O的切线;(2)连接AC,由垂径定理得出,得出∠CAE=∠ECB,再由公共角∠CEA=∠HEC,证明△CEH∽△AEC,得出对应边成比例,即可得出结论;(3)连接BE,由圆周角定理得出∠AEB=90°,由三角函数求出BE,再根据勾股定理求出EA,得出BE=CE=6,由(2)的结论求出EH,然后根据勾股定理求出BH即可.【解答】(1)证明:∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线;(2)证明:连接AC,如图1所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,如图2所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,sin∠BAE=,∴AB=10,BE=AB•sin∠BAE=10×=6,∴EA===8,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH==,在Rt△BEH中,BH===.16.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?【考点】二次函数的应用.菁优网版权所有【分析】(1)直接根据题意售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件,进而得出等量关系;(2)利用每件利润×销量=总利润,进而利用配方法求出即可;(3)利用函数图象结合一元二次方程的解法得出符合题意的答案.【解答】解:(1)由题意可得:y=;(2)由题意可得:w=,化简得:w=,即w=,由题意可知x应取整数,故当x=﹣2或x=﹣3时,w<6125,x=5时,W=6250,故当销售价格为65元时,利润最大,最大利润为6250元;(3)由题意w≥6000,如图,令w=6000,将w=6000带入﹣20≤x<0时对应的抛物线方程,即6000=﹣20(x+)2+6125,解得:x1=﹣5,将w=6000带入0≤x≤30时对应的抛物线方程,即6000=﹣10(x﹣5)2+6250,解得x2=0,x3=10,综上可得,﹣5≤x≤10,故将销售价格控制在55元到70元之间(含55元和70元)才能使每月利润不少于6000元.17.如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.【考点】二次函数综合题.菁优网版权所有【专题】压轴题.【分析】方法一:(1)抛物线y=ax2+bx+c经过点O、A、C,利用待定系数法求抛物线的解析式;(2)根据等腰梯形的性质,确定相关点的坐标以及线段长度的数量关系,得到一元二次方程,求出t的值,从而可解.结论:存在点P(,),使得四边形ABPM为等腰梯形;(3)本问关键是求得重叠部分面积S的表达式,然后利用二次函数的极值求得S的最大值.解答中提供了三种求解面积S表达式的方法,殊途同归,可仔细体味.方法二:(1)略.(2)因为四边形ABPM为等腰梯形,只需AM=BP,且AM与BP不平行,利用两点间距离公式可求解.(3)设A’参数坐标,利用直线方程分别求出R,Q,K,T的参数坐标,根据S=S△QOT﹣S △ROK,求出S的面积函数,并求出S的最大值.【解答】方法一:解:(1)∵抛物线y=ax2+bx+c经过点O、A、C,可得c=0,∴,解得a=,b=,∴抛物线解析式为y=x2+x.(2)设点P的横坐标为t,∵PN∥CD,∴△OPN∽△OCD,可得PN=∴P(t,),∵点M在抛物线上,∴M(t,t2+t).如解答图1,过M点作MG⊥AB于G,过P点作PH⊥AB于H,AG=y A﹣y M=2﹣(t2+t)=t2﹣t+2,BH=PN=.当AG=BH时,四边形ABPM为等腰梯形,∴t2﹣t+2=,化简得3t2﹣8t+4=0,解得t1=2(不合题意,舍去),t2=,∴点P的坐标为(,)∴存在点P(,),使得四边形ABPM为等腰梯形.(3)如解答图2,△AOB沿AC方向平移至△A′O′B′,A′B′交x轴于T,交OC于Q,A′O′交x 轴于K,交OC于R.求得过A、C的直线为y AC=﹣x+3,可设点A′的横坐标为a,则点A′(a,﹣a+3),易知△OQT∽△OCD,可得QT=,∴点Q的坐标为(a,).解法一:设AB与OC相交于点J,∵△A′RQ∽△AOJ,相似三角形对应高的比等于相似比,∴=∴HT===2﹣a,KT=A′T=(3﹣a),A′Q=yA′﹣yQ=(﹣a+3)﹣=3﹣a.S四边形RKTQ=S△A′KT﹣S△A′RQ=KT•A′T﹣A′Q•HT=••(3﹣a)﹣•(3﹣a)•(﹣a+2)=a2+a﹣=(a﹣)2+由于<0,∴当a=时,S四边形RKTQ最大=,∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.解法二:过点R作RH⊥x轴于H,则由△ORH∽△OCD,得①由△RKH∽△A′O′B′,得②由①,②得KH=OH,OK=OH,KT=OT﹣OK=a﹣OH ③由△A′KT∽△A′O′B′,得,则KT=④由③,④得=a﹣OH,即OH=2a﹣2,RH=a﹣1,所以点R的坐标为R(2a﹣2,a﹣1)S四边形RKTQ=S△QOT﹣S△ROK=•OT•QT﹣•OK•RH=a•a﹣(1+a﹣)•(a﹣1)=a2+a﹣=(a﹣)2+由于<0,∴当a=时,S四边形RKTQ最大=,∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.解法三:∵AB=2,OB=1,∴tan∠O′A′B′=tan∠OAB=,∴KT=A′T•tan∠O′A′B′=(﹣a+3)•=a+,∴OK=OT﹣KT=a﹣(a+)=a﹣,过点R作RH⊥x轴于H,∵cot∠OAB=tan∠RKH==2,∴RH=2KH又∵tan∠OAB=tan∠ROH===,∴2RH=OK+KH=a﹣+RH,∴RH=a﹣1,OH=2(a﹣1),∴点R坐标R(2a﹣2,a﹣1)S四边形RKTQ=S△A′KT﹣S△A′RQ=•KT•A′T﹣A′Q•(x Q﹣x R)=••(3﹣a)﹣•(3﹣a)•(﹣a+2)=a2+a﹣=(a﹣)2+由于<0,∴当a=时,S四边形RKTQ最大=,∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.方法二:(1)略.(2)∵C(2,1),∴l OC:y=x,设P(t,),M(t,),∵四边形ABPM为等腰梯形,∴AM=BP且AM不平行BP,∴(t﹣1)2+(2+)2=(t﹣1)2+()2,∴2+=(无解)或2+=﹣,t1=2(舍),t2=,∴P(,).(3)∵A(1,2),C(2,1),∴l AC:y=﹣x+3,设A′(t,3﹣t),Q(t,),T(t,0),∵O′A′∥OA,∴K O′A′=K OA=2,∴l O′A′:y=2x+3﹣3t,∵l OC:y=x,∴R(2t﹣2,t﹣1),K(,0),∵S=S△QOT﹣S△ROK==﹣,∴t=时,S有最大值.。
