小学六年级二元一次方程组期末常考题型教学提纲
二元一次方程组综合练习教学提纲

二元一次方程组综合练习二元一次方程组综合练习一.选择题(共13小题)1.方程组的解适合方程x+y=3,则k值为()A.2 B.﹣2 C.1 D.﹣2.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣33.方程组的解为,则方程组的解为()A.B.C.D.4.已知关于x,y的方程组的解是,则关于x,y的方程组的解是()A.B.C.D.5.甲乙两人同解方程时,甲正确解得,乙因为抄错c而得,则a+b+c的值是()A.7 B.8 C.9 D.106.关于x、y的方程组有正整数解,则正整数a为()A.1、2 B.2、5 C.1、5 D.1、2、57.若二元一次方程组的解x,y的和为0,则a的值为()A.1 B.2 C.3 D.﹣18.若y=kx+b中,当x=﹣1时,y=1;当x=2时,y=﹣2,则k与b为()A.B.C.D.9.利用加减消元法解方程组下列做法正确的是()A.要消去z,先将①+②,再将①×2+③B.要消去z,先将①+②,再将①×3﹣③C.要消去y,先将①﹣③×2,再将②﹣③ D.要消去y,先将①﹣②×2,再将②+③10.三元一次方程组消去一个未知数后,所得二元一次方程组是()A.B.C.D.11.有甲、乙、丙三种货物,若购甲3件、乙2件、丙1件,共需315元,若购甲1件,乙2件,丙3件共需285元,那么购甲、乙、丙各1件,共需()A.128元B.130元C.150元D.160元12.如果2x+3y﹣z=0,且x﹣2y+z=0,那么的值为()A.B.﹣C.D.﹣13.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支,作业本5本,圆珠笔2支共需()A.4.5元B.5元C.6元D.6.5元二.解答题(共27小题)14.解方程组:(1).(2)(3).15.如果==,且x+y+z=18,求x,y,z的值.16.目前节能灯在城市已基本普及,为响应号召,某商场计划用3800元购进甲,乙两种节能灯共120只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利多少元?17.如图,欣欣食品加工厂与湖州、杭州两地有公路、铁路相连,该食品加工厂从湖州收购一批每吨2000元的枇杷运回工厂加工,制成每吨8000元的枇杷干运到杭州销售,已知公路运价为0.8元/(吨•千米),铁路运价为0.5元/(吨•千米),且这次运输共支出公路运输费960元,铁路运输费1900元.求:(1)该工厂从湖州购买了多少吨枇杷?制成运往杭州的枇杷干多少吨?(2)这批枇杷干的销售款比购买枇杷费用与运输费用的和多多少元?18.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y1元,购买x个乙奖品需要y2元,请用x分别表示出y1和y2;(3)在(2)的条件下,问买哪一种产品更省钱?19.某农户2017年承包田地若干亩,投资64000元种草莓,今年预计产量8000千克,此种草莓在市场上每千克售a元,每天可以售出100千克,需要2人帮忙,每人每天支付工资150元,运费及其它费用每天100元;如果让游客进果园采摘,每天可以接待50人次,每人次可以采4千克,每千克售b元.为游客提供接待每天要花费2元/人次.(1)分别用a、b表示两种方式出售草莓每天的纯收入(纯收入是销售收入扣除人工工资、运费、接待费等剩下的收入)(2)若后种方式每天的纯收入是前种方式的4倍,而全部售完所获利润后种方式是前种方式的3倍,则a,b的定价分别是多少元?20.汽车公司有甲、乙两种货车可供租用,现有一批货物要运往某地,货主准备租用该公司货车,已知以往甲、乙两种货车运货情况如表:第一次第二次甲种货车(辆) 2 5乙种货车(辆) 3 6累计运货(吨)13 28(1)甲、乙两种货车每辆可装多少吨货物?(2)若货主需要租用该公司的甲种货车8辆,乙种货车6辆,刚好运完这批货物,如按每吨付运费50元,则货主应付运费总额为多少元?(3)若货主共有20吨货,计划租用该公司的货车正好(每辆车都满载)把这批货运完,该汽车公司共有哪几种运货方案?21.云南地区地震发生后,全国人民抗旱救灾,众志成城.温州市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)400 500 600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,温州市政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?22.甲、乙两件服装的成本共500元,商店老板为获取利润,将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按定价的9折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元?23.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信:(水价计费=自来水销售费用+污水处理费用)自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下 a 0.80超过17吨不超过30吨的部分 b 0.80超过30吨的部分 6.00 0.80已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元(1)求a、b的值;(2)6月份小王家用水32吨,应交水费多少元.24.为了拉动内需,全国各地汽车购置税补贴活动正式开始.重庆长安汽车经销商在出台前一个月共售出长安SUV汽车CS35的手动型和自动型共960台,政策出台后的第一月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,购车人需要交纳车辆购置各种税费杂费路桥保险等为每台汽车价格的22%,问政策出台后的第一个月,政府对这l228台汽车用户共补贴了多少万元?客户实际需要花多少钱才能够买一辆自动型的CS35汽车?25.商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)求该商场购进甲、乙两种商品的件数;(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,本次经营活动获利为8160元,则乙种商品售价为每件多少元?26.如图,长方形ABCD中放置9个形状、大小都相同的小长方形,相关数据图中所示,则图中阴影部分的面积为多少.27.某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.甲乙丙每辆汽车能装的数量(吨) 4 2 3每吨水果可获利润(千元) 5 7 4(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?28.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)400 500 600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该公司打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?。
数学二元一次方程组知识点提纲

