6.2 常微分方程的分离变量法

合集下载

分离变量法在物理学中的应用

分离变量法在物理学中的应用

分离变量法在物理学中的应用分离变量法是一种常用的数学方法,它在物理学中有着广泛的应用。

本文将从介绍分离变量法的基本原理开始,然后探讨它在物理学中的具体应用,包括热传导方程、波动方程、量子力学中的薛定谔方程等。

一、分离变量法的基本原理分离变量法是一种将多元函数分解成单元函数之积的方法。

它的基本思想是:将多元函数中的各个变量分开考虑,然后通过假设变量之间的关系,将多元函数分解成单元函数之积的形式。

例如,对于一个二元函数f(x,y),我们可以假设它可以写成f(x,y)=g(x)h(y)的形式,其中g(x)和h(y)分别是只含有一个变量的函数。

通过这样的假设,我们可以将二元函数分解成两个关于单一变量的函数,从而使得原本较为复杂的问题简化为一系列独立的单元问题。

二、分离变量法在热传导方程中的应用热传导方程是描述物体内部温度分布随时间变化的方程。

它在很多领域都有着广泛的应用,例如热力学、材料科学等。

对于一维情况下的热传导方程,它可以写成以下形式:u/t=ku/x其中u(x,t)表示物体内部在时刻t、位置x处的温度,k为热传导系数。

为了求解这个方程,我们可以采用分离变量法。

假设u(x,t)可以表示成u(x,t)=X(x)T(t)的形式,代入热传导方程中,得到: X(x)T'(t)=kX''(x)T(t)两边同时除以X(x)T(t),得到:T'(t)/T(t)=kX''(x)/X(x)左边只依赖于t,右边只依赖于x,因此它们必须相等。

