人教版七年级上册:1.4《有理数的乘除法》ppt课件
合集下载
人教版初中数学七年级上册《1.4 有理数的乘除法》精品课件

4
6
0;
5
2 3
9 4
;
6
1 3
1 4
.
1 54;2 24;3 6;4 0;5 3;6 1 .
2
12
知识点 2 倒数
知2-导
找特点,给这些数起一个你喜欢的名字.
5 4 1 7 10 1
45
10 7
83 1 38
认真观察每一对数, 你发现了么?
两个乘数的分子 分母互相颠倒.
你还能写出一些乘积为1的算式吗?
知2-练
1
在计算
5 12
7 9
+
2 3
×(-36)时,可以避免通分
的运算律是( B )
A.加法交换律
B.乘法分配律
C.乘法交换律
D.加法结合律
知2-练
2
(-0.125)×15×(-8)×
4 5
=[(-0.125)×
(-8)]×
15
4 5
,运算中没有运用的运算律
是( C )
A.乘法交换律 B.乘法结合律
1.4 有理数的乘除法
第1课时 有理数的乘法
1 课堂讲解 2 课时流程
有理数的乘法 倒数
我们已经熟悉正数及0的乘法运算.与加法 类似,引入负数后,将出现 3×(-3),(-3)×3 (-3)×(-3)这样的乘法.该怎样进行这一类的运 算呢?
这就是我们本节课要学习的内容
知识点 1 有理数的乘法
-8
-6
-4
-2
0
3分钟后蜗牛应在l上点O左边6cm处
这可以表示为 (-2)×(+3)=-6 ②
知1-导
(3)如果蜗牛一直以每分2cm的速度向右爬行, 3分钟 前它在什么位置?
《有理数的乘除法》_优秀课件

第1课时 有理数的乘法法则
【归纳总结】求一个数的倒数的方法:
名称
方法
真分数的倒数
颠倒分子和分母的位置
整数的倒数 把整数看成分母为 1 的分数,再求倒数
带分数的倒数 把带分数化成假分数,再求倒数
小数的倒数
把小数化为分数,再求倒数
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【解析】根据定义,要求 a(a≠0)的倒数,只需求1a即可,或根据乘积
是 1 的两个数互为倒数来求.
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
第1课时 有理数的乘法法则
解:(1)因为(-2)×-12=1,所以-2
知识目标 目标突破 总结反思
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
第1课时 有理数的乘法法则
知识目标
1.经历依次减小乘法中某个因数的值,观察、类比所得算式和 结果的过程,理解有理数的乘法法则,会进行有理数的乘法.
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
第1课时 有理数的乘法法则
知识点二 倒数的概念
概念:乘积是____1____的两个数互为倒数.
求法:数 a(a≠0)的倒数是____1____,其中 0 没有倒数(因
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
人教版七年级上册第一章有理数1.4有理数的乘除法(第4课时)课件

12以 可以利用乘法的运算性质简化运算.
例2
(1)(125 5) (5); 7
原式 (125 5) 1 75
125 1 5 1 5 75
25 1 7
25 1 7
(2) 2.5 5 ( 1) 84
原式 5 8 1 254
1
例3 (1) (-8)÷(-4) (2) (-3.2)÷0.08
知识点二:有理数除法法则2
两个有理数相除, 同号得____,正 异号得__负___,并把绝对值____相_除__. 0除以任何一个不等于0的数都得__0___.
注意:0不能作为除数
例1
化简下列分数:
(1) 12 3
(2) 45 12
解: (1) 12 (12) 3 4 3
(2) 45 (45) (12) 45 12 15
a÷b=a
1 ·b
(b≠0).
注意:除法在运算时有 2 个要素要发生变化。
1除变 乘 2 除数 变 倒数
例1 计算: (1) (-36) ÷9
(2) ( 25 ) ÷( 5 )
12
13
解: (1) (-36) ÷9 =(-36) × =-4
(2)
25
÷
( 5
9
)
12
3
= 25 × ( 3 )
人教版七年级上册
第一章 有理数 1.4 有理数的乘法(第4课时)
学习目标
1.认识有理数的除法,经历除法的运算过程。 2.理解除法法则,体验除法与乘法的转化关系。 3.增强数学应用意识,提高学生学习数学的兴 趣。
探究:由乘法与除法的互逆关系研究除法
计算:
8×9=__7_2_, 72÷9=__8__,
七年级数学上册 1.4 有理数的乘除法 1.4.1 有理数的乘法(1)课件 (新版)新人教版

