D触发器工作原理
D触发器工作原理

D触发器工作原理D触发器是一种数字逻辑电路,用于存储和传输一个比特的数据。
它具有两个稳定状态,分别为SET和RESET,来实现数据的存储和传输功能。
D触发器在组合逻辑电路和时序逻辑电路中广泛应用,例如计数器、寄存器和触发器等。
D触发器可分为两种类型:非门控型和门控型。
非门控型D触发器,也称为SR触发器,在SET和RESET输入都为高电平时,触发器处于SET状态。
当RESET输入为低电平时,SET输入为高电平,则触发器处于RESET状态。
在SET和RESET输入都为低电平时,触发器的状态保持不变。
门控型D触发器的工作原理是通过一个时钟信号来控制数据的传输。
常见的门控型D触发器为正沿触发型和负沿触发型。
正沿触发型D触发器在时钟信号上升沿时,输入信号的状态被锁存,并传输到输出端。
换句话说,只有在时钟信号上升沿时,输入端的D输入才能影响到输出端。
当时钟信号下降沿时,输入信号的变化不会传输到输出端,输出端的状态保持不变。
负沿触发型D触发器则是在时钟信号下降沿时,输入信号的状态被锁存,并传输到输出端。
在时钟信号上升沿时,输入信号的变化不会传输到输出端,输出端的状态保持不变。
D触发器的工作原理可以通过逻辑电路实现。
常见的D触发器电路包含与门、非门和延迟元件。
例如,一个正沿触发型D触发器的电路如下所示:```___D_____,\_________AND,________CLK___,____/D,__________________SET___________,,NOR,__RESET________,_________,____```其中,D为输入端,CLK为时钟输入端,SET为SET输入端,RESET为RESET输入端,Q为输出端。
该电路由AND门、NOR门和延迟元件组成。
AND门用于将时钟信号和输入信号进行与运算,得到锁存的时机;NOR门用于处理SET和RESET输入信号,实现SET和RESET功能。
延迟元件用于在时钟信号发生变化时,确保输入的信号在时钟信号的上升沿或下降沿之前稳定。
d触发器工作原理

d触发器工作原理触发器是数字电路中的一种重要元件,它在数字系统中具有很多应用。
在本文中,我们将详细介绍触发器的工作原理,包括其基本结构、工作方式和应用场景。
触发器是一种存储器件,它可以存储一个比特的信息并在特定条件下改变输出。
触发器通常由若干个门电路组成,最常见的是由多个门电路构成的触发器。
在触发器中,最基本的是D触发器,它由一个数据输入端(D)、时钟输入端(CLK)、复位端(RST)和输出端(Q)组成。
D触发器的工作原理如下,当时钟输入端的信号发生上升沿时,D触发器会将D端的输入信号保存在内部,并在下一个时钟周期将其输出到Q端。
这样,D触发器就实现了对输入信号的存储和延时输出。
同时,D触发器还具有复位功能,当复位端接收到高电平信号时,触发器的输出会被强制置为低电平。
在实际应用中,D触发器被广泛应用于数字系统中的时序逻辑电路中。
例如,在时序逻辑电路中,D触发器可以用来存储和延时输入信号,从而实现对系统时序的控制。
此外,D触发器还可以用于状态机的设计和实现,通过组合多个D触发器可以构成各种复杂的状态机,实现对系统状态的控制和转移。
除此之外,D触发器还可以用于数字信号的同步和锁存。
在数字通信系统中,D触发器可以用来同步输入信号,确保数据的可靠传输。
在数字系统中,D触发器还可以用来锁存输入信号,实现对数据的暂存和处理。
总之,D触发器作为数字系统中的重要元件,具有广泛的应用场景。
通过对D触发器的工作原理的深入理解,我们可以更好地应用它来设计和实现各种数字系统,从而提高系统的可靠性和稳定性。
希望本文对您有所帮助,谢谢阅读!。
D触发器原理-D触发器电路图

在实际集成触发器中,每个门传输时间是不同的,并且作了不同形式的简化,因此上面讨论的结果只是一些定性的物理概念。其真实参数由实验测定。
综上所述,对边沿D触发器归纳为以下几点:
1.边沿D触发器具有接收并记忆信号的功能,又称为锁存器;
2.边沿D触发器属于脉冲触发方式;
2.特征方程 Qn+1=D
3状态转移图
脉冲特性:
1.建立时间:由下图维持阻塞触发器的电路可见,CP信号是加到门G3和G4上的,因而在CP上升沿到达之前门G5和G6输出端的状态必须稳定地建立起来。输入信号到达D端以后,要经过一级门电路的传输延迟时间G5的输出状态才能建立起来,而G6的输出状态需要经过两级门电路的传输延迟时间才能建立,因此D端的输入信号必须先于CP的上升沿到达,而且建立时间应满足: tset≥2tpd。
1.CP=0时,与非门G3和G4封锁,其输出Q3=Q4=1,触发器的状态不变。同时,由于Q3至Q5和Q4至Q6的反馈信号将这两个门打开,因此可接收输入信号D,Q5=D,Q6=Q5=D。
D触发器工作原理