于是我们得到了两个独立的方程:T'(t)/T(t)=λ,X''(x)/X(x)=λ/k其中λ为常数。

对于第一个方程,它可以直接求解得到T(t)=Ce^λt,其中C为常数。

对于第二个方程,它是一个关于X(x)的常微分方程,可以通过求解得到X(x)=Asin(√(λ/k)x)+Bcos(√(λ/k)x),其中A和B为常数。

微分方程的求解方法与应用案例分享

微分方程的求解方法与应用案例分享

微分方程的求解方法与应用案例分享微分方程是数学中重要的一门分支,它描述了自然界和社会现象中的变化规律。

微分方程的求解方法多种多样,本文将介绍常见的几种求解方法,并结合实际应用案例进行分享。

一、常微分方程的求解方法1. 可分离变量法可分离变量法是求解一阶常微分方程的常用方法。

首先将方程中的变量分离,然后进行积分得到结果。

例如,对于形如dy/dx=f(x)g(y)的方程,可以将其化简为dy/g(y)=f(x)dx,再对两边同时进行积分即可得到解析解。

2. 齐次方程法齐次方程法适用于形如dy/dx=F(y/x)的方程。

通过令v=y/x,将方程转化为dv/dx=F(v)-v/x,再进行变量分离和积分即可求解。

3. 线性方程法线性方程法适用于形如dy/dx+p(x)y=q(x)的一阶线性微分方程。

通过乘以一个积分因子,可以将方程化为d(μy)/dx=μq(x),再对两边同时积分得到解析解。

4. 变量替换法变量替换法是一种常用的求解微分方程的方法。

通过引入新的变量替换原方程中的变量,可以将方程化为更简单的形式。

例如,对于形如dy/dx=f(ax+by+c)的方程,可以通过引入新的变量u=ax+by+c来进行变量替换,从而简化求解过程。

二、微分方程的应用案例分享1. 放射性衰变问题放射性衰变是微分方程在物理学中的一个重要应用。

以放射性核素的衰变为例,其衰变速率与核素的数量成正比,可以用微分方程dy/dt=-ky来描述,其中y表示核素的数量,t表示时间,k为比例常数。

通过求解这个微分方程,可以得到核素的衰变规律,进而预测未来的衰变情况。

2. 振动问题微分方程在工程学中的应用也非常广泛,例如振动问题。

以简谐振动为例,可以通过微分方程m(d²x/dt²)+kx=0来描述,其中m为质量,k为弹性系数。

通过求解这个微分方程,可以得到振动的解析解,进而研究振动的频率、幅度等特性。

3. 生物种群模型微分方程在生态学中的应用也非常重要,例如生物种群模型。

数理方程第二章分离变量法

数理方程第二章分离变量法
解的唯一性
分离变量法得到的解可能不唯一,有时需要额外的条件或参数才能 确定唯一解。
数值稳定性
分离变量法在数值实现时可能存在数值稳定性问题,如数值误差的 累积和扩散等,需要采取适当的措施进行控制和校正。
06
CATALOGUE
分离变量法的改进与拓展
改进方向一:提高求解精度
数值稳定性
通过改进数值算法,提高求解过程中数值的稳定性, 减少误差的传播和累积。
原理推导
01
首先,将偏微分方程中的多个变量分离出来,使方程变为一个 关于各个变量的常微分方程。
02
然后,对每个常微分方程分别求解,得到各个变量的解。
最后,将各个变量的解代回原偏微分方程,得到整个问题的解
03 。
原理应用
在物理学中,分离变量法广泛应用于求解具有多个独立变量的偏微分方程 ,如波动方程、热传导方程等。
高阶近似方法
研究高阶近似方法,以更精确地逼近真实解,提高求 解精度。
自适应步长控制
引入自适应步长控制策略,根据解的精度要求动态调 整步长,提高求解精度。
改进方向二:拓展应用范围
复杂边界条件
研究如何处理更复杂的边界条件,使得分离变 量法能够应用于更广泛的数理方程问题。
多维问题
将分离变量法拓展到多维问题,以解决更复杂 的数学模型。
04
CATALOGUE
分离变量法的实例
实例一:一维波动方程的分离变量法
总结词
通过将一维波动方程转化为常微 分方程,分离变量法能够简化求 解过程。
详细描述
一维波动方程是描述一维波动现 象的基本方程,通过分离变量法 ,我们可以将该方程转化为多个 常微分方程,从而逐个求解,得 到波动问题的解。
数学表达式

数理方程-分离变量法

数理方程-分离变量法

第八章 分离变量法⎪⎪⎩⎪⎪⎨⎧≤≤=∂∂=>==><<∂∂=∂∂l x x t x u x x u t t l u t u t l x x u a t u 0)()0,(),()0,(00),(,0),0(0,022222ψϕ 对于这样的定解问题,我们将介绍分离变量法求解,首先回忆高数中我们如何处理的求解的,高数中处理微分或重积分是把函数分成单元函数分离变量法的思路:对于二阶线性微分方程变换成单元函数来求解,也就是通过分离变量法把x 、t 两个变量分开来,即把常微分方程变化为两个偏微分方程来求解。

分离变量法的思想:先求出具有分离形式且满足边界条件的特解,然后由叠加原理做出这些解的线性组合,最后由其余的定解条件确定叠加系数(叠加后这些特解满足边界条件不满足初始条件,再由初始条件确定通解中的未知的数)。

叠加原理:线性偏微分方程的解的线性组合仍是这个方程的解。

特点:(1)数学上 解的唯一性来做作保证。

(2)物理上 由叠加原理作保证。

例:有界弦的自由振动1.求两端固定的弦的自由振动的规律⎪⎪⎩⎪⎪⎨⎧≤≤=∂∂=>==><<∂∂=∂∂l x x t x u x x u t t l u t u t l x x u a t u 0)()0,(),()0,(00),(,0),0(0,022222ψϕ 第一步:分离变量(建立常微分方程定解问题) 令)()(),(t T x X t x u =这个思想可从实际的物理现象可抽象出来,比如我现在说话的声音,它的振幅肯定随时间变化,但到达每个同学的位置不同,振幅又是随位置变化,可把声音分成两部分,一部分认为它随时间变化,一部分随位置变化。

第二步:代入方程(偏微分就可写成微分的形式,对于u 有两个变量,但对于X 、T 都只有一个变量))()()()(2t T x X a t T x X ''=''变形得)()()()(2t T a t T x X x X ''=''= λ- 左边与t 无关,右边与x 无关,左右两边相互独立,要想相等,必定等于一个常数。

