广东省普宁市2020-2021学年高二上学期期中素质监测数学试题
广东省普宁市高二上学期期中考试理科数学试题 有答案

第一学期期中考试 高二级数学(理科)试题一、选择题:本大题共8个小题;每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的. 1.已知集合{2,0,1,4}A =,集合{04,R}=<≤∈B x x x ,集合C AB =.则集合C 可表示为A .{2,0,1,4}B . {1,2,3,4}C .{1,2,4}D . {04,R}x x x <≤∈2.复数z 满足(1i)1z -=(其中i 为虚数单位),则z =A .11i22- B .11i 22+ C .11i 22-+ D .11i 22-- 3.下列函数中,为奇函数的是A .122x xy =+B .{},0,1y x x =∈C .sin y x x =⋅D .1,00,01,0x y x x <⎧⎪==⎨⎪->⎩4.下面几种推理中是演绎..推理..的为A .由金、银、铜、铁可导电,猜想:金属都可导电;B .猜想数列111,,,122334⋅⋅⋅⨯⨯⨯的通项公式为1(1)n a n n =+()n N +∈; C .半径为r 圆的面积2S r π=,则单位圆的面积S π=;D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=5.已知()()32213af x x a x=+-+,若()18f '-=,则()1f -= A .4 B .5 C .2- D .3- 6.“1ω=”是“ 函数()cos f x x ω=在区间[]0,π上单调递减”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.如图1,在矩形OABC 内:记抛物线21y x =+ 与直线1y x =+围成的区域为M (图中阴影部分). 则区域M 面积与矩形OABC 面积之比为 A .118 B .112C .16 D .138. 已知可导函数()f x ()x ÎR 满足()()f x f x ¢>,则当0a >时,()f a 和e (0)a f 大小关系为11+A. ()<e (0)a f a fB. ()>e (0)a f a fC. ()=e (0)a f a fD. ()e (0)a f a f ≤ 二、填空题:本大题共6小题,每小题5分,满分30分. 9.函数f x =()的定义域为 .10.某几何体的三视图如图3所示,其正视图是边长为2 的正方形,侧视图和俯视图都是等腰直角三角形,则此几 何体的体积是 .11.已知双曲线2222:1x y C a b -=与椭圆22194x y +=有相同的焦点, 且双曲线C 的渐近线方程为2y x =±,则双曲线C 的方程为 .12. 设实数,x y 满足,102,1,x y y x x ≤⎧⎪≤-⎨⎪≥⎩向量2,x y m =-()a ,1,1=-()b .若// a b ,则实数m 的最大值为 .13.在数列{}n a 中,已知24a =, 315a =,且数列{}n a n +是等比数列,则n a = . 14. 已知111()1()23f n n n+=+++鬃??N ,且27)32(,3)16(,25)8(,2)4(,23)2(>>>>=f f f f f ,推测当2n ≥时,有__________________________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分12分)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像经过点π(,1)12. (1)求ϕ的值;(2)在ABC ∆中,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,若222a b c ab +-=,且π()2122A f +=.求sinB .16.(本小题满分12分)已知数列}{n a 的前n 项和n S 满足:2222n n n na a S a -+=,且0,.n a n +>∈N(1)求123,,;a a a(2)猜想}{n a 的通项公式,并用数学归纳法证明17.(本小题满分14分)如图3所示,平面ABCD⊥平面BCEF ,且四边形ABCD 为矩形,四边形BCEF 为直角梯形,//BF CE ,BC CE ⊥, 4DC CE ==,2BC BF ==.(1)求证://AF 平面CDE ;(2)求平面ADE 与平面BCEF 所成锐二面角的余弦值; (3)求直线EF 与平面ADE 所成角的余弦值.18.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,且满足24(1)(1)(2)(N )n n n S n a n *++=+∈.(1)求1a ,2a 的值; (2)求n a ; (3)设1n n n b a +=,数列{}n b 的前n 项和为n T ,求证:34n T <.19.