D触发器工作原理D触发器是一种常用的数字电路元件,用于存储和传输数据。
它是由几个逻辑门组成的,具有两个稳定的输出状态:低电平和高电平。
D触发器可以根据时钟信号的变化来改变输出状态,从而实现数据的存储和传输。
D触发器的工作原理如下:1. 结构和输入输出:D触发器由两个输入端(D和时钟)和两个输出端(Q和Q')组成。
其中,D 输入端用于输入数据,时钟输入端用于控制数据的传输和存储,Q输出端用于输出数据,Q'输出端用于输出数据的补码。
2. 时钟信号:D触发器的时钟信号是一个周期性变化的信号,通常为方波信号。
时钟信号的上升沿和下降沿触发D触发器的状态转换。
3. 工作过程:当时钟信号的上升沿到来时,D触发器会根据D输入端的电平状态来改变输出状态。
如果D输入端为低电平,则Q输出端为低电平,Q'输出端为高电平;如果D输入端为高电平,则Q输出端为高电平,Q'输出端为低电平。
这种状态的改变是同步的,即发生在时钟信号的上升沿到来时。
4. 数据存储和传输:D触发器可以用于存储数据和传输数据。
当时钟信号的上升沿到来时,D触发器会根据D输入端的电平状态来存储数据,并将存储的数据通过Q输出端输出。
当时钟信号的下降沿到来时,D触发器会保持存储的数据,并将数据通过Q输出端继续输出。
5. 触发器类型:D触发器有多种类型,常见的有D型正沿触发器、D型负沿触发器和D型同步清零触发器等。
它们的区别在于时钟信号的边沿触发方式和是否具有清零功能。
总结:D触发器是一种常用的数字电路元件,用于存储和传输数据。
它通过时钟信号的边沿触发来改变输出状态,实现数据的存储和传输。
D触发器具有两个输入端(D和时钟)和两个输出端(Q和Q'),可以用于存储和传输数据。
在设计和实现数字电路时,D触发器是非常重要的基本元件之一。
D触发器工作原理

D触发器工作原理D触发器是一种常用的数字电路元件,用于存储和传递二进制信号。
它是由几个逻辑门组成的,常用的有D型正沿触发器和D型负沿触发器。
D型正沿触发器的工作原理如下:1. D触发器由两个输入端(D输入和时钟输入)和两个输出端(Q输出和Q'输出)组成。
2. 当时钟信号为上升沿时,D触发器会根据D输入的电平状态将其传递到Q输出端,即Q输出端的电平与D输入端相同。
3. 当时钟信号为下降沿时,D触发器会保持之前的状态,即Q输出端的电平保持不变。
4. 当时钟信号再次上升沿时,D触发器会根据新的D输入电平更新Q输出端的电平。
5. D触发器的Q'输出端是Q输出端的反相信号。
D型负沿触发器的工作原理与D型正沿触发器类似,只是触发时钟信号为下降沿。
D触发器常用于存储数据、时序控制和状态转换等应用场景。
它可以实现存储和传递单个比特的数据,并且可以通过时钟信号的控制来同步数据的传输。
例如,当D触发器用于存储数据时,可以将需要存储的数据输入到D输入端,然后通过时钟信号的触发,将数据传递到Q输出端。
这样,在时钟信号的作用下,D触发器可以将数据保持在输出端,直到下一次时钟触发更新数据。
D触发器还可以用于时序控制,例如在时序电路中,可以通过D触发器的输出信号来控制其他逻辑门或者触发器的工作状态,实现特定的时序功能。
总结:D触发器是一种常用的数字电路元件,用于存储和传递二进制信号。
D型正沿触发器在时钟信号上升沿时传递D输入到Q输出端,下降沿时保持状态。
D型负沿触发器在时钟信号下降沿时传递D输入到Q输出端,上升沿时保持状态。
D触发器常用于存储数据、时序控制和状态转换等应用场景。
它可以实现数据的存储和传递,并通过时钟信号的控制来同步数据的传输。
D触发器工作原理