常微分方程解析解

常微分方程解析解

常微分方程解析解常微分方程是数学中的一个重要分支,广泛应用于物理、工程、经济等领域。

对于一个常微分方程,寻找它的解析解是我们研究和解决问题的关键。

本文将介绍常微分方程解析解的概念、求解方法和应用,以帮助读者更好地理解和应用常微分方程。

一、概念在常微分方程中,解析解指的是通过代数或初等函数表示的解。

与解析解相对的是数值解,数值解是通过数值计算方法得到的近似解。

解析解具有精确性和完整性,可以给出问题的全面解答和直观理解。

因此,寻找常微分方程的解析解是研究和应用的首要任务。

二、求解方法常微分方程的求解方法主要包括分离变量法、齐次方程法、一阶线性方程法等。

下面简要介绍这几种方法。

1. 分离变量法对于形如dy/dx = f(x)g(y)的一阶常微分方程,可以将变量分离,即将方程移项,然后两边同时积分,得到解析解y = F(x)。

2. 齐次方程法对于形如dy/dx = f(y)/g(x)的一阶常微分方程,可以通过引入新的变量转化成齐次方程。

如果f(y)和g(x)满足一定的条件,可以通过变量代换和分离变量法得到解析解。

3. 一阶线性方程法对于形如dy/dx + p(x)y = q(x)的一阶常微分方程,可以通过引入积分因子的方法将其转化成线性方程。

然后可以通过分离变量和积分得到解析解。

三、应用常微分方程的解析解在各个领域有着广泛的应用。

下面以物理和工程领域为例进行介绍。

1. 物理应用物理学中的许多现象和规律都可以通过常微分方程来描述,而解析解则可以给出这些现象和规律的精确解答。

比如经典力学中的运动方程、电磁学中的麦克斯韦方程等均可以通过常微分方程的解析解进行研究和应用。

2. 工程应用工程领域中的许多问题也可以建模成常微分方程,通过求解其解析解可以为工程设计和优化提供指导。

比如在电路设计中,通过求解电路中的微分方程可以得到电流和电压的解析解,从而分析电路中的性能和特性。

四、总结常微分方程解析解是研究和应用的重要工具,通过解析解可以给出问题的全面解答和直观理解。

6.2 拉普拉斯方程的分离变量法

6.2 拉普拉斯方程的分离变量法

)
QN =
U1 (1 − e
2 Nπa b
)
Nπ a b
将前式改写为
PN e
Nπ a b
+QN e
− Nπ a b
Nπ a b
= U 1e
减后式,得
(e
Nπ a b
−e
) PN = U1 e
Nπ a bBiblioteka PN = U1 (ee
Nπ a b
Nπ a b
−e

Nπa b
)
PN =
U1 (1 − e
− 2N π a b
YZ
∂2X ∂2 Y ∂2 Z + ZX + XY =0 ∂x 2 ∂y 2 ∂z 2
(6-2-4)
方程的两侧同除以 XYZ ,得
1 ∂2 X 1 ∂ 2 Y 1 ∂ 2Z + + =0 X ∂x 2 Y ∂y 2 Z ∂y 2
每一项只能是常数。即
(6-2-5)
观察方程(6-2-5) :第一项只跟 x 有关,第二项只跟 y 有关,第三项只跟 z 有关。因此
例题:计算均匀介质区域中电位分布。基本方程:∇ 2 u = 0 ,边界条件:u
y = 0, y = b
=0,
u
x =0
= U1 sin
Nπ y , u b
x =a
= U 2 sin
Mπ y b
y = 0, y = b
解:根据方程,解 u ( x, y ) 可以包括(6-2-21)中的所有项。根据边界条件 u 可以确定解中不含 ( A sin kx + B cos kx )(Ce ky + De − ky ) 和 ( S + Tx)(U + Vy ) 。

分离变量法

分离变量法

1.2
分离变量法的物理意义
令 Nn =
2 A2 n + Bn ,
αn = arctan 混合问题 (1) 的解的每一项可化为 un (x, t) = Nn sin
Bn , An
nπ anπ x sin t + αn . l l
un (x, t) 是振动元素。对于弦上任意一点 x , un (x, t) 描述了这一 anπ nπ , 频 率 ωn (x) = ,初 点 的 简 谐 振 动 , 其 振 幅 an (x) = Nn sin l l l n−1 相位为 αn 。于是 ,当 x = 0, , . . . , l, l 时,振幅 an (x) = 0 ;当 n n l 3l 2n − 1 x= , ,..., l 时,振幅 an (x) = ±Nn 达到最大。因此弦的振动 2n 2n 2n 可以看作一系列具有特定频率的驻波的叠加。 特别地,考虑定解问题 utt − a2 uxx = A (x) sin ωt, (x, t) ∈ (0, l) × (0, +∞) , u (x, 0) = ut (x, 0) = 0, x ∈ [0, l] , u (0, t) = u (l, t) = 0, t ∈ [0, +∞) . x 我们可得
4
将 u (x, t) , f (x, t) , ϕ (x) , ψ (x) 均按特征函数系展开:

u (x, t) =
n=1 ∞
Tn (t) sin fn (t) sin
n=1 ∞
nπ x, l nπ x, l
f (x, t) = ϕ (x) =
n=1 ∞
ϕn sin ψn sin
n=1
nπ x, l nπ x, l