)
(
8 ); 3
(4)
(3)
(
1 3
);
(3 8)
(3 1)
83
83
=1 ;
1 ; = K12课件
10
例题解析
例3 用正负数表示气温的变化量,上升为正, 下降为负. 登山队攀登一座山峰,每登高1km气 温的变化量为-6℃,攀登3km后,气温有什么 变化?
解:(-6)×3=-18
任何数同0相乘,都得0.
K12课件
14
0
2
4
6
3分钟蜗牛应在l上点O右边6cm,这可以 表示为
(+2)×(+3)=+6
K12课件
①
3
(2)如果蜗牛一直以每分钟2cm的速度向左 爬行,3分钟后它在什么位置?-8-6-4-20
3分钟蜗牛应在l上点O左边6cm处
这可以表示为 (-2)×(+3)=-6 ②
K12课件
4
(3)如果蜗牛一直以每分2cm的速度向右爬 行,3分钟前它在什么位置?
正数乘正数积为( 正 )数
负数乘正数积为( 负 )数 正数乘负数积为( 负 )数
负数乘负数的积( 正 )数
乘积的绝对值等于各乘数绝对值的( 积 )
K12课件
7
有理数乘法法则
两数相乘,同号得正,异号得负, 并把绝对值相乘.
任何数同0相乘,都得0.
K12课件
8
例题解析
例1:计算;
(1) (-3)×9
•
(1) (−4)×5 ; (2) (−4)×(−7) ; 求解中的第
•
(3) ( 3)( 8);
83
(4) (3)( 1);
人教初中数学七上《1.4 有理数的乘除法》PPT课件 (1)

m
(-20)×(+3)=-60 3分钟后它应该在点O左边60m处
(3)如果汽车一直以每分20cm的速 度向右行驶,4分钟前它在什么位置?
O
-80 -60 -40 -20 0 20 40 60 80
m
(+20)×(-4)=-80 3分钟前它应该在点O左边80m处
(4)如果汽车一直以每分20m的速 度向左行驶,3分钟前它在什么位置?
2
8
17 8 20
34 5
解法2:
3
5
1 4
1
2
8
3818 18
5
4
2
24 2 4 5
34 . 5
乘法分 配律
(2)解法1:
3 4
2 3
1
4
5 4 12
解法2:
5. 3
3
知识要点
乘法的结合律
有理数的乘法中,三个数相乘,先把前两 个数相乘,或者先把后两个数相乘,积相等. 即:(ab)c=a(bc)
观察下面两个等式,是否成立?
4 ×[(-5)+(-8)] = 4 ×(-5) +4 ×(-8) (-6)×3+(-6)×(-4)=(- 6)×[3+(-4)
知识要点
乘法的分配律
5
5
5
48
正数除以正数 负数除以正数 零除以正数 正数除以负数 负数除以负数 零除以负数
0能否做除数
9÷3 (-9)÷3 0÷3 9÷(-3) (-9)÷(-3) 0÷(-3)
知识回顾
你能很快地说出下列各数的倒 数吗?
《有理数的除法》有理数PPT教学课件(第1课时)

254
如果有带分
数,可以将带分 数写成整数部分 和分数部分的和, 利用分配律进行 运算,更加简便.
= (125 5) 1
75
= 125 1 5 1
5 75
= 25 1
7
=
25 1 7
将小数化为分数
=1
探究新知
归纳总结
1. 有理数除法化为有理数乘法以后,可以利用有理数 乘法的运算律简化运算.
1. a b a 1 (b 0) b
2. 两数相除,同号得正,异号得负,并把绝对值相
除. 0除以任何一个不等于0的数,都得0 .
有理数除法化为有理数乘法以后,可以利用有 理数乘法的运算律简化运算.
乘除混合运算往往先将除法化为乘法,然后确 定积的符号,最后求出结果(乘除混合运算按 从左到右的顺序进行计算).
2. 乘除混合运算往往先将除法化为乘法,然后确定积 的符号,最后求出结果(乘除混合运算按从左到右 的顺序进行计算).
巩固练习
计算:
(1)(
3 4
)
(1
1 2
)
2
1 4
解:原式= 3 3 9
42 4
=
3 4
3 2
4 9
= 1
2
(2)(3)
[(
2 5
)
(
1 4
)]
解:原式= (3) [( 2) (4)]
因为 (- 2)×(- 4)=8
所以 8÷(- 4)=- 2
①
另外,我们知道,8×(- 14)= - 2 ② 由①、②得 8÷(- 4)=8× (- 14) ③ ③式表明,一个数除以-4可以转化为乘以-14来进行,即 一个数除以-4,等于乘以-4的倒数-14
如果有带分
数,可以将带分 数写成整数部分 和分数部分的和, 利用分配律进行 运算,更加简便.
= (125 5) 1
75
= 125 1 5 1
5 75
= 25 1
7
=
25 1 7
将小数化为分数
=1
探究新知
归纳总结
1. 有理数除法化为有理数乘法以后,可以利用有理数 乘法的运算律简化运算.
1. a b a 1 (b 0) b
2. 两数相除,同号得正,异号得负,并把绝对值相
除. 0除以任何一个不等于0的数,都得0 .
有理数除法化为有理数乘法以后,可以利用有 理数乘法的运算律简化运算.
乘除混合运算往往先将除法化为乘法,然后确 定积的符号,最后求出结果(乘除混合运算按 从左到右的顺序进行计算).
2. 乘除混合运算往往先将除法化为乘法,然后确定积 的符号,最后求出结果(乘除混合运算按从左到右 的顺序进行计算).
巩固练习
计算:
(1)(
3 4
)
(1
1 2
)
2
1 4
解:原式= 3 3 9
42 4
=
3 4
3 2
4 9
= 1
2
(2)(3)
[(
2 5
)
(
1 4
)]
解:原式= (3) [( 2) (4)]
因为 (- 2)×(- 4)=8
所以 8÷(- 4)=- 2
①
另外,我们知道,8×(- 14)= - 2 ② 由①、②得 8÷(- 4)=8× (- 14) ③ ③式表明,一个数除以-4可以转化为乘以-14来进行,即 一个数除以-4,等于乘以-4的倒数-14
七年级数学上册 1.4《有理数的乘除法》课件(1) 新人教版