(本小题满分14分)设双曲线C :12222=-by a x (a >0,b >0)的一个焦点坐标为(3,0),离心率e = A 、B 是双曲线上的两点,AB 的中点M (1,2).(1)求双曲线C 的方程; (2)求直线AB 方程;(3)如果线段AB 的垂直平分线与双曲线交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?20.(本小题满分14分)设函数3211()(0)32a f x x x ax a a -=+-->. (1)若函数)(x f 在区间(-2,0)内恰有两个零点,求a 的取值范围; (2)当a =1时,求函数)(x f 在区间[t ,t +3]上的最大值.ADBC FE图3参考答案一、选择题:本大题每小题5分,满分40分.9. {2}x x ≥; 10. 83; 11.2214y x -=; 12.6; 13.123n n -⋅-; 14.2(2)2nn f +>;三、解答题15.解:(1)由题意可得π()112f =,即πsin()16ϕ+=. ……………………………2分 0πϕ<<,ππ7π666ϕ∴<+<,ππ62ϕ∴+=, π3ϕ∴=. ……………5分 (2)222a b c ab+-=,2221cos 22a b c C ab +-∴==, ……………………………………………………7分sin 2C ∴==. …………………………………………8分由(1)知π()sin(2)3f x x =+,π(+)sin()cos 21222A f A A π∴=+==()0,A π∈, sin 2A ∴==, ……………………………10分 又sin sin(π())sin()B A C A C =-+=+,1sin sin cos cos sin 2B A C A C ∴=+=+=. (12)分 16. (1)1111112a a S a ==+-,所以,11a =-?∵0n a>,所以11a =.221221=12a S a a a +=+-, 所以 2a =, 3312331=12a S a a a a ++=+- 所以3a =(2)猜想n a =证明: 1o 当1n =时,由(1)知11a =成立.2o 假设()n k k +=?N时,k a =1+11111=(1)(1)22k k k k k k ka a a S S a a +++-=+--+-1112k k a a ++=+-所以21120k k a +++-=1k a +=所以当1n k =+时猜想也成立.综上可知,猜想对一切n +ÎN 都成立.17.解:(法一)(1)取CE 中点为G ,连接DG 、FG ,//BF CG 且BF CG =,∴ 四边形BFGC 为平行四边形,则//BC FG 且BC FG =. ∴ …………2分四边形ABCD 为矩形, //BC AD ∴且BC AD =,//FG AD ∴且FG AD =,∴四边形AFGD 为平行四边形,则//AF DG .DG ⊂平面CDE ,AF ⊄平面CDE ,//AF ∴平面CDE . ……………………………………………………4分(2)过点E 作CB 的平行线交BF 的延长线于P ,连接FP ,EP ,AP ,////EP BC AD ,∴A ,P ,E ,D 四点共面.四边形BCEF 为直角梯形,四边形ABCD 为矩形,∴EP CD ⊥,EP CE ⊥,又CD CE C =,EP ∴⊥平面CDE ,∴EP DE ⊥,又平面ADE平面BCEF EP =,∴DEC ∠为平面ADE 与平面BCEF 所成锐二面角的平面角.……………………7分4DC CE ==,∴cos 2CE DEC DE ∠==. 即平面ADE 与平面BCEF所成锐二面角的余弦值为2. ……………………9分 (3)过点F 作FH AP ⊥于H ,连接EH ,AD BC F EP根据(2)知A ,P ,E ,D 四点共面,////EP BC AD ,∴BC BF ⊥,BC AB ⊥,又AB BF B =, BC ∴⊥平面ABP ,∴B C F H ⊥,则FH EP ⊥. 又FH AP ⊥, FH ∴⊥平面ADE . ∴直线EF 与平面ADE 所成角为HEF ∠. ……………………………11分4DC CE ==,2BC BF ==,∴0sin 45FH FP ==EF ==HE =∴cos 2HE HEF EF ∠===. 即直线EF 与平面ADE所成角的余弦值为2. ……………………………14分 (法二)(1)四边形BCEF 为直角梯形,四边形∴BC CE ⊥,BC CD ⊥, 又平面ABCD ⊥平面BCEF ,且平面ABCD平面BCEF BC =,DC ∴⊥平面BCEF .以C 为原点,CB 所在直线为x 轴,CE 所在直线为y CD 所在直线为z 轴建立如图所示空间直角坐标系.