第一节二次型及其标准型和合同矩阵
线性代数(同济大学第五版)二次型讲义、例题

第六章 二次型本章主要包括二次型的矩阵及其矩阵,化二次型为标准型和规范形,二次型及实对称矩阵的正定性问题,学习本章内容需要结合矩阵的特征值与特征向量的相关知识.§1 二次型及其矩阵一、二次型及其矩阵定义1 关于n 个变量n x x x ,,,21 的二次齐次函数+++= 2222211121),,,(x a x a x x x f n n n n n n nn x x a x x a x x a x a 1,1313121122222--++++ (1)若取ji ij a a =,则i j ji j i ij j i ij x x a x x a x x a +=2于是(1)式可写成j i nj i ij n x x a x x x f ∑==1,21),,,( (2)称为n 元二次型,所有系数均为实数的二次型称为实二次型.记,212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A ⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x x21 则二次型),,,(21n x x x f 又表示为Ax x x x x f T n =),,,(21 ,其中A 为对称矩阵,叫做二次型 ),,,(21n x x x f 的矩阵,也把),,,(21n x x x f 叫做对称矩阵A 的二次型.对称矩阵A 的秩,叫做二次型Ax x x x x f T n =),,,(21 的秩. 例1 写出二次型32312123222132184422),,(x x x x x x x x x x x x f ++---=的矩阵,并求出二次型的秩.解 写出二次型所对应的对称矩阵为A ,⎪⎪⎪⎭⎫ ⎝⎛----=242422221A因为二次型的秩就是对称矩阵A 的秩.⎪⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎪⎭⎫ ⎝⎛----+⎪⎪⎪⎭⎫ ⎝⎛----=14002202214~6808602212~224242222123321312r r r r r r r r A ∴二次型的秩为3.§2 化二次型为标准型一、二次型合同矩阵二次型),,,(21n x x x f 经过可逆的线性变换⎪⎩⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (3) 即用(3)代入(1),还是变成二次型. 那么新二次型的矩阵与原二次型的矩阵A 的关系是什么?可逆线性变换 (3),记作Cy x =,其中矩阵)(ij c C =,把可逆的线性变换Cy x =代入二次型Ax x x x x f T n =),,,(21 ,得二次型ACy C y Cy A Cy Ax x x x x f T T T T n ===)()(),,,(21定义 1 两个同阶方阵A B 、,若存在可逆矩阵C ,使B AC C T=,则称矩阵A B 、合同.若A 为对称矩阵,C 为可逆矩阵,且B AC C T=.则B 亦为对称矩阵,且).()(A r B r =证 因为A 是对称矩阵, 即A A T=,所以B AC C C A C AC C B T T T T T T T T ====)()(即B 为对称矩阵. 因为AC C B T =,所以)()()(A r AC r B r ≤≤.因为11)(--=BC C A T ,所以)()()(1B r BC r A r ≤≤-, 故得).()(B r A r = 主要问题:求可逆的线性变换⎪⎩⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (3) 将二次型(1)化为只含平方项,即用(3)代入(1),能使222221121),,,(nn n y k y k y k x x x f +++= (4) 称(4)为二次型的标准形.也就是说,已知对称矩阵A ,求一个可逆矩阵C 使Λ=AC C T为对角矩阵.定理2 任意二次型j inj i ij x x af ∑==1,)(ji ij a a =,总有正交变换Py x =,使f 化为标准形2222211nn y y y f λλλ+++= ,其中n λλλ,,,21 是f 的矩阵)(ij a A =的特征值.推论 任给n 元二次型Ax x x f T=)(,总有可逆变换Cz x =使)(Cz f 为规范形.二、二次型的合同标准形1、拉格朗日配方法化二次型成标准型(1) 对有完全平方的二次型,每一次配方都应将某个变量的平方项以及涉及这一变量的所有混合项配成完全平方,而使得这个完全平方式的外面不再出现这个变量.然后对剩下的不是完全平方的部分再按照此处理,直到全部配成完全平方为止,这样做,是为了保证所得的线性变换是非异的.如果不这样做,最后就需要检验所得的线性变换是否非异.例2 用配方法化二此型32312123222132182292),,(x x x x x x x x x x x x f +++++=为标准形.