有理数的除法
一.复习
1.倒数
4×( 1 )=1
4
两个数的
(-2)×( 1 )=1 乘积为1,
2 ( 3 32
-4×(
)
2
=1 1 )=1
这两个数 有什么关 系?
4
• 问:那么怎么求整数,分数,小数的倒 数呢? (1)5 (2)-8
(3)
4
1 4
(4) 4 7
(5)0.2 (6)-0.5
• 问:请同学们回忆一下小学所学过 的除法法则是什么? 例如:8÷0.2=?
谢谢观赏
You made my day!
我们,还在路上……
3
9
例3 计算:
(4)(1343)(112)注意观察
(5) (246)(6)寻求最佳方法 7
(6)
(2)(4)(12)(7) 35 5
探索题:设a,b,c为非零有 理数,求下列式子的值
abc abc
探索题变式:
若ab0, 则a b ab_____. _
a b ab
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年2月27日星期日2022/2/272022/2/272022/2/27 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年2月2022/2/272022/2/272022/2/272/27/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/2/272022/2/27February 27, 2022 •4、享受阅读快乐,提高生活质量。2022/2/272022/2/272022/2/272022/2/27
一.复习
1.倒数
4×( 1 )=1
4
两个数的
(-2)×( 1 )=1 乘积为1,
2 ( 3 32
-4×(
)
2
=1 1 )=1
这两个数 有什么关 系?
4
• 问:那么怎么求整数,分数,小数的倒 数呢? (1)5 (2)-8
(3)
4
1 4
(4) 4 7
(5)0.2 (6)-0.5
• 问:请同学们回忆一下小学所学过 的除法法则是什么? 例如:8÷0.2=?
谢谢观赏
You made my day!
我们,还在路上……
3
9
例3 计算:
(4)(1343)(112)注意观察
(5) (246)(6)寻求最佳方法 7
(6)
(2)(4)(12)(7) 35 5
探索题:设a,b,c为非零有 理数,求下列式子的值
abc abc
探索题变式:
若ab0, 则a b ab_____. _
a b ab
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年2月27日星期日2022/2/272022/2/272022/2/27 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年2月2022/2/272022/2/272022/2/272/27/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/2/272022/2/27February 27, 2022 •4、享受阅读快乐,提高生活质量。2022/2/272022/2/272022/2/272022/2/27
七年级数学上册(新人教版) 1.4有理数的乘除法1.4.1有理数的乘法第1课时有理数的乘法法则课件