根据题意我们可得以下点的坐标:(2,0,4)A ,(2,0,0)B ,(0,0,0)C ,(0,0,4)D ,(0,4,0)E ,(2,2,0)F ,则(0,2,4)AF =-,(2,0,0)CB =. ………………2分BC CD ⊥,BC CE ⊥, CB ∴为平面CDE 的一个法向量.又0220(4)00AF CB ⋅=⨯+⨯+-⨯=,//AF ∴平面CDE . …………………………………………………………4分(2)设平面ADE 的一个法向量为1111(,,)n x y z =,则110,0.AD n DE n ⎧⋅=⎪⎨⋅=⎪⎩(2,0,0)AD =-,(0,4,4)DE =-,∴11120440x y z -=⎧⎨-=⎩, 取11z =,得1(0,1,1)n =. ……………………………6分 DC ⊥平面BCEF ,∴平面BCEF 一个法向量为(0,0,4)CD =,设平面ADE 与平面BCEF 所成锐二面角的大小为α,则11cos 24CD n CD n α⋅===⨯⋅. 因此,平面ADE 与平面BCEF . …………………9分 (3)根据(2)知平面ADE 一个法向量为1(0,1,1)n =,(2,2,0)EF =-, 1111cos ,222EF n EF n EF n ⋅∴<>===-⋅,………12分设直线EF 与平面ADE 所成角为θ,则1cos sin ,2EF n θ=<>=. 因此,直线EF 与平面ADE . ………………………14分 【说明】本题主要考察空间点、线、面位置关系,二面角及三角函数及空间坐标系等基础知识,考查空间想象能力、运算能力和推理论证能力,考查用向量方法解决数学问题的能力.18. 解:(1)当=1n 时,有2114(11)(+1=1+2a a ⨯+)(),解得1=8a . 当=2n 时,有21224(21)(1)(22)a a a ⨯+++=+,解得2=27a .……………2分(2)(法一)当2n ≥时,有2(2)4(1)1nn n a S n ++=+, ……………①211(1)4(1)n n n a S n--++=. …………………②①—②得:221(2)(1)41n n n n a n a a n n -++=-+,即:331(1)=n n a n a n -+.…………5分 ∴1223333===1(1)(1)3n n n a a a a n n n --==+-….∴ 3=(1)n a n + (2)n ≥. ………………………………………8分另解:33333121333121(1)42(1)(1)3n n n n n a a a n n a a n a a a n n ---+=⋅⋅⋅⋅=⋅⋅⋅⋅=+-. 又当=1n 时,有1=8a , ∴3=(1)n a n +. …………………………8分(法二)根据1=8a ,2=27a ,猜想:3=(1)na n +. ………………………………3分 用数学归纳法证明如下:(Ⅰ)当1n =时,有318(11)a ==+,猜想成立. (Ⅱ)假设当n k =时,猜想也成立,即:3=(1)k a k +那么当1n k =+时,有2114(11)(1)(12)k k k S k a +++++=++,即:211(12)4(1)11k k k a S k +++++=++,………………………①又 2(2)4(1)1kk k a S k ++=+, …………………………②①-②得:22223111(3)(2)(3)(2)(1)4=2121k k k k k a k a k a k k a k k k k ++++++++=--++++,解,得33+1(2)(11)k a k k =+=++. ∴当1n k =+时,猜想也成立. 因此,由数学归纳法证得3=(1)n a n +成立.………………………………………8分(3)211111=(1(11n n n b a n n n n n +=<=-+++)), .................................10分 ∴1231=n n n T b b b b b -+++++ (22222)11111=234(1)n n ++++++…211111<22323(1)(1)n n n n +++++⨯⨯-+… 111111111=()()()()4233411n n n n +-+-++-+--+… 1113=4214n +-<+.………………………………………14分19.解:(1)依题意得⎪⎩⎪⎨⎧===33a ce c ,解得a =1. (1分) 所以222312b c a =-=-=, (2分)故双曲线C 的方程为2212y x -=. (3分) (2)设1122(,),(,)A x y B x y ,则有221122221212y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩. 两式相减得:121212121()()()()2x x x x y y y y -+=-+ , (4分) 由题意得12x x ≠,221=+x x ,421=+y y , (5分) 所以1)(221212121=++=--y y x x x x y y ,即1=AB k . (6分)故直线AB 的方程为1y x =+. (7分)(3)假设A 、B 、C 、D 四点共圆,且圆心为P . 