D触发器工作原理引言概述:D触发器是数字电路中常用的一种触发器,它能够存储和传输一个比特的信息。
本文将详细介绍D触发器的工作原理,包括其基本结构和逻辑功能。
一、D触发器的基本结构1.1 主要组成部分D触发器由两个互补的存储单元组成,分别为数据存储单元和时钟控制单元。
数据存储单元用于存储输入信号,而时钟控制单元用于控制数据存储单元的更新。
1.2 数据存储单元数据存储单元由两个互补的存储单元组成,分别为Set和Reset。
Set存储单元用于存储输入信号为逻辑高电平时的状态,而Reset存储单元用于存储输入信号为逻辑低电平时的状态。
1.3 时钟控制单元时钟控制单元由时钟信号和使能信号组成。
时钟信号用于控制数据存储单元的更新,使其根据输入信号的变化更新存储状态。
使能信号用于控制数据存储单元是否响应时钟信号。
二、D触发器的逻辑功能2.1 储存功能D触发器能够存储输入信号的状态。
当时钟信号到达时,根据输入信号的逻辑电平,数据存储单元的Set或Reset存储单元被更新为相应的状态。
2.2 传输功能D触发器能够传输输入信号的状态。
当使能信号为逻辑高电平时,D触发器会根据输入信号的状态将其传输到输出端口,实现信号的传输功能。
2.3 锁存功能D触发器能够锁存输入信号的状态。
当使能信号为逻辑低电平时,D触发器会锁定当前的状态,并不再响应输入信号的变化,实现信号的锁存功能。
三、D触发器的工作原理3.1 储存功能的工作原理当时钟信号到达时,根据输入信号的逻辑电平,数据存储单元的Set或Reset 存储单元被更新为相应的状态。
如果输入信号为逻辑高电平,Set存储单元被置为逻辑高电平;如果输入信号为逻辑低电平,Reset存储单元被置为逻辑高电平。
3.2 传输功能的工作原理当使能信号为逻辑高电平时,D触发器会根据输入信号的状态将其传输到输出端口。
如果输入信号为逻辑高电平,输出端口为逻辑高电平;如果输入信号为逻辑低电平,输出端口为逻辑低电平。
D触发器工作原理

D触发器工作原理引言概述:D触发器是数字电路中常用的一种触发器,它具有存储和传输数据的功能。
本文将详细介绍D触发器的工作原理,包括其基本概念、输入输出特性、内部结构以及应用场景。
一、基本概念1.1 D触发器的定义D触发器是一种具有两个稳定状态的数字电路元件,它可以存储和传输一个二进制位的数据。
它的输出状态取决于其输入状态和时钟信号。
1.2 D触发器的输入输出D触发器有两个输入端:数据输入端D和时钟输入端CLK。
它有两个输出端:输出端Q和输出端Q'(Q的补码)。
1.3 D触发器的稳定状态D触发器的稳定状态是指在无时钟信号输入时,D触发器的输出状态保持不变。
D触发器有两个稳定状态:低电平(0)和高电平(1)。
二、输入输出特性2.1 数据输入端DD触发器的数据输入端D可以接受0或1的逻辑电平。
当时钟信号到来时,D触发器会根据D端的电平状态来决定输出端Q的电平状态。
2.2 时钟输入端CLK时钟输入端CLK用于控制D触发器的状态转换。
当时钟信号发生上升沿或下降沿时,D触发器会根据当前D端的电平状态更新输出端Q的电平状态。
2.3 输出端Q和输出端Q'输出端Q和输出端Q'是D触发器的输出端,它们分别表示当前的输出状态和其补码。
当时钟信号到来时,D触发器会根据输入端D的电平状态更新输出端Q 和Q'的电平状态。
三、内部结构3.1 RS触发器D触发器的内部结构通常是基于RS触发器实现的。
RS触发器由两个交叉连接的反相器和两个交叉连接的与门组成,其中一个反相器的输出与另一个反相器的输入相连。
3.2 时钟信号的作用时钟信号的作用是控制RS触发器的状态转换。
当时钟信号发生上升沿或下降沿时,RS触发器的状态会根据输入端D的电平状态进行更新。
3.3 D触发器的边沿触发D触发器是一种边沿触发器,即在时钟信号的边沿(上升沿或下降沿)时才会更新输出状态。
这种触发方式可以有效避免由于输入端D的变化导致的输出状态抖动。
D触发器工作原理