2023-2024学年新疆乌鲁木齐高一上学期期中考试数学质量检测模拟试题(含答案)

2023-2024学年乌鲁木齐高一上册期中考试数学试题一、单选题1.若集合2}2{|0A x x x =+-≤,{|24}B x x =∈-<<Z ,则A B = ()A .{}1,0,1-B .{}|21x x -<≤C .{|21}x x -<<D .{}0,1,2【正确答案】A【分析】求出集合A 、B ,根据交集的运算即可求出答案.【详解】解220x x +-≤可得21x -≤≤,所以{|21}A x x =-≤≤.又{}{|24}1,0,1,2,3B x x =∈-<<=-Z ,所以{}1,0,1A B =- 故选:A.2.下列函数中与1y x =-是同一函数的是()A .y =B .21x y x=-C .211x y x -=+D .1y =【正确答案】D【分析】求出已知函数的定义域,然后根据判断两函数是同一函数的标准,即定义域相同,对应法则相同,对各个选项逐个化简判断即可求解.【详解】函数1y x =-的定义域为R ,1y x ==-,所以与已知函数的解析式不同,故A 错误,21x y x=-定义域为()(),00,∞-+∞U ,与已知函数的定义域不同,故B 错误,211x y x -=+定义域为()(),11,-∞--+∞ ,与已知函数的定义域不同,故C 错误,11y x =-=-,且定义域为R ,与已知函数是同一函数,故D 正确,故选:D .3.已知函数21,0()21,0x x x f x x ⎧+≤=⎨+>⎩,若()3f x =,则x 值为()A .1-或1B .C .1或D 或1【正确答案】C【分析】分别根据0x ≤以及0x >时的解析式,列出方程,求解方程即可得出答案.【详解】因为21,0()21,0x x x f x x ⎧+≤=⎨+>⎩.当0x ≤时,2()1f x x =+,解213x +=,可得x =x =);当0x >时,()12xf x =+,解123x +=,可得1x =.综上所述,x =1x =.故选:C .4.设,a b ∈R ,则“lg lg 0a b +=”是“1ab =”的().A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【正确答案】A【分析】根据对数的运算性质,结合充分性、必要性的定义进行判断即可.【详解】由lg lg 0a b +=lg 01ab ab ⇒=⇒=且0a >且0b >,故选:A .5.三个数20.320.3,log 0.3,2a b c ===之间的大小关系是()A .a c b <<.B .b a c <<C .a b c <<D .b<c<a【正确答案】B【分析】根据指数函数和对数函数的单调性进行求解,即可比较大小.【详解】解:2000.30.31<<= ,则01a <<,22log 0.3log 10<= ,则0b <,0.30221>= ,则1c >,所以b a c <<.故选:B.6.函数3x y -=与()3log y x =-的图象可能是()A .B .C .D .【正确答案】C【分析】分析两个函数的定义域与单调性,可得出合适的选项.【详解】函数133xxy -⎛⎫== ⎪⎝⎭为R 上的减函数,排除AB 选项,函数()3log y x =-的定义域为(),0∞-,内层函数u x =-为减函数,外层函数3log y u =为增函数,故函数()3log y x =-为(),0∞-上的减函数,排除D 选项.故选:C.7.已知0x >,0y >且211x y+=,若228x y m m +<-有解,则实数m 的取值范围时()A .(-∞,1)(9-⋃,)∞+B .(-∞,][19-⋃,)∞+C .(9,1)--D .[9-,1]【正确答案】A【分析】由已知先利用基本不等式求出2x y +的最小值,然后结合不等式的存在性问题与最值关系进行转化,解二次不等式可求.【详解】因为0x >、0y >,且211x y+=,()212222559x y x y x y x y y x ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当22x y y x =且211x y+=,即3x y ==时取等号,此时2x y +取得最小值9,若228x y m m +<-有解,则298m m <-,解得9m >或1m <-,即实数m 的取值范围为(-∞,1)(9-⋃,)∞+.故选:A .8.若函数()22,14,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可以是()A .0B .1C .2D .3【正确答案】B【分析】根据已知条件及分段函数分段处理的原则,结合一次函数与二次函数的单调性即可求解.【详解】因为当1x ≤-时,函数2()2f x x a =-+为单调递增函数,又函数()f x 在R 上是单调函数,则需满足0124a a a >⎧⎨-+≤-+⎩,解得503a <≤,所以实数a 的范围为50,3⎛⎤⎥⎝⎦,所以满足范围的选项是选项B.故选:B .9.设函数(1)f x -是定义域在R 上的偶函数,且在[)0,∞+上递减,则(1)f -,(π)f ,(3)f -的大小关系是()A .(π)(1)(3)f f f >->-B .(π)(3)(1)f f f >->-C .(π)(3)(1)f f f <-<-D .(π)(1)(3)f f f <-<-【正确答案】C【分析】令()()1g x f x =-,则()()1f x g x =+.由已知可得出()g x 在[)0,∞+上递减,根据()f x 与()g x 的关系,即可得出大小关系.【详解】令()()1g x f x =-,则()()1f x g x =+.且()g x 是定义域在R 上的偶函数,在[)0,∞+上递减.所以()(1)0f g -=,()()ππ1f g =+,()()()322f g g -=-=.