解 由于f 中含变量型1x 的平方项,故把含1x 的项归并起来,配方可得32312123222182292x x x x x x x x x f +++++=322322232168)(x x x x x x x +++++=上式右端除第一项外已不再含1x .继续配方,可得232322321)3()(x x x x x x f -++++= 令⎪⎩⎪⎨⎧=+=++=3332232113x y x x y x x x y 即⎪⎩⎪⎨⎧=-=+-=33322321132y x y y x y y y x 就把f 化成标准形(规范形),232221y y y f -+=所用的变换矩阵为).0(100310211≠⎪⎪⎪⎭⎫⎝⎛--=C C(2) 如果所给的二次型全由混合项组成,而没有平方项,例如133221321),,(x x x x x x x x x f ++=,则需要先做类似于⎪⎩⎪⎨⎧=-=+=33212211y x y y x y y x 之类的非异线性变换,使变换后的二次型由平方项,再按(1)处理.二次型经非异线性变换化为标准型后,还可以再作非异线性变换,化为标准形.例3化二次型3231212x x x x x x f -+=成标准型,并求所用的变换矩阵.解 由于所给二次型中无平方项,所以令 ⎪⎩⎪⎨⎧=+=-=33212211yx y y x y y x 即⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛321321100011011y y y x x x 代入3231212x x x x x x f -+=得323122213y y y y y y f ++-=在配方,得.2)23()21(23232231y y y y y f +--+= 令⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=-=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+=333223113332231123212321z y z z y z z y y z y y z y y z即.10023102101321321⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛z z z y y y得2322212z z z f +-= 所用变换矩阵为.10011121110023102101100011011⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=C )02(≠=C2、正交变换化二次型成标准型寻求正交变换,化二次型为标准型,其步骤如下: (1) 写出二次型的矩阵A ,求0-=A E λ的所有相异的根n λλλ,,,21 (n s ≤,n 为A 的阶数);(2) 对每个i λ(s ,,2,1 =i )求齐次线性方程组0)(=-x A E i λ的基础解系.如果i λ,基础解系只含1个解向量,则单位化.如果i λ,基础解系含有多于1个的解向量,则规范化,这样,总共得到n 个两两正交的单位向量.(3) 以所得的n 个两两正交的列向量得到矩阵P ,则P 为正交矩阵,正交变换Py x =化二次型Ax x T为标准形y y TΛ为对角阵,主对角线上第i ),,2,1(n i =个元素是P 的第i 个列向量所对应的特征值(k 重特征值出现k 次).经正交变换得到的标准形后,还可以再作非异的线性变换将标准后,还可以再作非异的线性变换将标准形化为规范形.但这一变换已不再是正交变换了.换言之,经正交变换,二次型一定可以化为标准型,但未必能化规范形.例4求一个正交变换Py x =,化二次型32312123222132184422),,(x x x x x x x x x x x x f ++---=为标准形.解 (1)写出二次型f 矩阵⎪⎪⎪⎭⎫ ⎝⎛----=242422221A (2) 求矩阵A 的特征值,写出特征多项式λλλλλλλλλλ------=-------=-------204622412204222212424222212)2)(7(6241)2(λλλλλ-+-=------=故特征值为2,7321==-=λλλ(3) 求矩阵A 的特征值所对应的特征向量 ①当71-=λ时, 解方程0)7(=+x E A ,由⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=+0001102101~5424522287r E A 得基础解系⎪⎪⎪⎭⎫ ⎝⎛-=2211ξ.②当232==λλ时, 解方程0)2(=-x E A ,由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-----=-000000221~4424422212r E A得基础解系⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=102,01232ξξ.