因为AB 为圆P 的弦,所以圆心P 在AB 垂直平分线CD 上;又CD 为圆P 的弦且垂直平分AB ,故圆心P 为CD 中点M . (8分) 下面只需证CD 的中点M 满足|MA |=|MB |=|MC |=|MD |即可.由22112y x y x =+⎧⎪⎨-=⎪⎩得:A (-1,0),B (3,4). (9分) 由(1)得直线CD 方程:3y x =-+, (10分)由22312y x y x =-+⎧⎪⎨-=⎪⎩得:C (-3+52,6-52),D (-3-52,6+52), (11分) 所以CD 的中点M (-3,6). (12分) 因为102364||=+=MA ,102436||=+=MB ,1022020||=+=MC ,1022020||=+=MD , (13分)所以||||||||MD MC MB MA ===,即 A 、B 、C 、D 四点在以点M (-3,6)为圆心,102为半径的圆上. (14分) 20.解:(1)∵3211()(0)32a f x x x ax a a -=+--> ∴()2()1(1)()f x x a x a x x a '=+--=+-, (1分) 令()0f x '=,解得121,0x x a =-=> (2分) 当x 变化时,)(x f ',)(x f 的变化情况如下表:故函数)(x f 的单调递增区间为(-∞,-1),(a ,+∞);单调递减区间为(-1,a );(4分) 因此)(x f 在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,要使函数)(x f 在区间(2,0)-内恰有两个零点,当且仅当⎪⎩⎪⎨⎧<>-<-0)0(0)1(0)2(f f f , (5分)解得103a <<, 所以a 的取值范围是(0,31). (6分)(2)当a =1时,131)(3--=x x x f . 由(1)可知,函数)(x f 的单调递增区间为(-∞,-1),(1,+∞);单调递减区间为(-1,1);31)1()(-=-=f x f 极大值. (7分)①当t +3<-1,即t <-4时,因为)(x f 在区间[t ,t +3]上单调递增,所以)(x f 在区间[t ,t +3]上的最大值为583311)3()3(31)3()(233max +++=-+-+=+=t t t t t t f x f ; (9分)②当231≤+≤-t ,即14-≤≤-t 时,因为)(x f 在区间(]1,-∞-上单调递增,在区间[-1,1]上单调递减,在区间[1,2]上单调递增,且31)1()2(-=-=f f ,所以)(x f 在区间(]2,∞-上的最大值为31)1()2(-=-=f f .(10分)由231≤+≤-t ,即14-≤≤-t 时,且-1∈[t ,t +3],所以)(x f 在[,3]t t +上的最大值为31)1()(m a x -=-=f x f ; (11分)③当t +3>2,即t >-1时,由②得)(x f 在区间(]2,∞-上的最大值为31)1()2(-=-=f f . 因为)(x f 在区间(1,+∞)上单调递增,所以)2()3(f t f >+,故)(x f 在[],3t t +上的最大值为58331)3()(23max +++=+=t t t t f x f . (13分)综上所述,当a =1时,)(x f 在[t ,t +3]上的最大值⎪⎪⎩⎪⎪⎨⎧-≤≤--->-<+++=)14(31)14(58331)(23maxt t t t t t x f 或. (14分)。
学2020-2021学年高二数学上学期期中联考试题理

学2020-2021学年高二数学上学期期中联考试题理考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教版必修2,选修2-1第一章、第二章.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.若方程表示圆,则实数a的取值范围为A.B.C.D.3.下列说法中不正确的是A.将圆柱的侧面沿一条母线剪开,展开图是一个矩形B.直角三角形绕它的一条边所在直线旋转一周形成的曲面围成的几何体是圆锥C.棱锥的侧面均为三角形D.棱台的上下底面是平行且相似的多边形4.下列说法正确的是A.命题“若,则”的否命题为“若,则”B.若命题,,则,C.命题“若,则”的逆否命题为真命题D.“”是“”的必要不充分条件5.某双曲线的一条渐近方程为,且上焦点为,则该双曲线的方程是A.B.C.D.6.方程表示椭圆的充要条件是A.B.C.D.7.已知m,n为两条不同的直线,为平面,则下列结论正确的是A.若,,则B.若,,则C.若,,则D.若,,则8.某四棱台的三视图如图所示,则该棱台的体积为()(棱台体积公式:)A.B.C.10 D.9.已知抛物线的焦点为,准线为,且过点,在抛物线上,若点,则的最小值为A.B.C.D.10.