由()g x 在[)0,∞+上递减,可得()()()02π1g g g >>+,即()()()13πf f f ->->.故选:C .10.已知函数()8(0,1)2x xa a f x a a --=+>≠在区间[],ab 上的最小值为10-,则函数()f x 在区间[],b a --上的最大值为()A .10B .26C .10-D .与a 有关【正确答案】B【分析】依题意,可得()f x 在区间[],a b ,区间[],b a --上均为单调函数,利用奇函数()(0,1)2x xa a g x a a --=>≠在区间[],ab 上的最小值为18-,可求得()g x 在区间[],b a --上的最大值,进而可得答案.【详解】()8(0,1)2x xa a f x a a --=+>≠ ,x y a =与x y a -=-单调性相同,()f x ∴在区间[],a b ,区间[],b a --上均为单调函数,又()(0,1)2x xa a g x a a --=>≠,满足()()g x g x -=-,即()g x 为奇函数,()8(0,1)2x xa a f x a a --=+>≠ 在区间[],ab 上的最小值为10-,()(0,1)2x xa a g x a a --∴=>≠在区间[],ab 上的最小值为10818--=-,()g x ∴在区间[],b a --上的最大值为18,∴函数()f x 在区间[],b a --上的最大值为18826+=.故选:B11.已知关于x 的不等式20ax bx c ++≥的解集为[]1,2-,则0ax bcx b+≥-的解集为()A .1,12⎛⎫ ⎪⎝⎭B .1,12⎛⎤⎥⎝⎦C .11,2⎛⎫-- ⎪⎝⎭D .11,2⎛⎫- ⎪⎝⎭【正确答案】B【分析】由题意可得1-和2是方程20ax bx c ++=的两个根,且a<0,再利用韦达定理求出2b ac a =-⎧⎨=-⎩,代入所求不等式求解即可.【详解】 关于x 的不等式20ax bx c ++≥的解集为[]1,2-,1∴-和2是方程20ax bx c ++=的两个根,且a<0,∴1212b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得2b a c a =-⎧⎨=-⎩,∴不等式0ax b cx b +≥-可化为02ax aax a -≥-+,即1021x x -≤-,转化为(1)(21)0x x --≤,且210x -≠,解得112x <≤,即不等式0ax b cx b +≥-的解集为1,12⎛⎤⎥⎝⎦.故选:B .12.已知二次函数()()22,R f x mx x n m n =-+∈,若函数()f x 的值域是[0,)+∞,且(1)2f ≤,则222211m n n m +++的取值范围是()A .[]0,12B .[]1,13C .[]2,12D .[]3,13【正确答案】B【分析】根据二次函数的性质可得1mn =,且0m >,又因为f (1)2≤,所以14m m+≤,再结合基本不等式求解即可.【详解】解: 二次函数()()22,R f x mx x n m n =-+∈的值域是[0,)+∞,Δ440mn ∴=-=,解得1mn =,且0m >,又(1)22f m n =-+≤ ,1n m =,14m m∴+≤,()22222622222222222111111111111m n m n m m m m n m n m m m m m m +∴+=+=+==+-+++++++由14m m+≤,0m >,可得221214m m ≤+≤,221113m m ∴≤+≤即222211m n n m +++的取值范围是[]1,13.故选:B .二、填空题13.已知幂函数()()257mf x m m x =-+是R 上的增函数,则m 的值为______.【正确答案】3【分析】根据幂函数的定义与性质,即可求出m 的值.【详解】由题意()()257mf x m m x =-+是幂函数,2571m m ∴-+=,解得2m =或3m =,又()f x 是R 上的增函数,则3m =.故3.本题考查了幂函数的定义与性质的应用问题,解题的关键是得出关于m 的方程和不等式,是基础题.14.函数x m y a n +=+(0a >且)1a ≠恒过定点(1,2)-,m n +=__.【正确答案】4-【分析】由已知,根据指数函数的性质即可求解.【详解】令0x m +=可得x m =-,此时有1y n =+.由题意可得1m -=,12n +=-,所以1m =-,3n =-,所以4m n +=-.故4-.15.若函数4,1()(21)1,1x x f x x a x x ⎧+≥⎪=⎨⎪--<⎩的值域是R ,则实数a 的取值范围是__.【正确答案】3a ≥【分析】先根据基本不等式求出1x ≥时()f x 的取值范围,然后根据a 的范围得出()f x 在(),1-∞上的单调性,求出值域.根据题意,即可得出答案.【详解】因为函数4,1()(21)1,1x x f x x a x x ⎧+≥⎪=⎨⎪--<⎩.当1x ≥时,有4()4f x x x=+≥,当且仅当2x =时等号成立.当210a -=,即12a =时,有4,1()1,1x x f x x x ⎧+≥⎪=⎨⎪-<⎩,不满足题意;当210a -<,即12a <时,()()211f x a x =--在(),1-∞上单调递减,有()()122f x f a >=-,不满足题意;当210a ->,即12a >时,()()211f x a x =--在(),1-∞上单调递增,有()()122f x f a <=-.要使()f x 的值域是R ,则应有224a -≥,所以3a ≥.综上所述,当3a ≥时,()f x 的值域是R .故答案为.3a ≥16.已知函数22,3()9,3x x f x x x ⎧-≤⎪=⎨-+>⎪⎩,若存在实数1x ,2x ,3x ,123x x x <<,有123()()()f x f x f x ==,则12322x xx ++的范围是__.【正确答案】(11,13)【分析】画出函数的图象,123()()()===f x f x f x k ,结合图象可得02k <<.然后求解即可推出12224x x +=.进而得出3x 的范围,即可.【详解】作出函数22,3()9,3x x f x x x ⎧-≤⎪=⎨-+>⎪⎩的大致图象如图:当3x ≤时,()222xf x =-=,解得2x =,令123()()()===f x f x f x k .