(4) 将32,ξξ正交化:取22ξη=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=-=5425101254102],[],[2223233ηηηξηξη(5) 将321,,ηηξ单位化,得,22131111⎪⎪⎪⎭⎫ ⎝⎛-==ξξp ,01251222⎪⎪⎪⎭⎫ ⎝⎛-==ηηp .542531333⎪⎪⎪⎭⎫ ⎝⎛==ηηp(5) 可得正交矩阵P.53503253451325325231),,(321⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--==p p p P 若令Py x =则Ax x x x x x x x x x x x x x f T =++---=32312123222132184422),,(233222211y y y APy P y T T λλλ++== 2322212271y y y ++-= 注 用正交变换法化二次型成标准型后,其平方项的系数就是矩阵A的特征值.而变换矩阵的各列,分别是这些特征值对应的规范正交的特征向量.例 5 已知,1001110101⎪⎪⎪⎭⎫⎝⎛--=a a A 二次型x A A x x x x f T T )(),,(321=的秩为2.(1) 求实数a 的值.(2) 求正交变换Qy x =将f 化为标准型. 解(1),3111101021001110101111010010122⎪⎪⎪⎭⎫⎝⎛+---+-=⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=a a a a a a a a a a A A T x A A x T T )( 秩为22)()(==∴A r A A r T可得 1-=a .(2) 令⎪⎪⎪⎭⎫⎝⎛==422220202B A A T由0)6)(2(422220202=--=-------=-λλλλλλλE B解之得.6,2,0321===λλλ① 当01=λ时,由0)0(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=11-1-1ξ.②当22=λ时,由0)2(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=011-2ξ.③当63=λ时,由0)6(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=2113ξ.将321,,ξξξ单位化,得⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫ ⎝⎛==211613,011-212,11-1-313322111ξξξξξξr r r令⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--==6203161210612131),,(321r r r Q . 则Qy x =时,可得标准型232262y y Bx x f T +==. 例6 设二次型2221231231323(,,)(1)22f x x x ax ax a x x x x x =++-+-,若二次型f 的规范形为2212y y +,求a 的值. 解 若二次型f 的规范形为2212y y +,说明f 两个特征值为正,一个为0.当2=a 时,三个特征值为 0,2,3,这时,二次型的规范形为2212y y +.§3 二次型及实对称矩阵的正定性二次型的标准形不是唯一的.标准形中所含项数是确定的(即是二次型的秩).限定变换为实变换时,标准形中正系数的个数是不变的.一、惯性定理定理3(惯性定理) 设有实二次型Ax x f T =它的秩是r ,有两个实的可逆变换Cy x =与Pz x =.使)0(,2222211≠+++i r r k y k y k y k 及,2222211r r y z z z +++ λλ)0(≠i λ则r k k k ,,,21 中正数的个数与r λλλ,,,21 中正数的个数相等. 正数的个数称为正惯性指数,负数的个数称为负惯性指数.例7 二次型,2223),,(323121232221321x x x x x x x x x x x x f +++++=求f 的正惯性指数.解:方法一:3231212322213212223),,(x x x x x x x x x x x x f +++++= 2223212)(x x x x +++= 令⎪⎩⎪⎨⎧==++=33223211xy x y x x x y , 则22212y y f +=.故f 的正惯性指数为2.方法二:f 的正惯性指数为所对应矩阵特征值正数的个数,由于二次型f 对应矩阵.111131111⎪⎪⎪⎭⎫ ⎝⎛=A所以λλλλλλλλλλλ---=---=---=-211231001111310111131111E A λλλ---=2112310)4)(1(2123---=---=λλλλλλ=0 故4,1,0321===λλλ.故f 的正惯性指数为2. 二、正定性的判别定义10 设有实二次型Ax x f T=如果对于任何0≠x ,都有0)(>x f ,(显然0)0(=f ),则称f 为正定二次型,并称对称阵A 是正定的.