数学二元一次方程组知识点提纲(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如学习资料、英语资料、学生作文、教学资源、求职资料、创业资料、工作范文、条据文书、合同协议、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays, such as learning materials, English materials, student essays, teaching resources, job search materials, entrepreneurial materials, work examples, documents, contracts, agreements, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!数学二元一次方程组知识点提纲数学思想方法是数学知识的精髓,是分析、解决数学问题的基本原则,也是数学素养的重要内涵,它是培养学生良好思维品质的催化剂。
小学六年级二元一次方程组期末常考题型

教学目标
教学重点 教学难点 教学关键 教学过程: 、 教师讲解
二元一次方程组典型例题分析: 例 1、若方程 xa_2+y4_3b=1 是关于字母 x、y 的二元一次方程,则 a,b 的值是多少?
例 2、如果
x 1 是二元一次方程 kx-2y=0 的一组解,那么 k= y 2
。
例 3、二元一次方程 x+y=3 的自然数解有几对?
例 6、已知
x 3 x 2 和 都是方程 y-ax=b 的解,求 a,b 的值。 y 3 y 1
例 7、在式子 x2+px+q 中,当 x=-1 时,它的值是-5;当 x=3 时,它的值是 3,则 p、q 的值 是多少?
例 8、二元一次方程组
| x | 2 y 5 的解是 3 y | x | 6
例 12、已知 3ax+2b8-3y 和 9ay+1bx+1 是同类项,则 x+y=
。
例 13、如果(2x-5y+8)2+|x+3y-7|=0,那么 x=
,y=
Байду номын сангаас
。
例 14、如果关于 x 的方程 m(x-1)=2005-n(x-2)有无数个解,求 m、n 的值?
分析:对于一元一次方程 ax=b,当 a≠0 时,方程有唯一解;当 a=0 时,若 b≠0,则方程无解; 当 a=0 时,若 b=0,则方程有无数个解。
乙看错了②中的 b 得到方程组的解为
x 5 。若按正确的 a、b 计算,则原方程组的解是多少? y 4
(了解)例 11、已知关于 x、y 的方程组
5 x 7 y 2 ax by 1 和 的解相同,求 ax+by。 5ax 7by 31 x 5 y 6
小学六年级二元一次方程组期末常考题型

1、 知道什么是二元一次方程 2、 学会用代入法和消元法解二元一次方程组 教学目标 3、 掌握二元一次方程组相对应的变式训练 4、 掌握二元一次方程组的应用 二元一次方程组的解法 教学重点 二元一次方程组的应用 有关二元一次方程组的变式训练 教学难点 二元一次方程租的应用
。
例 3、二元一次方程 x+y=3 的自然数解有几对?
例
4、解方程组
x 2
y x
7①, y 8.
②
分析:解方程组的方法主要有两种:一是代入法,二是加减法。解法如下:
解法一:代入法。
解法二:加减法。
例
5、如果二元一次方程组
ax by 1 3ax 2by
23
的解是
x
y
5 4
,求
a-b
的值。
y y
k2 2k 5
的解
x、y
是相反数,则
k
的值是多少?
例
10、已知方程组
ax 4x
5y by
15 ①
2
甲由于看错了方程①中的
a,得到方程组的解为
x
y
3 ; 1
②
乙看错了②中的
b
得到方程组的解为
x
y
5 4
。若按?
(了解)例
11、已知关于
x、y
分析:对于一元一次方程 ax=b,当 a≠0 时,方程有唯一解;当 a=0 时,若 b≠0,则方程无 解;当 a=0 时,若 b=0,则方程有无数个解。
作业 教学效果/ 课后反思
例
6、已知
x y
3 3
和
x
y
2 1
第八章 二元一次方程组-复习提纲