由图象可知,当02k <<时,满足题意.且11<x ,212x <<.又由12()()f x f x =知,122222x x-=-,所以122222x x -=-,即12224x x +=.所以1233242x xx x ++=+.由3092x <-+<,可得379x <<,所以311413x <+<.故(11,13).三、解答题17.已知全集U =R ,集合{}|3231A x R x =∈-≤-≤,集合1|224x B x R ⎧⎫=∈≤<⎨⎬⎩⎭.(1)求A B ⋂,A B ⋃;(2)求()R A B ⋃ð.【正确答案】(1){|01}A B x x ⋂=≤<,{|22}A B x x ⋃=-≤≤(2)(){|2R A B x x ⋃=>ð或1}x <【分析】(1)解一元一次方程、指数不等式求集合A 、B ,再根据集合的交、并运算求A B ⋂,A B ⋃.(2)由集合补运算求R A ð,再由集合并运算求()R A B ⋃ð即可.【详解】(1)由题意得,{|02}A x x =≤≤,{|21}B x x =-≤<∴{|01}A B x x ⋂=≤<,{|22}A B x x ⋃=-≤≤;(2)由(1)知:(){|2R A x x =>ð或0}x <∴(){|2R A B x x ⋃=>ð或1}x <.18.化简求值:(1)()()20.52303274920.008π18925--⎛⎫⎛⎫-+⨯+- ⎪ ⎪⎝⎭⎝⎭;(2)5log 350.5551log 352log log log 145;50---【正确答案】(1)109(2)1【分析】(1)根据指数幂的运算性质可求出结果;(2)根据对数的运算性质可求出结果.【详解】(1)原式=223712123525--⎛⎫⎛⎫-+⨯+ ⎪ ⎪⎝⎭⎝⎭=4722519325-+⨯+=47393-+=109.(2)原式=555log 351log 50log 143++--53550log 214⨯=-5log 1252=-35log 52=-32=-1=.19.(1)当0a >时,解关于x 的不等式2(1)10ax a x -++>;(2)已知0x >,0y >,当1x y +=时,证明:224y x x y +≥,并指出取等号条件.【正确答案】(1)答案见解析;(2)答案见解析.【分析】(1)先解出2(1)10ax a x -++=的两个根,对根的大小分类讨论,再结合一元二次不等式的解法,即可求解;(2)根据“1”的代换,结合基本不等式的解法,即可证明.然后列出等号成立的条件,求解即可.【详解】(1)由已知0a >,解2(1)10ax a x -++=可得1x =或1x a=.当11a=时,即1a =时,不等式的解集为{}|1x x ≠;当11a>时,即01a <<时,不等式的解集为{|1x x <或1x a ⎫>⎬⎭;当11a <时,即1a >时,不等式的解集为1|x x a ⎧<⎨⎩或}1x >.综上所述,当01a <<时,不等式的解集为{|1x x <或1x a ⎫>⎬⎭;当1a =时,不等式的解集为{}|1x x ≠;当1a >时,不等式的解集为1|x x a ⎧<⎨⎩或}1x >.(2)因为0x >,0y >,1x y +=,所以2222()()y x y x x y x y x y +=++2222y x x y x y y x =+++4≥+=,当且仅当22221y xx y y x x y x y ⎧=⎪⎪⎪⎨=⎪⎪+=⎪⎩,即12x y ==时,等号成立.20.党的二十大报告提出“积极稳妥推进碳达峰碳中和”,降低能源消耗,建设资源节约型社会.日常生活中我们使用的LED 灯具就具有节能环保的作用,它环保不含汞,可回收再利用,功率小,高光效,长寿命,有效降低资源消耗.经过市场调查,可知生产某种LED 灯需投入的年固定成本为3万元,每生产x 万件该产品,需另投入变动成本()W x 万元,在年产量不足6万件时,()212W x x x =+,在年产量不小于6万件时,()81737W x x x=+-.每件产品售价为6元.假设该产品每年的销量等于当年的产量.(1)写出年利润()L x (万元)关于年产量x (万件)的函数解析式.(注:年利润=年销售收入-固定成本-变动成本)(2)年产量为多少万件时,年利润最大?最大年利润是多少?【正确答案】(1)()2153,0628134,6x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪--+≥⎪⎩(2)年产量为9万件时,年利润最大,最大年利润是16万元.【分析】(1)根据已知条件及年利润=年销售收入-固定成本-变动成本即可求解;(2)根据分段函数分段处理的原则,利用二次函数的性质及基本不等式,再比较两者的大小即可求解.【详解】(1)由题可知,()()63L x x W x =--,所以()221163,0653,0622818134,663737,6x x x x x x x L x x x x x x x x ⎧⎛⎫⎧--+<<-+-<< ⎪⎪⎪⎪⎝⎭⎪==⎨⎨⎛⎫⎪⎪--+≥--+-≥ ⎪⎪⎪⎩⎝⎭⎩;(2)当06x <<时,()()221119535222L x x x x =-+-=--+,由二次函数的性质知,对称轴为5x =,开口向下,所以当5x =时,()L x 取得最大值为()21191955222--+=;当6x ≥时,()81343416L x x x =--+≤-+=,当且仅当81x x =,即9x =时,等号成立,因为19162>,所以年产量为9万件时,年利润最大,最大年利润是16万元.21.已知函数()20.51x f x a =-+.(1)求()2f ;(2)探究()f x 的单调性,并证明你的结论;(3)若()f x 为奇函数,求满足2()(3)f ax f x <的x 的范围.【正确答案】(1)85a -;(2)单调递减函数,证明见解析;(3)10,3⎛⎫ ⎪⎝⎭.【分析】(1)令2x =即可求解;(2)先求出函数的定义域,然后判断函数的单调性,再根据单调性的定义证明即可;(3)由已知求出1a =,然后根据函数的单调性得出不等式,解出即可求解.【详解】(1)令2x =,则()22820.515f a a =-=-+.(2)因为0.510x +>恒成立,所以函数()f x 的定义域为R ,函数()f x 在R 上为单调递减函数.