记作0>A ;如果对任何0≠x ,都有0)(<x f ,则称f 为负定二次型,并称对称阵A 是负定的,记作0<A .定理4 实二次型Ax x f T=为正定的充分必要条件是:它的标准形的n 个系数全为正,即f 的正惯性指数为n .证 设可逆变换Cy x =使21)()(ini i yk Cy f x f ∑===.先证充分性:设0>i k ),,2,1(n i =,任给0≠x ,故.0)(21>=∑=i ni i y k x f再证必要性: 用反证法,假设有0≤s k ,则当s e y =(单位坐标向量)时,0)(≤=s s k Ce f ,显然0≠s Ce 这与假设f 正定矛盾,故.0>i k推论 对称阵A 为正定的充分必要条件是: A 的特征值全为正.定理5 对称阵A 为正定的充分必要条件是:A 的各阶主子式都为正.即011>a ,022211211>a a a a,01111>nnn na a a a ; 对称阵A 为负定的充分必要条件是:奇数阶主子式为负,而偶数阶主子式为正.即,0)1(1111>-nrn rra a a a ),,2,1(n r =.这个定理称为霍尔维兹定理.注:对于二次型,除了有正定和负定以外,还有半正定和半负定及不定二次型等概念.例8设实二次型312322212x cx ax bx ax f +++=,当该二次型为正定二次型,c b a ,,应满足的条件?解 写出f 的矩阵 ⎪⎪⎪⎭⎫⎝⎛=a c b c a A 0000因为该二次型为正定二次型,所以0)(,0,022>-=>>∴b c a A ab ac b a ,,∴应满足0,>>b c a .定理6实二次型Ax x f T =为正定的充分必要条件是:存在可逆矩阵C ,使C C A T =,即矩阵A 与单位矩阵合同.证明 先证充分性:若存在可逆矩阵C ,使C C A T=,任取非零向量x ,则0≠Cx (如果0=Cx ,由C 可逆,则0=x 矛盾),对任取的0≠x ,有0)()()(T >====Cx Cx Cx Cx C x Ax x x f T T T,从而矩阵A 正定.再证必要性:设对称矩阵A 为正定矩阵,因为A 为对称矩阵,则存在正交矩阵Q ,使A 对角化,即),,,(21n T diag AQ Q λλλ =Λ=,其中n λλλ,,,21 为A 的特征值,而A 是正定矩阵,所以0>i λ,记),,,(211n diag λλλ =Λ.则Λ=Λ21,从而T T T Q Q Q Q Q Q A ))((1111ΛΛ=ΛΛ=Λ=令T Q C )(1Λ=,则C 可逆,而且得到C C A T=. 所以可得EC C A T=,故矩阵A 与单位矩阵合同.定理7实二次型Ax x f T =为正定的充分必要条件是:存在正定矩阵B ,使2B A =.证明 因为A 是正定矩阵,所以矩阵A 可以正交相似对角化。
二次型的标准形与规范形

二次型的标准形与规范形引言在线性代数中,二次型是一个重要的概念。
它在解决优化问题、矩阵分析以及其他数学领域中有广泛的应用。
二次型可以通过变换来改变其表达形式,其中标准形和规范形是常用的两种变换形式。
本文将重点介绍二次型的标准形和规范形,并探讨它们的性质和应用。
二次型的定义在矩阵和向量的帮助下,我们可以定义二次型。
给定一个实对称矩阵A和一个实列向量$\\mathbf{x}$,一个二次型可以表示为$\\mathbf{x}^TA\\mathbf{x}$。
其中,A是一个$n\\times n$的实对称矩阵,$\\mathbf{x}$是一个n维实列向量。
二次型可以看作是向量$\\mathbf{x}$和矩阵A的乘积的形式。
二次型的标准形二次型的标准形是一个最简化的表达形式,可以通过合适的变换将任意的二次型转化为标准形。
标准形的特点是只有对角线上有非零元素,其余位置上都是零。
为了找到这样的标准形,我们需要进行特征值分解。
特征值分解根据实对称矩阵特征值的性质,矩阵A可以通过特征值分解表示为A=PDP T,其中P是由A的特征向量组成的正交矩阵,D是由特征值组成的对角矩阵。
将特征值代入二次型$\\mathbf{x}^TA\\mathbf{x}$中,可以得到$\\mathbf{x}^T(PDP^T)\\mathbf{x}$。
根据矩阵乘法的结合律,上式可以变为$(P^T\\mathbf{x})^TD(P^T\\mathbf{x})$。
标准形的规定为了将矩阵A转化为标准形,需要定义一个新的变量$\\mathbf{y} =P^T\\mathbf{x}$,其中$\\mathbf{y}$和$\\mathbf{x}$的关系可以写为$\\mathbf{x} = P\\mathbf{y}$。
带入二次型的表达式中,可以得到$\\mathbf{x}^TA\\mathbf{x} = \\mathbf{y}^TD\\mathbf{y}$。
根据特征值分解的性质,可以进一步将$\\mathbf{y}^TD\\mathbf{y}$化简为$y_1^2 + y_2^2 +\\ldots + y_n^2$。
二次型及其标准形

例1 求一个正交变换x Py,把二次型
f x12 2x22 x32 2x1 x3 化为标准形.