大学物理-曲线坐标系中分离变量法

大学物理-曲线坐标系中分离变量法
的有界条件。
球坐标系中Laplace方程的奇点 球坐标系的边界:r=0, r=a;r=a,r=
因此,定解问题在球坐标系下的完整表达形式应该是
1 r2
r
(r2
u ) r
r2
1
sin
(sin
u )
r2
1
sin2
2u
2
0
u 有界, u 有界
0
u 有界, u
r 0
ra
f1 ( , )
u ra f1( ,),u r f2 ( ,)
dx
x q1
dq1
x q2
dq2
x q3
dq3
x q1
dq1
(7)
同理
y
z
dy q1 dq1, dz q1 dq1
(8)
将 (7)、 (8) 式代入 (6) 式,即有
dl1
( x )2 q1
( y )2 q1
( z )2 q1
dq1
(9)
同理可得沿 q2, q3 坐标线的微分线元 dl2, dl3,这样,正交 曲线坐标系的微分线元可记作
将它们代入方程 (6-2-9) 得
即 ——连带勒让德方程
其解为:连带勒让德函数 (见§8–2) ——特殊函数 (6-2-14)
若所讨论的定解问题具有轴对称性,即 u 与 无 关,从而 m = 0,则由方程 (6-2-9) 得
——勒让德方程 其解为:勒让德多项式 (见§8–1)
(6-2-15) 球函数 (见§8–3): 将 (6-2-13)、(6-2-14) 代入 (7),有
则通解为:
三、柱坐标系中分离变量法
1. 时空变量的分离 (i) 波动方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dy h( x ) g( y) 可分离变量的微分方程. dx 4 4 dy 例如 2 x 2 y 5 y 5 dy 2 x 2dx, dx
解法 设函数 g ( y )和h( x )是连续的, (1) 如果有y0使得 g( y0 ) 0 ,则常函数 y y0
是它的解;
(2)如果 g ( y) 0 ,原方程变形并且两边同
解得
ln | y | x C1
2ห้องสมุดไป่ตู้

y e
x 2 C1
e e
C1 x 2 C1
令C e y Ce
x2
注意到y=0时也是方程的解,但此解包含在
y C e 中,故此方程的通解最后可写为 y Ce .
说明: 在求解过程中每一步不一定
x2
x2
是同解变形,因此可能增、减解。
时积分有

1 dy h( x )dx g ( y)
1 若记G ( y ) 、 、h( x )的某一原 H ( x ) 分别为 g ( y) 函数,则
G ( y) H ( x ) c
这就是原方程的隐式通解。
dy 2 xy。 例1 解方程 dx
1 解:当 y 0 时,分离变量得 dy 2 xdx y 1 两边积分 dx 2 xdx y
dy x e (1 y ) 。 例2 解方程 dx
1 2 2
解:当 y 1 时,分离变量得
(1 y2 ) dy e xdx,
两边积分
解得
2 x (1 y ) d y e dx 1 2

1 2
arcsin y e x C
y=sin(e x C )
(2) y sin( x y) sin( x y)
y x 提示: (1) 分离变量 dy dx 2 2 1 y 1 x
(2) 方程变形为
y 2cos x sin y y ln tan 2sin x C 2
谢 谢 !
显示形式为:
此外,它还有两个特解 y 1 (这两个特解不 能在上述通解通过对任意常数C的取值得到).
例3 设飞行员在高空从直升飞机跳伞下 落,下落过程中所受空气阻力与速度成正比, 并且假设飞行员跳离飞机时的初速度为零. 试求飞行员下落的速度时间函数.
解 :设速度时间函数为 v ( t ),
mg v Ce k
k t m
k t m kC1
e
其中 C
e
kC1
k
mg 把初始条件 v(0)=0代入得 C k
k t mg m 1 e 于是所求的特解为 v k
思考与练习
求下列方程的通解 : 2 2 (1) ( x x y )d x ( x y y)dy 0
空气阻力 R kv(k>0为比例系数), 根据牛顿第二定律 得
F ma
dv m mg kv dt
分离变量并两边积分 1 1 mg kvdv mdt ( mg>kv) 所以方程的隐式通解为
1 t ln(mg kv ) C1 k m
即 或
mg kv e
第二节 常微分方程的 分离变量法
可分离变量方程 dy f1 ( x ) f2 ( y) dx
M1 ( x) M2 ( y)d x N1 ( x) N2 ( y)d y 0
转化
解分离变量方程 g( y)dy f ( x )dx
微分方程的初等解法: 初等积分法.
求解微分方程
求积分
(通解可用初等函数或积分表示出来)
相关文档
最新文档