证明如下:12,x x ∀∈R ,且12x x <,则()()1212220.510.51x x f x f x a a ⎛⎫-=--- ⎪++⎝⎭()()()121220.50.50.510.51x x x x -=++,因为12x x <,所以120.50.5x x >,所以120.50.50x x ->.又()()120.510.510x x ++>,所以12())0(f x f x ->,即12()()f x f x >,所以函数()f x 在R 上为单调递减函数.(3)由已知()220.50.510.51xx x f x a a -⋅-=-=-++,因为()f x 在R 上为奇函数,所以()()f x f x -=-,所以()()220.52200.510.51xx x f x f x a a a ⋅-+=-+-=-=++,所以1a =,所以()210.51x f x =-+.由(2)知,函数为R 上的单调递减函数,则由不等式2()(3)f ax f x <可得,23x x >,解得103x <<,所以不等式的解集为1(0,3.22.设常数a ∈R ,函数2()12x a f x a=+-.(1)当0a ≥时,讨论函数()y f x =的奇偶性,并说明理由;(2)当0a <时,若函数()f x 在区间[],m n ()m n <上的值域是2,2m n ⎡⎤⎣⎦,求实数a 的取值范围.【正确答案】(1)答案见解析;(2)()3-+.【分析】(1)当0a ≥时,结合函数奇偶性的定义,分类讨论函数()y f x =的奇偶性;(2)根据单调性的定义证明()f x 在R 上单调递增.由题意可得出m ,n 是方程2122x xa a +=-的两个不等的实根,整理可转化为2(2)(1)20x x a a -+-=有两个不等的实根,换元得到一元二次方程,求解即可得出答案.【详解】(1)①当0a =时,()1f x =.故对于任意的实数x 都有()()f x f x -=,此时函数()f x 为偶函数;②当1a =时,21()21x x f x +=-,定义域为{}|0x x ≠.因为2112()()2112x xx x f x f x --++-===-+-,所以,此时函数()f x 为奇函数;③当0a ≠且1a ≠时,函数的定义域为2{|log }x x a ≠.所以,此时函数的定义域不关于原点对称,故函数()f x 既不是奇函数又不是偶函数.综上,当0a =时,函数()f x 为偶函数;当1a =时,函数()f x 为奇函数;当0a ≠且1a ≠时,函数()f x 既不是奇函数又不是偶函数.(2)因为2()12x a f x a=+-,当0a <时,函数定义域为R .12x x ∀<,则()121222()1122x x a a f x f x a a -=+----()()211222222x x x x a a a -=⋅--.因为12x x <,所以1222x x <,所以21220x x ->.又0a <,所以120x a ->,220x a ->,所以()12()0f x f x -<,所以()12()f x f x <,所以()f x 在R 上单调递增.则由题意可得2122m m a a +=-,2122n n a a+=-,所以m ,n 是方程2122x x a a +=-的两个不等的实根,即2(2)(1)20x x a a -+-=有两个不等的实根.令20x t =>,则方程2(1)0t a t a -+-=有两个不相等的正实根,故2Δ(1)40100a a a a ⎧=++>⎪+>⎨⎪->⎩,解得30a -+<<,所以,实数a的取值范围为()3-+.。
福建省福建师范大学附属中学2025届数学高一上期末教学质量检测模拟试题含解析

出结果.
【详解】当 x 1时,令 f x 1 0 ,得 a x 1 1 0 ,即 x 1 a 1 ,该方程至多两个根;
2
2
当 x 1时,令 f x 1 0 ,得 2x a2 1 0 ,该方程至多两个根,
因为函数 y f x 1恰有 4 个不同的零点,
所以函数 y f x 1在区间 ,1和1, 上均有两个零点,
C. x N, 2x x 1 D. x N, 2x x 1
9.某几何体的三视图如图所示,则该几何体的体积为()
8
4
A.
B.
3
3
C. 8 2 3
D. 4 2 3
10.给定下列四个命题:
.①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;
②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;
【详解】若 a 1,则 a2 1,所以“ a 1”是“ a2 1”的充分条件;
若 a2 1,则 a 1或 a 1,所以“ a 1”不是“ a2 1”的必要条件;
因此,“ a 1”是“ a2 1”的充分不必要条件.
故选:B
【点睛】本题主要考查充分不必要条件的判定,熟记概念即可,属于基础题型.
则其体积为V 1 2 2 2 1 1 2 2 2 8 .
2
32
3
故选:A.
10、D
【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择
【详解】
当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正
确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它
2024届山东省邹城市一中高一上数学期末学业质量监测模拟试题含解析
考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用 2B 铅笔填涂;非选择题的答案必须用黑色 字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
【题目点拨】本小题主要考查指数型函数、对数型函数单调性 判断,考查函数图像的识别,属于基础题.
3、D
的 【解题分析】∵α∈
0,
2
,∴2α∈(0,π).∵cos
α=
1 3
,∴cos
2α=2cos2α-1=-
7 9
,
∴sin 2α=
1-cos2 2= 4 2 9
,而
α,β∈
0,
2
,∴α+β∈(0,π),
故答案为: x .(答案不唯一)
13、 5 4
【解题分析】原函数化为
f
(x)
sin 2x
sin
x
cos x
,令 sin
x
cos
x
t
,将函数转化为
g(t)
t2
1
t
t
1 2
2
5 4
,
利用二次函数的性质求解.