解
1 (1)A 0
0 1 2 0
1 0 1
(2)A的特征值1 2 2,3 0.
当1 2 2时,特征向量为:
p1 (0,1,0)T , p2 (1,0,1)T .
当3 0时,特征向量为:p3 (1,0,1)T .
定理1 对于实二次型 f xT Ax, 总存在正交 变换 x Py,使 f 化为标准形
f 1 y12 2 y22 n yn2 其中 1,2,,n为A的特征值.
用正交变换化二次型为标准型的步骤: (1)写出二次型的矩阵; (2)求 A的全部特征值,特征向量并正交化、单位化; (3)求正交矩阵P; (4)写出正交变换和标准形.
(3)将p1,p2,p3单位化:q1 (0,1,0)T , q2 (1/ 2,0,1/ 2)T ,q3 (1/ 2,0,1/ 2)T .
0
令Q
1
0
1 2
0 1
2
1
2 0 1
2
,
(4)作正交变换
0
x 1
0
1 2
0 1
2
1 2
0 y,
1
2
标准形为 f 2 y12 2 y22 .
定义2 设A和B是n阶方阵,若有可逆矩阵C,使 B CT AC, 则称矩阵A与B合同. congruent
合同是方阵间又一个特殊的等价关系, 因此具 有以下性质: (1) 自反性; (2) 对称性; (3) 传递性;
(4) 合同变换不改变矩阵的秩;
(5) 合同变换不改变矩阵的对称性;
4.4.3 二次型的标准化的方法
称为二次型.
实二次型及其标准型

返回
二、合同变换
1. 矩阵合同
定义 对n阶矩阵A, B, 若存在可逆矩阵C, 使 C TAC = B,
则称 A与 B合同. 矩阵合同具有以下性质: (1) 反身性:矩阵A与自身合同; (2) 对称性:若A与B合同,则B与A合同; (3) 传递性:若A与B合同,且B与C合同, 则A与C合 同.
返回
A与B等价:PAQ = B,
X = (x1 , x2 , x3 )T, Y = (y1, y2, y3 )T 则 X = CY 为正交变换,且 f = 2 y12 + 2 y22 - 7 y32
返回
t1 2z1 若再令 t2 6z3 t 2z 2 3
则, f = 2z12 – 2z22 + 6z32 = t12 + t22 - t32
返回
将实二次型 f (X) = X TAX 经合同变换化为标准 形后,将正项集中在前,负项集中在后: d1 y12 + … + dp yp2 - dp +1yp+12 - … - dr yr2
定理2 任何一个实二次型的规范形都是惟一的.
返回
四、用正交变换化二次型为标准形
定理3 任一 n 元实二次型 f (X) = X TAX 都可用 正交变换 X = CY 化为标准形 1 y12 + 2 y22 + … + n yn2 其中 1 ,2 ,…,n是A 的特征值.
证
因A 为n 阶实对称矩阵, 所以存在正交矩阵C , 使
i 1 j 1
n
n
(1)
(1)式称为从 y1, …, yn 到 x1, …, xn 的线性变换.