已知,分别是椭圆的左,右焦点,若P为椭圆上一点,且的内切圆周长为,则满足条件的点P有A.4个B.1个C.2个D.3个11.一束光线从点射出,经x轴上一点C反射后到达圆上一点B,则的最小值为A.B.C.D.12.已知双曲线的左,右焦点分别为,,双曲线的左支上有A,B两点使得.若的周长与的周长之比是,则双曲线的离心率是A.B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分.13.命题“,”的否定为__________.14.已知直线与直线平行,则直线,之间的距离为__________.15.已知椭圆,双曲线.若双曲线的两条渐近线与椭圆的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆和双曲线的离心率之和为_______.16.如图,已知一个八面体的各条棱长均为2,四边形ABCD 为正方形,给出下列说法:①该八面体的体积为;②该八面体的外接球的表面积为8π;③E到平面ADF的距离为④EC与BF所成角为60°.其中正确的说法为__________.(填序号)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知p:对任意实数x都有恒成立,q:关于x的方程有实数根.若“”为真,“”为假,求实数a的取值范围.18.(本小题满分12分)(1)求过点且与直线垂直的直线l的方程;(2)求过点且在x轴和y轴上的截距相等的直线l的方程.19.(本小题满分12分)如图,在长方体中,,,点P为棱的中点.(1)证明:平面PAC;(2)求异面直线与AP所成角的大小.20.(本小题满分12分)已知椭圆的焦距为4,短半轴长为2.(1)求椭圆的方程;(2)若直线l与椭圆相交于A,B两点,点是线段AB 的中点,求直线l的方程.21.(本小题满分12分)如图,在正三棱柱(侧棱垂直于底面,且底面是正三角形)中,,M是棱的中点.(1)求证:平面平面;(2)求与平面所成角的正弦值.22.(本小题满分12分)在直角坐标系xOy中,已知一动圆经过点,且在y轴上截得的弦长为6,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;(2)过点作相互垂直的两条直线,,直线与曲线C相交于A,B两点,直线与曲线C相交于E,F两点,线段AB,EF的中点分别为M、N,求证:直线MN恒过定点,并求出该定点的坐标.2020~2021学年高二第一学期期中联考•数学试题(文科)参考答案、提示及评分细则1.A 记“”的解集为集合B,则,所以“”是“”的充分不必要条件.故选A.2.B 方程化为标准方程为,有.故选B3.B 由旋转体的概念可知,直角三角形绕它的一条直角边所在直线旋转一周形成的曲面围成的几何体是圆锥,当以斜边所在直线旋转一周时所形成的曲面围成的几何体是两个圆锥的组合体.故选B.4.C 命题“若,则”的否命题为“若,则”,A 错误;若命题,,则,,B错误;C选项原命题是真命题,所以它的逆否命题也是真命题;“”是“”的充分不必要条件,D错误.故选C.5.D 设该双曲线的方程为,则,,所以该双曲线方程为.故选D.6.B 方程表示椭圆的充要条件是,解得:.故选B7.D 对于A,m与的关系不确定;对于B,n与的关系不确定;对于C,m与n的关系不确定,只有D选项正确.故选D.8.B 由三视图可知该几何体为正四棱台,上底面积,下底面积,所以棱台体积,故选B.9.D 由题可得,准线的方程为.由抛物线的定义可知,,.故选D.10.C 因为的内切圆的周长为所以,,又因为所以,所以符合条件的点P有两个,分别为椭圆的上下顶点.故选C.11.C 圆的圆心关于x轴的对称点为,则.故选C.12.D 设,则由得.由于,,所以,,则的周长为,的周长.根据题意得,得.又因为,所以,代入,可得.故选D.13.,因为全称命题的否定是特称命题,所以命题“,”的否定为“,”.14.易得,所以直线,之间的距离.15.法—:设,则由正六边形性质可得椭圆与双曲线的渐近线在第一象限的交点为点,由点Ⅰ在椭圆上可得,结合可得,∴椭圆离心率为,点在双曲线的渐近线上可得即∴双曲线的离心率为,所以.法二:由图可知双曲线N的渐近线方程为,易得,所以双曲线N的离心率,连结,,则,,易得,由椭圆M的定义可得,所以椭圆M的离心,所以.16.②④①八面体的体积为;②八面体的外接球球心为正方形ABCD对角线交点,易得外接球半径为表面积为;③取AD的中点G,连接EG,FG,EF,易得,平面EGF,过E作,交FG的延长线于H,又,,故平面ADF,解得,所以E到平面ADF的距离为;④因为,所以EC与BF所成角为,正确的说法为②④.17.解:若为真,则或,解得;若q为真,则,即.因为“”为真,“”为假,所以p与q一真一假.若为真,q为假,则;若q为真,p为假,则,综上可知,实数a的取值范围为18.解:(1)设l的方程为,代入得.