C.若 a 4 ,则 g a 0
D.函数 g a 的最大值为 4
6.已知 a log2 3 , b log3 4 , c 2 ,则 a、b、c 的大小顺序为()
A. a b c C. c b a
B. a c b
D. b c a
7.函数
f
x
Asin x
高一英语试题模拟卷(打印版)
高一英语试题模拟卷单项选择部分(共15小题;每小题1分,满分15分)从A、B、C、D四个选项中选出可以填人空白处的最佳选项。
21.You know, ________ knowledge of ________computer is necessary to a secretary(秘书).A.a; / B.the; the C.the; / D.a; a22.The room was empty_______ a computer and a desk.A.except B.without C.except for D.besides23.A big earthquake________ Pakistan on October 8 , 2005, ________ over 70,000 people.A.strikes; killing B.struck; killing C.knocked; killed D.hit; kills24.The terrible flood swallowed the village ________ the villagers could get away. No one survived it.A.after B.as C.since D.before25.—What terrible weather! It ________ for ten days, more or less.—The rain season will last about a month.A.rains B.is raining C.rained D.has been raining26.He said he had never seen her before, ________ was not true.A.it B.that C.which D.what27. The wallet ________ several days ago was found ________ in the rubbish.A.stealing; lie B.stolen; lying C.stealing; lain D.stolen; to lie28. I won’t go to his birthday without _______.A. invitingB. being invitedC. invitedD. to be invited29. He told me a piece of news, _____ terrible.A. I think it isB. I think which isC. which I think it isD. which I think is30. The yellow house ____ windows face south is the place ____ I spent my childhood.A. whose, thatB. whose, whereC. which, whereD. where, which31.The child dreamed that he had once lived in a _______ house in the forest.A. wooden pretty littleB. little pretty woodenC. pretty little woodenD. wooden little pretty32.Is this factory ___________?A. the one your father works inB. where your father worksC. which your father worksD. your father works in33.Tony was very unhappy for _______ to the party.A.have not been invited B.not having invitedC.having not invited D.not having been invited34._______ in the leg, the soldier was sent to hospital.A.Seriously injured B.To be injured C.Injuring badly D.Having injured35.—Did he _______ to escape being punished by the police?—No, he _______ to, but failed.A.try; managed B.succeed; tried C.manage; tried D.succeed; managed完形填空部分(共20小题;每小题1.5分,满分30分)阅读下面短文,掌握其大意,然后从36—55各题所给的四个选项(A、B、C和D)中,选出最佳选项。
学科网2024届高一数学第一学期期末联考模拟试题含解析
学科网2024届高一数学第一学期期末联考模拟试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.甲、乙两人在相同的条件下各打靶6次,每次打靶的情况如图所示(虚线为甲的折线图),则以下说法错误的是A.甲、乙两人打靶的平均环数相等B.甲的环数的中位数比乙的大C.甲的环数的众数比乙的大D.甲打靶的成绩比乙的更稳定2.在四面体A BCD -中,已知棱AC 的长为2,其余各棱长都为1,则二面角A CD B --的平面角的余弦值为( ) A.12B.13C.33D.233.一个空间几何体的三视图如图所示,则该几何体的表面积为A.72cm πB.92cm πC.112cm πD.132cm π4.已知函数()2121x x f x -+=,若不等式()()22120f a a m f a --+-<对任意的[]1,4a ∈-均成立,则m 的取值不可能是() A.9 B.8 C.7D.65.全称量词命题“R x ∀∈,254x x +=”的否定是( ) A.R x ∃∈,254x x += B.R x ∀∈,254x x ≠+ C.R x ∃∈,254x x ≠+D.以上都不正确6.著名数学家、物理学家牛顿曾提出:物体在空气中冷却,如果物体的初始温度为1C θ,空气温度为0C θ,则t 分钟后物体的温度θ(单位:C )满足:()010kteθθθθ-=+-.若常数0.05k =,空气温度为30C ,某物体的温度从90C 下降到50C ,大约需要的时间为( )(参考数据:ln3 1.1≈) A.16分钟 B.18分钟 C.20分钟D.22分钟7.已知函数()f x 是定义在R 上的奇函数,对任意的x ∈R 都有()32f x f x ⎛⎫+=- ⎪⎝⎭,当3,04x ⎛⎫∈- ⎪⎝⎭时,()()2log 1f x x =+,则()()20212022f f +=()A.1B.2C.1-D.2-8.直线l 1:x +ay +1=0与l 2:(a ﹣3)x +2y ﹣5=0(a ∈R )互相垂直,则直线l 2的斜率为( ) A.12B.12-C.1D.﹣19.函数sin 23y x π⎛⎫=- ⎪⎝⎭在区间,2ππ⎡⎤-⎢⎥⎣⎦上的简图是( )A. B.C. D.10.郑州地铁1号线的开通运营,极大方便了市民的出行.某时刻从二七广场站驶往博学路站的过程中,10个车站上车的人数统计如下:70,60,60,60,50,40,40,30,30,10.这组数据的平均数,众数,90%分位数的和为() A.125 B.135 C.165D.17011.设全集U =R ,{|0}A x x =>,{|1}B x x =≤,则A B =A.{|01}x x ≤<B.{|01}x x <≤C.{|0}x x <D.{|1}x x >12.满足{}{}11,2,3A ⊆的集合A 的个数为()A.2B.3C.8D.4二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13.在ABC 中,若2cos sin sin B A C =,则ABC 的形状一定是___________三角形. 14.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论 ①AC ⊥BD ;②△ACD 是等边三角形; ③AB 与平面BCD 成60°的角; ④AB 与CD 所成的角是60°. 其中正确结论的序号是________ 15.若,,则______16.下面有5个命题:①函数44sin cos y x x =-的最小正周期是π②终边在y 轴上的角的集合是{|,}2k k Z παα=∈ ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有3个公共点④把函数3sin(2)3y x π=+的图象向右平移6π得到3sin 2y x =的图象⑤函数sin()2y x π=-在[0,]π上是减函数其中,真命题的编号是___________(写出所有真命题的编号)三、解答题(本大题共6个小题,共70分。
人教高一生物必修一期末模拟试题及答案