返回
x1 y1 c11 c12 c1n x2 y2 c21 c22 c2 n 令 C X , Y xn yn cn1 cn 2 cnn 则(1)式可记为
二次型和矩阵合同

⼆次型和矩阵合同1. ⼆次型含有n个变量x_{1},x_{2},...,x_{n}的⼆次齐次函数f(x_{1},x_{2},...,x_{n})称为n元⼆次型,即在⼀个多项式中,未知数的个数为任意多个,但每⼀项的次数都为2的多项式,如f(x) = ax^{2} \\ f(x,y) = ax^{2} + by^{2} + cxy \\ f(x,y,z) = ax^{2} + by^{2} + cz^{2} + dxy + exz + fyz它起源于⼏何学中⼆次曲线⽅程和⼆次曲⾯⽅程化为标准形问题的研究。
⼆次型中每⼀项都是⼆次的,没有⼀次项和常数项,之所以不研究包含⼀次项和常数项的⼆次⾮齐次多项式,是由于:⼀次项与常数项的改变不会影响函数图像的⼤致形状。
⼀个⼆次型可以⽤⼀个矩阵表⽰成如下的形式:f(x) = x^{T}Ax其中x是⾃变量组成的列向量。
⼀定都会找到⼀个对称的矩阵A来表⽰表⽰这个⼆次型,假如A不对称,那么必然有对称矩阵B = (A + A^{T}) / 2满⾜x^{T}Ax = x^{T}Bx因为实对称矩阵具有许多特别的性质,为了⽅便研究,规定⼆次型矩阵就是⼀个实对称矩阵。
更为关键的是:如果⼆次型矩阵是对称的,那么它将是唯⼀的。
⼆次型的图形:为了⽅便研究⼆次型,我们代⼊具体的函数值,研究⼀个具体的图形:x^{T}Ax = C这样就表⽰成⼀个曲线或者曲⾯,这个图形由取具体函数值的⾃变量全体构成的。
描述它的参考系(少了函数值那个维度)不同,⼆次型矩阵也不同,这涉及到合同的概念。
2. 矩阵合同在线性代数,特别是⼆次型理论中,常常⽤到矩阵间的合同关系。
定义:设A和B是两个n阶⽅阵,若存在可逆矩阵C,使得C^{T}AC = B则⽅阵A与B合同,A到B的变换C称为合同变换。
那矩阵A和B合同到底有什么意义呢?我们已经知道相似是相同的线性变换在不同基下的表⽰,那合同呢?下⾯针对⼀个⼆次型的图形来表述,即代⼊具体函数值之后的曲线或曲⾯。
线性代数 第1节 二次型及其矩阵

(2)对称性:若A ~B ,则有 B ~A ;
(3)传递性:若 A ~B ,且 B ~ C,则有 A ~C . 证明 只证(3),其余留作练习.
B C AC1 , C C BC2 ,
T 1
T 2
T T C C2 (C1 AC1 )C2 (C1C2 )T A(C1C2 ) ,
由于 C1 , C2 均可逆,所以C1C2 也可逆.
5
f ( x1 , x2 ,, xn )
2 a11 x1 2a12 x1 x2 2a13 x1 x3 2a1n x1 xn
a22 x 2a23 x2 x3 2a2n x2 xn
2 2
f ( x1 , x2 ,, xn ) 2 a11 x1 a12 x1 x2 a13 x1 x3 a1n x1 xn
C 称为该线性替换的矩阵.
X CY .
若 | C | 0 ,则此线性变换称为可逆线性替换.
如果C 为正交矩阵,则此线性替换称为正交替换.
x x cos y sin 容易验证,转轴公式 y x sin y cos 是一个正交替换.
13
三、矩阵的合同关系
f ( x1 , x2 ,, xn ) X AX ,
A称为二次型 f ( x1 , x2 ,, xn ) 的矩阵.
7
f ( x1 , x2 ,, xn ) X AX ,
T
A称为二次型 f ( x1 , x2 ,, xn ) 的矩阵. A的秩称为该二次型的秩. A是一个实对称矩阵. 事实上, 由一个实对称矩阵也可构造唯一的实 二次型,也就是说,实二次型与实对称矩阵是互相 唯一确定的,所以,研究二次型的性质可以转化为 研究它的矩阵A所具有的性质.