第八章 二元一次方程组【知识要点回顾】1、二元一次方程:⑴定义:含两个未知数且未知项的最高次数是 的方程。
即同时满足以下几个条件的方程就是二元一次方程:①含 未知数;②未知项的最高次数是 ;③分母不含 。
⑵使二元一次方程左右两边相等的两个未知数的值叫二元一次方程的 ; 2、二元一次方程组:⑴同时满足以下条件的方程组就是二元一次方程组:①共含..两个未知数;②未知项的最高次数是 ;③分母不含 。
⑵同时使 方程都成立的未知数的值叫二元一次方程组的解。
无论是二元一次方程还是二元一次方程组的解都应该写成 的形式。
⑶二元一次方程组的解法:基本思路是 。
代入消元法:将一个方程变形,用一个未知数的式子表示 的形式,再 ,把二元消去一元,再求解一元一次方程。
主要步骤:变形—— 。
代入—— 。
求解——分别求出两个未知数的值。
写解——写出方程组的解。
(2)加减消元法:适用于相同未知数的系数有 的特点的方程组,首先观察出两个未知数的系数各自的特点,判断如何运用加减消去一个未知数;含分母、小数、括号等的方程组都应先化为 后再用这两种方法去解。
变形—— 。
加减—— 。
求解——分别求出两个未知数的值。
写解——写出方程组的解。
⑷列方程解应用题的一般步骤是: ;关键是找出题目中的两个相等关系,列出方程组。
【练习题】1、下列方程中,是二元一次方程的有________(填序号)。
① 03=-x ② 25s t -=③ 853=-xy ④211=+y x ⑤123m n+= ⑥ 223a b a b += ⑦ 236x y -= ⑧ 259x x -= 2、下列方程组中,是二元一次方程组的有________(填序号)。
①32141x y y z -=⎧⎨=+⎩②3232a b a =⎧⎨-=⎩③32x y xy +=⎧⎨=⎩ ④1121a b a b ⎧+=⎪⎨⎪-=⎩⑤358s t s t ÷=÷⎧⎨-=⎩ ⑥08x y =⎧⎨=⎩3、在方程742=+y x 中,用含x 的代数式表示y ,则y =_____,用含y 的代数式表示x ,则x =______;4、用代入法解方程组233710x y x y -=-⎧⎨-=⎩ ① ②,较简便的解法步骤是:先把方程 变成 ,再代入方程 ,可消去未知数__,求得未知数 的值。
二元一次方程解决实际问题教学提纲

二元一次方程解决实际问题列方程(组)解应用题的一般步骤1、审:有什么,求什么,干什么;2、设:设未知数,并注意单位;3、找:等量关系;4、列:用数学语言表达出来;5、解:解方程(组)6、验:检验方程(组)的解是否符合实际题意.7、答:完整写出答案(包括单位).列方程组思想:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.列二元一次方程----解决实际问题类型:(1)行程问题:(2)工程问题;(3)销售中的盈亏问题;(4)储蓄问题;(5)产品配套问题;(6)增长率问题;(7)和差倍分问题;(8)数字问题; (9)浓度问题; (10)几何问题; (11)年龄问题;(12)优化方案问题;(13)分配问题(1)行程问题三个基本量的关系:路程s=速度v×时间t时间t=路程s÷速度V速度V=路程s÷时间t(2)三大类型:①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速= 2水速;顺速+ 逆速= 2船速顺水的路程= 逆水的路程甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。
【变式】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
一列快车长168米,一列慢车长184米,如果两车相向而行,那么两车错车需4秒,如果同向而行,两车错车需16秒钟,求两车的速度(2)工程问题三个基本量的关系:工作总量=工作时间×工作效率;工作时间=工作总量÷工作效率;工作效率=工作总量÷工作时间甲的工作量+乙的工作量=甲乙合作的工作总量,注:当工作总量未给出具体数量时,常设总工作量为“1”。
二元一次方程组教案提纲

教师:_______学生:______时间:______年___月____日____________段一、授课目的与考点分析:目标:1 二元一次方程组的相关概念及解法2 掌握灵活运用代入消元法和加减消元法的基本思想,将“未知”转化为“已知”,把复杂的问题转化为简单问题的化归思想。
3 能应用二元一次方程组解决实际问题。
二、授课内容:二元一次方程组专题复习目标:1 二元一次方程组的相关概念及解法2 掌握灵活运用代入消元法和加减消元法的基本思想,将“未知”转化为“已知”,把复杂的问题转化为简单问题的化归思想。
3 能应用二元一次方程组解决实际问题。
重点:1 能根据题目灵活选择消元法来求解二元一次方程组。
2 探索用二元一次方程组解决有关的应用题。
难点:分析题目中蕴含的数量关系。
过程:一 知识结构图运用方程组解决实际问题的一般过程二元一次方程组的解法二元一次方程组二元一次方程丰富的问题情境二 具体知识点复习1.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.理解二元一次方程时特别强调注意:①二元一次方程左右两边的代数式必须是整式,②二元一次方程必须含有两个未知数。
2.二元一次方程的解:能使二元一次方程左右两边的值相等的一对未知数的值叫做二元一次方程的解。
在任何一个二元一次方程中,如果把其中的一个未知数任取一个数,都可以通过方程求得与之对应的另一个未知数的值。
因此,任何一个二元一次方程都有无数解。
3. 二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.4.二元一次方程组的解法:(1) 代入消元法 (2)加减消元法 龙文教育个性化辅导教案提纲代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.5.解决实际问题的过程:(1)审:审题,分析题中已知什么,求什么,理顺各数量之间的关系;(2)设:设未知数(一般求什么,就设什么为x、y,设未知数要带好单位名称);(3)找:找出能够表示应用题全部意义的两个相等关系;(4)列:根据这两个相等关系列出需要的代数式,进而列出两个方程,组成方程组;(5)解:解所列方程组,得未知数的值;(6)答:检验所求未知数的值是否符合题意,写出答案(包括单位名称)。
完整版)二元一次方程组常考题型分类总结(超全面)