D触发器工作原理D触发器是数字电路中常用的一种触发器,它可以存储和传输一个比特的信息。
在数字系统中,D触发器常用于存储和传输数据,以及在时序逻辑电路中实现状态的存储和控制。
D触发器的基本原理是利用两个互补的非门(或者称为反相器)和一个与门(或者称为与非门)来实现。
D触发器有两个输入端和两个输出端,其中一个输入端称为数据输入端D,另一个输入端称为时钟输入端CLK,一个输出端称为Q,另一个输出端称为Q'(即Q的反相输出)。
D触发器的工作原理如下:1. 初始状态:假设D触发器处于初始状态,Q和Q'的输出值为0。
2. 数据输入:当D触发器的数据输入端D为1时,表示要存储的数据是1;当D触发器的数据输入端D为0时,表示要存储的数据是0。
3. 时钟输入:当时钟输入端CLK的电平从低电平(0)变为高电平(1)时,D 触发器开始工作。
4. 存储数据:当CLK为高电平时,D触发器将数据输入端D的值存储到内部的存储单元中,并将存储的值传递到输出端Q和Q'上。
5. 保持数据:当CLK为高电平时,无论D的值如何变化,D触发器都会保持之前存储的值不变,直到CLK的电平再次变为低电平。
6. 输出数据:D触发器的输出端Q和Q'的值取决于存储单元中存储的值。
当存储单元中存储的值为1时,Q为1,Q'为0;当存储单元中存储的值为0时,Q为0,Q'为1。
7. 数据传输:当D触发器的数据输入端D的值发生变化时,惟独在CLK的电平从低电平变为高电平的过程中,D触发器才会将新的数据传输到存储单元中,并更新输出端Q和Q'的值。
总结:D触发器通过时钟信号的控制,根据数据输入端D的值来存储和传输数据。
它的工作原理可以简单地概括为:在时钟信号的上升沿(CLK从低电平变为高电平)时,将数据输入端D的值存储到内部的存储单元中,并将存储的值传递到输出端Q和Q'上;在时钟信号的下降沿(CLK从高电平变为低电平)时,保持存储的值不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D触发器工作原理
D触发器工作原理
主从JK触发器是在CP脉冲高电平期间接收信号,如果在CP高电平期间输入端出现干扰信号,那么就有可能使触发器产生与逻辑功能表不符合的错误状态。
边沿触发器的电路结构可使触发器在CP脉冲有效触发沿到来前一瞬间接收信号,在有效触发沿到来后产生状态转换,这种电路结构的触发器大大提高了抗干扰能力和电路工作的可靠性。
下面以维持阻塞D触发器为例介绍边沿触发器的工作原理。
维持阻塞式边沿D触发器的逻辑图和逻辑符号如图9-7所示。
该触发器由六个与非门组成,其中G1、G2构成基本RS触发器,G3、G4组成时钟控制电路,G5、G6组成数据输入电
路。
和分别是直接置0和直接置1端,有效电平为低电平。
分析工作原理时,设和
均为高电平,不影响电路的工作。
电路工作过程如下。
(a) 逻辑图
(b) 逻辑符号
图9-7 维持阻塞型D触发器
①CP=0时,与非门G3和G4封锁,其输出为1,触发器的状态不变。
同时,由于至G5和至G6的反馈信号将这两个门G5、G6打开,因此可接收输入信号,使=,= =。
②当CP由0变1时,门G3和G4打开,它们的输出和的状态由G5和G6的输出状态决定。
==,==。
由基本RS触发器的逻辑功能可知,=。
③触发器翻转后,在CP=1时输入信号被封锁。
G3和G4打开后,它们的输出和的状态是互补的,即必定有一个是0,若为0,则经G4输出至G6输入的反馈线将G6封锁,即封锁了D通往基本RS触发器的路径;该反馈线起到了使触发器维持在0状态和阻止触发器变为1状态的作用,故该反馈线称为置0维持线,置1阻塞线。
G3为0时,将G4和G5封锁,D端通往基本RS触发器的路径也被封锁;G3输出端至G5反馈线起到使触发器维持在1状态的作用,称作置1维持线;G3输出端至G4输入的反馈线起到阻止触发器置0的作用,称为置0阻塞线。
因此,该触发器称为维持阻塞触发器。
由上述分析可知,维持阻塞D触发器在CP脉冲的上升沿产生状态变化,触发器的次态取决于CP脉冲上升沿前D端的信号,而在上升沿后,输入D端的信号变化对触发器的输出状态没有影响。
如在CP脉冲的上升沿到来前=0,则在CP脉冲的上升沿到来后,触发器置0;如在CP脉冲的上升沿到来前=1,则在CP脉冲的上升沿到来后触发器置1。
维持阻塞触发器的逻辑功能表如表9-4所示。
表9-4 触发器的逻辑功能表
说明
0 0 复位
1 1 置位
依据逻辑功能表可得触发器的状态方程为
(9-2)
【例9-4】已知上升沿触发的D触发器输入和时钟CP的波形如图9-8所示,试画出端波形。
设触发器初态为0。
图9-8 维持阻塞触发器的波形图
解:该D触发器是上升沿触发,即在CP的上升沿过后,触发器的状态等于CP脉冲上升沿前D的状态。
所以第一个CP过后,=1,第二个CP过后,= 0,…,波形如图9-8所示。
触发器在CP上升沿前接受输入信号,上升沿触发翻转,即触发器的输出状态变化比输入端的状态变化延迟,这就是触发器的由来。