例2、用正负数表示气温的变化量,上升为正,下降为负。
登山队攀登一座山峰,每登高1km,气温的变化量为-6℃,攀登3km后,气温有什么变化?
解:(-6)×3=-18
答:气温下降18℃。
商店降价销售某种商品,每件降5元,售出60件后,与按原价销售同样数量的商品相比,销售额有什么变化?
解:规定:提价为正,降价为负
(-5)×60=-300
答:销售额减少300元.
确定下列积的符号,试分析积的符号与各因数的符号之间有什么规律?
()(1).2345
−⨯⨯⨯()()(2).2345
−⨯−⨯⨯()()()()(4).2345−⨯−⨯−⨯−()()()(5).23405−⨯−⨯⨯⨯−()()()(3).2345−⨯−⨯−⨯探索研究:
0543)2)(6(⨯⨯⨯⨯−正负正负0
归纳:
当负因数的个数为奇数时,积为____;
当负因数的个数为偶数时,积为____。
结论1:几个不等于0的数相乘,积的符号由______________决定;
结论2:有一个因数为0,则积为____;
负因数的个数负正0
1,判断下列积的符号
()()(1).2341−⨯⨯⨯−()()()(2).2356−⨯⨯−⨯−()()()(3).222−⨯−⨯−()()()()(4).3333−⨯−⨯−⨯−巩固练习
正
负
负
正
)9(0)4(5).5(−⨯⨯−⨯0
)9(1045).6(−⨯⨯−⨯负。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即小虫位于原来位置的东方6米处
(1)(+2)×(+3)
2
东
0
2 6Байду номын сангаас
4
6
亦即: (+2)×(+3)=+6
即说明小虫向东移动了6米
问题提出2
一只小虫,沿一条东西巷的跑道,以每分钟2 米的速度向西爬行3分钟,那么它现在位于原 来位置的哪个方向?相距多少米?
请你也用算式和数轴的方式予以解答
(2) (-2) ×(+3)
-54
②(-6) ×(-9) = -6 ④(-6) ×1= -6 ⑥6 ×(-1) = 0 ⑧0×(-6)=
54
课堂练习(正误辨析)
你能看出下面计算有误么?
1 计算: ( ) ( 2) 4 1 解:原式= ( 2) 4
=
1 2
这个解答正确么? 你认为应该怎么 做?答案是多少 呢?
1.4有理数的乘除法
口算
3×9;
1 1 ; 3 2
128×0.
1×0.8 ;
问题的提出
一只小虫,沿一条东西巷的跑道,以每分钟2 米的速度向东爬行3分钟,那么它现在位于原 来位置的哪个方向?相距多少米?
说明:若规定向东 为正,向西为负
我的解释:
这个问题用乘法来解答为:
2×3=6
能用数 轴表示 这一事 实么? 动手画 一画吧。
二,可以先得到(-7)×(-4)=
+( )的判断
三,把绝对值相乘,得出结果。
感受法则、理解法则:
再例如计算(-7)×4
一,是异号相乘,所乘得的结果应为负。 二,可以先得到(-7)×
-( ) 的判断
4 =
三,把绝对值相乘,得出结果。
所以有 (-7)×4= -(28) 的结果
感受法则、理解法则
若均用 + 或 - 表示是两种符号 的数相乘的话,请判断下面几种图形相 乘所得到的图形结果。
- -
课堂练习(选择题)
1)如果a×b=0,则这两个数 (C ) A 都等于0, B 有一个等于0,另一个不等于0;
C 至少有一个等于0, D 互为相反数
2)已知-3a是一个负数,则 (A) A a>0 B a<0 C a≥0 D a≤0
课堂练习
3)两个有理数和为0,积为负,则这两个数
的关系是
A 两个数均为0,
仔细观察:
(1) 2×3=6; (2) (-2)×3=-6; (3) 2 ×(-3)=-6; (4) (-2) ×(-3)=6; (5) 两个数相乘,其中有一个数是0时, 积是0.
得出有理数乘法法则:
我们可以从两数的符号变化来探究积的符号变化,并决 定乘得的最后数值结果。
有理数乘法法则:
+
×
-
=
-
+
-
×
× ×
+
+ -
=
= =
+
+
例题学习
1 1 ①(-3)×(-9); ②(- )× ; 3 2 ③7×(-1); ④ (-0.8)×1.
计算:
例题学习
1 1 ①(-3)×(-9); ②(- )× ; 3 2 ③7×(-1); ④ (-0.8)×1.
=+( 3×9) 解:① (-3)×(-9) =27
( )
D
B 两个数中一个为0
C 两数互为相反数, D 两数互为相反数,但不为0。
-2
东
0
-6
-4
-2
-6
亦即
(-2)×(+3)=-6
即说明小虫在原来位置的西6米处
(3) (+2)×(-3)
2 -6 -4 -2 -6 0 2 东
亦即:
结果:向西运动6米
(+2)×(3)=-6
(4)(-2)×(-3)
-2 东
-2
0
2 6
4
6
亦即(-2)×(- 3)=+6
结果:向东运动6米
(5)两个数相乘,其中有一个数是 0时,结果仍在原处.
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0。
感受法则、理解法则:
有理数乘法法则也秉承了有理数加减的探究思路,即将问题 予以归类处理,分类计算,这样有助于我们问题的解决。
例如计算(-7)×(-4)
一,是同号相乘,所乘得的结果应为正。
所以有 (-7)×(-4) =+(28) 的 结果
计算:
1 1 1 1 1 ② ( ) = ( ) = 2 3 2 3 6
③ 7×(-1)= - (7 ×1) =-7 ④ (-0.8)×1= - (0.8 ×1) =-0.8
2.口算:
①6 × (-9) = -54 ③(-6) ×9= 6 ⑤(-6) ×(-1) = 0 ⑦(-6) ×0 =