完整版)二元一次方程组常考题型分类总结(超全面)二元一次方程组常见题型二元一次方程组是初中数学中的重要内容,常见的题型包括分配调运问题、行程问题、百分数问题、分配问题、浓度分配问题和金融分配问题等。
其中,分配调运问题是指在不同的地方分配人员或物品,需要根据条件求出各个地方的人数或物品数量。
例如,某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,需要求出到两个工厂的人数各是多少。
行程问题是指两个人或物体在不同的路程上移动,需要根据条件求出它们的速度或路程。
例如,甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。
需要求出甲、乙的平均速度各是多少。
百分数问题是指在数量变化中涉及到百分数的计算,需要根据条件求出各个数量的值。
例如,某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,需要求出这个市现在的城镇人口与农村人口。
分配问题是指在已知总量和每份数量的情况下,需要求出总量或份数。
例如,某幼儿园分萍果,若每人3个,则剩2个;若每人4个,则有一个少1个,需要求出幼儿园有几个小朋友。
浓度分配问题是指在不同浓度的物质中混合,需要根据条件求出各个物质的数量或浓度。
例如,要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少。
金融分配问题是指在不同价格的商品中混合,需要根据条件求出各个商品的数量或价格。
例如,需要用多少每千克售4.2元的糖果才能与每千克售3.4元的糖果混合成每千克售3.6元的杂拌糖200千克。
几何分配问题)用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?解:设小长方形的长是x厘米,宽是y厘米。
可以列出以下两个方程:1、8x = 482、4y = 48解方程得到x = 6,y = 12,因此每块小长方形的长是6厘米,宽是12厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学过程:、
教师讲解
二元一次方程组典型例题分析:
例1、若方程xa_2+y4_3b=1是关于字母x、y的二元一次方程,则a,b的值是多少?
例2、如果 是二元一次方程kx-2y=0的一组解,那么k=。
例3、二元一次方程x+y=3的自然数解有几对?
例8、二元一次方程组 的解是。
例9、方程组 的解x、y是相反数,则k的值是多少?
①
②
例10、已知方程组 甲由于看错了方程①中的a,得到方程组的解为 ;乙看错了②中的b得到方程组的解为 。若按正确的a、b计算,则原方程组的解是多少?
(了解)例11、已知关于x、y的方程组 和 的解相同,求ax+by。
分析:因为x、y的两个方程组同解。因此可得这四个方程同解。将不含字母的方程联立得: ,解这个方程组得 。将其余两个方程联立得: 。再将 代入得 ,解这个方程组得 。因此ax+by=2+3=5。
①
②
例4、解方程组
分析:解方程组的方法主要有两种:一是代入法,二是加减法。解法如下:
解法一:代入法。
解法二:加减法。
例5、如果二元一次方程组 的解是 ,求a-b的值。
例6、已知 和 都是方程y-ax=b的解,求a,b的值。
例7、在式子x2+px+q中,当x=-1时,它的值是-5;当x=3时,它的值是3,则p、q的值是多少?
例12、已知3ax+2b8-3y和9ay+1bx+1是同类项,则x+y=。
例13、如果(2x-5y+8)2+|x+3y-7|=0,那么x=,y=。
例14、如果关于x的方程m(x-1)=2005-n(x-2)有无数个解,求m、n的值?
分析:对于一元一次方程ax=b,当a≠0时,方程有唯一解;当a=0时,若b≠0,则方程无解;当a=0时,若b=0,则方程有无数个解。
作业
教学效果/
课后反思
教学课题
二元一次方程与二元一次方程组的解法与应用
教学目标
1、知道什么是二元一次方程
2、学会用代入法和消元法解二元一次方程组
3、掌握二元一次方程组相对应的变式训练
4、掌握二元一次方程组的应用
教学重点
二元一次方程组的解法
二元一次方程组的应用教学难点Leabharlann 有关二元一次方程组的变式训练
二元一次方程租的应用
教学关键