6.1二次型及其矩阵表示、合同矩阵(全)

第六章二次型§1 二次型及其矩阵表示、合同矩阵§2 化二次型为标准形§3 二次型与对称矩阵的正定性§1 二次型及其矩阵表示、合同矩阵定义6.1.1:含有n 个变量x 1, x 2, … , x n 的二次齐次多项式()n x x x f ,,,21 nn x x a x x a x x a x x a x a 1141143113211221112222+++++= nn x x a x x a x x a x a 22422432232222222+++++ 2nnn xa +当系数属于数域F 时,称为数域F 上的一个n 元二次型。
本章讨论实数域上的n 元二次型,简称二次型。
nn x x a x x a x a 334334233322++++22212111222121213131,12111121211221212222221122,1222(,,,)n nn nn n n nn n n nn n n n nn nniji ji j f x x x a x a x a xa x x a x x a x x a x a x x a x x a x x a x a x x a x x a x x a xax x --==+++++++=++++++++++++=∑i j j i ij i j i j i j j i i j22212111222121213131,12111121211221212222221122,1222(,,,)n nn nn n n nn n n nn n n n nn nniji ji j f x x x a x a x a xa x x a x x a x x a x a x x a x x a x x a x a x x a x x a x x a xax x --==+++++++=++++++++++++=∑i j j i ij i j i j i j j i i j212111121211221212222221122(,,,)n n n n n n n n n nn nf x x x a x a x x a x x a x x a x a x x a x x a x x a x =+++++++++++11111221()n n x a x a x a x+++22112222()n nx a x a x a x ++++1122()n n n nn n x a x a xa x +++11112212112222121122(,,,)n n n n n n n nn n a x a x a x a x a x a x x x x a x a x a x +++⎛⎫⎪+++⎪= ⎪⎪+++⎝⎭1112112122221212(,,,)n n n n n nn n a a a x a a a x x x x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭Tx Ax=其中A = (a ij )n ×n , x = (x 1, x 2, ···, x n )TA 为对称矩阵,称A 为二次型对应的矩阵,A 的秩为二次型的秩。
线性代数课程教学大纲

“线性代数”课程教学大纲一、课程基本信息开课单位:管理学院课程名称:线性代数课程编号:英文名称:Linear Algebra课程类型:学科基础课(请按我校教学计划安排表中的课程类型进行规范填写,即填写公共基础课、学科基础课、专业基础课、专业方向限选课、专业任选课、公共选修课等)总学时:60 理论学时: 60 实验学时: 0学分:3开设专业:先修课程:无二、课程任务目标(一)课程任务(本项编写要求:写明该课程的性质和任务)本课程是高等学校理工科本科学生一门必修的重要学科基础理论课,是讨论代数学中线性关系的一门经典理论课程。
它具有较强的抽象性与逻辑性,可以广泛应用于科学技术的各个领域。
本课程的任务是通过教学的各个环节,运用各种教学手段与方法,使学生掌握该课程的基本理论与计算方法。
培养学生分析问题、解决问题的能力。
提高学生的抽象思维能力、逻辑思维能力以及运用计算机解决与线性代数相关的实际问题的能力,为学生学习后继课程奠定坚实的数学基础。
(本参考编写样式为“微机原理与应用”课程)(二)课程目标(本项编写要求:写明学生在知识和能力方面应达到的目标要求)在学完本课程之后,学生能够:1.能较好地掌握行列式、矩阵特有的分析概念;2. 能够用行列式、矩阵的方法解决与线性代数相关的实际问题;三、教学内容和要求(一)理论教学的内容及要求(本项编写要求:以基本内容为主线,对各知识点分按“了解”、“理解”、“掌握”三个层次提出要求,并说明教学重点及难点)第一章行列式第一节行列式的概念1.了解行列式的概念;2.会求二阶与三阶行列式。
第二节行列式的性质1.了解余子式与代数余子式的概念;2.掌握行列式的性质。
第三节行列式的计算1.了解三角形行列式与对角形行列式的概念;2.掌握范德蒙(Vandermonde)行列式;3.掌握行列式的计算方法。
第四节行列式的应用1.了解线性方程组的概念;2.掌握克拉默法则。
第二章矩阵第一节矩阵的概念1.了解矩阵的概念;2.理解几类特殊的矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理1 任给可逆矩阵C ,令B C T AC ,如果A为对称
矩阵,则B也为对称矩阵,且RB RA.
证明 A为对称矩阵,即有A AT ,于是
BT C T AC T C T AT C C T AC B,
即B为对称矩阵.
B CT AC , RB RAC RA,
X
x2
,
an1 an2 ann
xn
则二次型可记作 f X T AX ,其中A为对称矩阵.