人教高一生物必修一期末模拟试题及答案一、单选题1.下列关于细胞中的化合物的叙述中,错误的是()A.豌豆叶肉细胞中含有2种核酸、5种碱基、5种核苷酸B.葡萄糖是细胞生命活动的主要能源物质,水浴条件下它能与斐林试剂反应出现砖红色沉淀C.维生素D能促进人和动物肠道对钙和磷的吸收,它属于脂质D.水和无机盐都是无机物,细胞中的水大部分是自由水,细胞中的无机盐主要以离子的形式存在2.图是光合作用探索历程中恩格尔曼的实验示意图,有关叙述正确的是()A.用水绵做实验材料是因为其叶绿体呈球形便于观察B.实验前需“黑暗”处理,以消耗细胞中原有淀粉C.实验通过观察好氧细菌的分布来确定氧气产生的位置D.实验证明叶绿体主要吸收红光和蓝紫光3.下列对实验的相关叙述,正确的是()A.双缩脲试剂可以与所有酶发生紫色反应B.观察植物有丝分裂实验可以用洋葱鳞片叶表皮细胞作实验材料C.若探究温度对酶活性的影响,用斐林试剂检测还原糖的生成D.在纸层析法分离叶绿体色素的结果中,第一个条带为橙黄色4.下列实例中,能说明生命活动离不开细胞的是()①流感患者打喷嚏时,会有大量流感病毒随飞沫散布于空气中②手触碰到盛有沸水的电水壶会迅速缩回③体操运动员完成单杠动作离不开肌肉细胞的收缩和舒张④人的胚胎发育过程中,细胞不断地进行分裂增殖A.①②③B.②③④C.①②④D.①②③④5.下列关于组成细胞的化合物的叙述,正确的是()A.在任何活细胞中数量最多的化学元素都是氧B.在活细胞中各种化合物含量最多的化合物是蛋白质C.在活细胞中的各种化合物与食物中的各种成分相同D.在不同的细胞中各种化合物的种类基本相同,含量有所差别6.下图是动物细胞有丝分裂不同时期染色体数目(a)、核DNA分子数目(b)的柱形统计图,下列叙述正确的是A.①时期染色体还未复制,核DNA已完成了复制B.③时期核膜、核仁重建,细胞中部出现细胞板C.①→②表示着丝点分裂,染色体数目加倍,核DNA分子数目也随之加倍D.②→③表示染色体平均分配到两个子细胞,核DNA分子也随之平均分配7.下列关于高等植物叶绿体中光合色素的叙述,不正确的是A.提取色素研磨时加入少许CaC03,可防止叶绿素被破坏B.叶绿体中的色素能够溶解在有机溶剂乙醇中C.利用层析法可分离4种光合色素D.植物呈现绿色是由于叶绿素能有效地吸收绿光8.下列关于蛋白质的叙述,正确的是A.含有羧基和氨基的化合物都是组成蛋白质的单体B.低温、高温、过酸或过碱都可以破坏蛋白质的空间结构C.所含氨基酸的种类和数目相同的蛋白质一定是同一种蛋白质D.蛋白质和多肽都可以与双缩脲试剂发生紫色反应9.淡水水域有时会形成水华,其中有多种蓝细菌,下列叙述错误的是()A.水华往往是水域污染后水体富营养化导致的B.水华影响水质,也会影响水生动物的生活C.发菜、颤藻、念珠藻、水绵都属于蓝细菌D.蓝细菌含有藻蓝素和叶绿素,能进行光合作用10.如图1~6为动物细胞的主要细胞器,相关叙述正确的是()A.1能合成多种水解酶来分解细胞内衰老、损伤的细胞器B.2在有丝分裂的间期能发出星射线形成纺锤体C.3和6都能加工蛋白质,都能形成包裹蛋白质的囊泡D.有氧呼吸时O2与[H]在5的基质中结合产生ATP,这些ATP可用于4中的脱水缩合反应11.对细胞进行物质组成结构功能的研究时,常常需要进行定性定量的分析研究,以下叙述不正确的是()A.活细胞中含量最多的化合物是水B.差速离心法不能对细胞组分进行定量分析C.肌肉细胞中含有的线粒体比口腔上皮细胞中含有的更多D.若对干种子进行长时间烘烤以致完全焦糊成粉末时,含量最多的元素不是碳12.关于细胞增殖的相关实验的描述,正确的是()A.随着细胞体积增大,物质运输的速率逐渐提高B.探究有丝分裂日周期性可为实验取材时机提供依据C.分生区细胞呈正方形,多数细胞中的染色体形态清晰D.压片与根尖分生区细胞分散并没有直接关系13.下图是光合作用示意图,下列说法错误的是()A.物质②和物质③均可为C3的还原供能B.当物质④供应停止时,物质①的生成速率将下降C.当温度适当升高时,暗反应速率可能升高,而光反应不受影响D.为叶肉细胞提供H2l8O,一段时间后在(CH2O)中能检测到18O14.下列有关ATP的说法错误..的是()A.ATP不能在细胞内大量储存B.ATP与脱氧核糖核酸的元素组成一致C.ATP是由1个腺苷和3个磷酸基团组成的D.光反应阶段产生的ATP可用于各项生命活动15.将酵母菌培养在葡萄糖溶液中,下图为其CO2的释放速率和O2的吸收速率随O2浓度的变化曲线,C点以后两曲线重合,下列叙述正确的是()A.曲线BC段,酶母菌厌氧呼吸速率不断减小B.离体培养的动物细胞的CO2释放速率也与图示曲线类似C.与A点不同,C点时糖分解释放的能量主要存储在ATP中D.D点时,酵母菌既有需氧呼吸又有厌氧呼吸,且需氧呼吸强度大于厌氧呼吸强度16.下列关于“观察植物细胞的有丝分裂”实验的叙述中,正确的是()A.看到的分生区细胞大多数有完整的细胞核B.视野内可以看到某个细胞分裂的动态变化过程C.看到的根尖细胞都正在分裂D.装片制作的正确顺序是:解离→染色→漂洗→制片17.在对照实验中,控制自变量可以采用“加法原理或“减法原理”,下列观点错误的是()A.实验中人为增加某种影响因素,属于加法原理B.实验中人为去除某种影响因素,属于减法原理C.探究甲状腺功能的实验中切除甲状腺,属于减法原理D.比较过氧化氢在不同条件下分解的实验中,实验组作了加温等处理,属于减法原理18.下图表示甲、乙两种植物净光合速率随光照强度的变化趋势,下列叙述错误的是()A.当光照强度等于a时,甲乙两种植物释放的O2量相等B.当光照强度大于b时,对光能利用率较高的植物是甲C.若单独种植密度过大,净光合速率下降幅度较大的植物是乙D.甲、乙两种植物中,更适合在林下种植的是乙19.豌豆根尖细胞连续分裂的时间(单位: h)数据如下图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一英语听力模拟试题8第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What language are some of the woman’s students studying?A. German.B. Russian.C. French.2. When is the man’s flight leaving for America?A. 11:00 a.m.B. 11:20 a.m.C. 1:00 p.m.3. What are the speakers talking about?A. A trip.B. A book.C. A movie.4. What do we know about Cathy?A. She has fallen ill.B. She got the woman’s help.C. She always comes home late.5. What will the man do on Sunday?A. Go to the woman’s house.B. Go to the cinema.C. Buy a TV.第二节听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6. When does the woman have the class of World History?A. On Mondays and Tuesdays.B. On Wednesdays and Fridays.C. On Mondays and Thursdays.7. What will the man do next?A. Take a class.B. Take an exam.C. Buy a book.听第7段材料,回答第8、9题。
8. Where did the man find the earring?A. In the park.B. In the garden.C. In the yard.9. Whom did the earring belong to?A. The woman.B. The man’s grandmother.C. The woman’s grandmother.听第8段材料,回答第10至12题。
10. Why did the man’s parents move to Miami?A. It is a good place to be on holiday.B. It is a perfect place to do business.C. The houses there are cheap.11. What do the man’s parents do every evening?A. They swim.B. They take a walk.C. They lie down on the beach.12. What is the weather like in Miami?A. It never rains.B. It’s always cloudy.C. It’s not always sunny.听第9段材料,回答第13至16题。
13. What does the ma n say about the woman’s mother?A. She looks young and cool.B. She talks with him friendly.C. She looks very beautiful.14. How old is the woman’s mother now?A. 40.B. 46.C. 64.15. Why can’t the woman find her fashion magazines?A. Her mother often borrows them.B. Her mother has thrown them.C. She has lent them out.16. What do we know about the man’s mother?A. She has changed her hair color.B. She likes to wear short skirts.C. She never talks with his friends.听第10段材料,回答第17至20题。
17. What does the speaker do first every day?A. Take her children to school.B. Dress her children.C. Prepare breakfast.18. When does the speaker usually prepare supper?A. Around 5:00.B. Around 5:30.C. Around 6:00.19. What is Ben?A. A teacher.B. A driver.C. A doctor.20. How many hours does Ben work every weekday?A. 7.B. 8.C. 9.高一英语听力模拟试题8(Text 1)M: Do your students study German?W: They don’t. But some are studying Russian, and one student is studying French.(Text 2)W: I’ve heard that you are going to America tomorrow. I want to see you off at the airport. When are you leaving?M: 1:00 p.m. But I am to check in at 11:20 a.m.W: Then I’ll see you at the airport at 11:20 a.m.(Text 3)M: What do you think of You Jus t Don’t Understand?W: I don’t know. But I do know that the author studied in America for 6 years. It was about that part of her life.(Text 4)W: You’ve been coming home very late for more than a week. How on earth could all this be explained?M: I go to Cathy’s home to help her with the homework. She’s been sick since last week.(Text 5)M: What are you doing on Sunday evening?W: I was thinking about watching old movies on TV.M: There are always some great movies on Sundays. I’ll come over t o your house and watch with you.(Text 6)M: Hey. How’s it going?W: OK, thanks, but I’m pretty busy these days.M: Yeah, me too. Do you have many classes this term?W: I’m part-time so I only have three: Computer Studies, World History and Music.M: When do you have Computer Studies?W: On Wednesdays from ten forty-five to twelve fifteen.M: And how about your other classes?W: 6I have World History on Monday afternoons from one to two thirty, and again on Thursdays at nine o’clock. I also have Music on Fridays from ten forty-five to twelve fifteen. M: Uh huh ... Hey, it’s eight fifty, I have to go. 7I have a class in ten minutes.W: OK. See you later.(Text 7)M: Mum, look what I found.W: What is it? Oh, what a surprise! Where did you find this?M: Well, 8I was working in the garden, and suddenly I saw something shiny in the dirt and I pulled out this earring.W: I can’t believe it. I never thought I’d see this earring again.M: What? Why? Is this yours?W: 9It belonged to my mother. When I was a little girl I took some earrings from her jewellery box and I lost one of them. It was over 30 years ago.M: Thirty years? That’s amazing!(Text 8)W: Hi! What do you plan to do for your holiday?M: I plan to see my family in Miami, Florida. Besides, 10Miami is the perfect place to be on holiday. My parents moved to Miami just for this reason. They bought a very attractive house to settle down. 11Every evening they take a pleasant walk along the beach.W: Living in Miami is pretty like living in heaven. I’ve dreamed a thousand times that I could lie down on Miami beach to relax.M: Mum and Dad called me saying that they had an indoor swimming pool, and I would bewelcomed home swimming.W: Why didn’t your parents build an outdoor swimming pool?M: 12It’s not always nice and sunny in Miami, sometimes cloudy and rainy. We may swim in the indoor swimming pool no matter what’s going on outside.(Text 9)M: Rosa, I just saw your mum. 13It’s so cool that she dresses that way. She looks so young. W: Young? Ugh! She’s so embarrassing! She’s driving me crazy with the way that she’s always trying to wear young clothes and talk to you guys about music and stuff.M: But I don’t mind at all. I really like your mum.W: Oh! 14It’s been crazy ever since her 46th birthda y last month.She’s been trying to act like she’s our age or something. She wants to go shopping at the same stores as me, and half the time 15I can’t even find my fashion magazines because she borrows them.She’s changed her hair color; she started wearin g these little tops and short skirts. I think I won’t go out in public with her any more.M: I think she’s a lot better than my mum. 16She never talks with my friends!(Text 10)W: Hi, I am Lily, I am a housewife. 17The first thing I do every day is to prepare breakfast for the whole family. Then I take the children to school. After that, I go shopping for food. WhenI get home, I clean the house and watch TV. 18Around 5 o’clock, I begin to prepare supperfor the whole family.And this is my husband, Ben. 19He is a doctor. He has a very busy schedule every day. He drives to the hospital at 8:15 on weekdays. 20He works in his office from 9:00 a.m. to 5:00 p.m. After work, he picks the children up from their school. Then he plays tennis with them for an hour. When they get home, I’ve already made supper ready for them. After supper, sometimes, my husband does his work, but usually, we will watch TV or play games together.高一英语听力模拟试题81. B2. C3. B4. A5. A6. C7. A8. B9. B 10. A11. B 12. C 13. A 14. B 15. A 16. C 17. C 18. A 19. C 20. B。