由此可见, 按照上述规则 任给一个二次型,可唯一确定一个对称矩阵;
反之,任给一个对称矩阵,可唯一确定一个二次型。 即二次型与对称矩阵之间是一一对应关系 称对称矩阵 A 为二次型 f 的矩阵,也把 f 称为 对称矩阵 A 的二次型。 对称矩阵 A 的秩称为二次型 f 的秩。
3
的矩阵为:
1
1 2
1 1 2
1 2
2
1
0 0 1 以 0 1 0 为矩阵的二次型为
1 0 0
f ( x1, x2 , x3 ) x22 2 x1 x3
三、矩阵的合同
设 有 两 个n阶 矩 阵A和B, 若 存 在 可 逆 定义
矩阵P,使B PT AP,则称B与A合同 矩 阵P称 为 把A变 为B的 合 同 变 换 矩 阵 合同矩阵有一下性质:
又 A CT 1 BC 1 , RA R BC 1 RB.
RA RB.
n
设 有 二 次 型f ( x1, x2 , xn ) aij xi x j X T AX , i , j 1
定 若 存 在 可 逆 变 换X PY,使 义
f ( x1, x2 , xn ) X T AX Y T BY
则称二次型X T AX与二次型Y T BY等价
等价的二次型,它们的矩阵之间是合同的; 反之,以合同的矩阵为矩阵的二次型是等价的.
例1 写出下列二次型的矩阵表达式
f
( x1,
x2 ,
x3 )
x12
2 x22
4
x
2 3
2 x1 x2
x1 x3
6x2 x3
解 按 aij a ji 的要求不改变完全平方项,把
交叉乘积项的系数取半得:
f ( x1, x2 , x3 )
x12
x1 x2
1 2
x1 x3
x2
x1
2 x22
3x2
x3
1 2
称为二次型的标准形. 例如
f x1, x2, x3 2x12 4x22 5x32 4x1x3 f x1, x2 , x3 x1 x2 x1 x3 x2 x3
都为二次型;
f x1, x2 , x3 x12 4x22 4x32
为二次型的标准形.
二、二次型的表示法
1.用和号表示二次型
x3
x1
3x3x2
4 x32
1
x1,
x2 ,
x3
1
1 1 / 2 x1 2 3 x2
1 / 2 3
4
x3
注意 仅当A 满足AT A 时,为二次型的矩阵表示式
二次型 f ( x1, x2, x3 )
3 x12 x22 x32 2 x1 x2 x1 x3 4 x2 x 3
f
x1 ,
x2 ,,
xn
a11 x12
a22 x22
a
nn
x
2 n
2a12 x1 x2 2a13 x1 x3 2an1,n xn1 xn
取a ji aij , 则2aij xi x j aij xi x j a ji x j xi ,
于是 f a11 x12 a12 x1 x2 a1n x1 xn
a22 x22 2a23 x2 x3 2a2n x2 xn
a x2 n1,n1 n1
2an1,n xn1 xn
ann xn2 称为二次型. 当aij是复数时, f称为复二次型 ;
当aij是实数时, f称为实二次型 .
只含有平方项的二次型 f k1 y12 k2 y22 kn yn2
第七章 n元实二次型
• n元实二次型的定义及其标准型 • 将n元实二次型化为标准型 • 正定二次型 • 用正交变换化二次型为标准型
一、二次型及其标准形的概念
定义1 含有n个变量x1, x2 ,, xn的二次齐次函数
f ( x1, x2 , , xn ) a11 x12 2a12 x1 x2 2a13 x1 x3 2a1n x1 xn
a12 x2
a22 x2
a1n xn a2n xn
an1 x1 an2 x2 ann xn
a11
x1
,
x2
,,
xn
a21
a12
a22
a1n x1 a2n x2
an1 an2 ann xn
记
a11
A
a21
a12
a22
a1n
a2n
,
x1
a21 x2 x1 a22 x22 a2n x2 xn
an1 xn x1 an2 xn x2 ann xn2
nn
aij xi x j
i 1 j1
2.用矩阵表示
f a11 x12 a12 x1 x2 a1n x1 xn
a21
x2
x1
a22 x22
a2n x2 xn
an1 xn x1 an2 xn x2 ann xn2
x1 (a11 x1 a12 x2 a1n xn )
x2 (a21 x1 a22 x2 a2n xn )
xn (an1 x1 an2 x2 ann xn )( x1,x2 ,,xn)
a11 a21
x1 x1