∴直线l的方程为,(2)当直线l过原点时,直线l的方程是,即;当直线l不过原点时,设直线l的方程是,将点A坐标代入,得,解得,此时直线l的方程是.综上所述,所求直线l的方程是或.19.(1)证明:设AC和BD交于点O,则O为BD的中点.连结PO,又因为P是的中点,所以.又因为平面PAC,平面PAC所以直线平面PAC.(2)解:由(1)知,,所以即为异面直线与AP所成的角.因为,且,所以.又,所以故异面直线与AP所成角的大小为.20.解:(1)由题意可知,所以,,所以椭圆的方程为.(2)设,,由题意得两式相减,得,即,所以直线的斜率.因为点是线段的中点,所以,,所以所以直线的方程为,即.21.(1)证明:连接交于O,连接MO,易得O为,的中点.∵平面ABC,平面ABC,∴.又M为中点,,∴.同理可得.∴.连接MB,同理可得,\.又,,平面.∴平面ABB_1A_1,又平面,∴平面平面.(2)解:易得又由(1)平面平面,平面平面,平面.∴平面.∴即为与平面所成的角.在中,在中,.故与平面所成角的正弦值为.22.解:(1)设圆心,由题意,得,即,所以曲线C的方程为.(2)由题意可知,直线的斜率均存在,设直线的方程为,,联立方程组得,所以,因为点M是线段AB的中点,所以同理.将k换成得,当,即时所以直线MN的方程为即,所以直线MN恒过定点.当时,直线MN的方程为,也过点所以直线MN恒过定点.学2020-2021学年高二数学上学期期中联考试题理考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教版必修2,选修2-1第一章、第二章.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.若方程表示圆,则实数a的取值范围为A.B.C.D.3.下列说法中不正确的是A.将圆柱的侧面沿一条母线剪开,展开图是一个矩形B.直角三角形绕它的一条边所在直线旋转一周形成的曲面围成的几何体是圆锥C.棱锥的侧面均为三角形D.棱台的上下底面是平行且相似的多边形4.下列说法正确的是A.命题“若,则”的否命题为“若,则”B.若命题,,则,C.命题“若,则”的逆否命题为真命题D.“”是“”的必要不充分条件5.某双曲线的一条渐近方程为,且上焦点为,则该双曲线的方程是A.B.C.D.6.方程表示椭圆的充要条件是A.B.C.D.7.已知m,n为两条不同的直线,为平面,则下列结论正确的是A.若,,则B.若,,则C.若,,则D.若,,则8.某四棱台的三视图如图所示,则该棱台的体积为()(棱台体积公式:)A.B.C.10 D.9.已知抛物线的焦点为,准线为,且过点,在抛物线上,若点,则的最小值为A.B.C.D.10.已知,分别是椭圆的左,右焦点,若P为椭圆上一点,且的内切圆周长为,则满足条件的点P有A.4个B.1个C.2个D.3个11.一束光线从点射出,经x轴上一点C反射后到达圆上一点B,则的最小值为A.B.C.D.12.已知双曲线的左,右焦点分别为,,双曲线的左支上有A,B两点使得.若的周长与的周长之比是,则双曲线的离心率是A.B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分.13.命题“,”的否定为__________.14.已知直线与直线平行,则直线,之间的距离为__________.15.已知椭圆,双曲线.若双曲线的两条渐近线与椭圆的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆和双曲线的离心率之和为_______.16.如图,已知一个八面体的各条棱长均为2,四边形ABCD为正方形,给出下列说法:①该八面体的体积为;②该八面体的外接球的表面积为8π;③E到平面ADF的距离为④EC与BF所成角为60°.其中正确的说法为__________.(填序号)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知p:对任意实数x都有恒成立,q:关于x的方程有实数根.若“”为真,“”为假,求实数a的取值范围.18.(本小题满分12分)(1)求过点且与直线垂直的直线l的方程;(2)求过点且在x轴和y轴上的截距相等的直线l的方程.19.(本小题满分12分)如图,在长方体中,,,点P为棱的中点.(1)证明:平面PAC;(2)求异面直线与AP所成角的大小.20.(本小题满分12分)已知椭圆的焦距为4,短半轴长为2.(1)求椭圆的方程;(2)若直线l与椭圆相交于A,B两点,点是线段AB的中点,求直线l的方程. 21.(本小题满分12分)如图,在正三棱柱(侧棱垂直于底面,且底面是正三角形)中,,M是棱的中点.(1)求证:平面平面;(2)求与平面所成角的正弦值.22.(本小题满分12分)在直角坐标系xOy中,已知一动圆经过点,且在y轴上截得的弦长为6,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;(2)过点作相互垂直的两条直线,,直线与曲线C相交于A,B两点,直线与曲线C相交于E,F两点,线段AB,EF的中点分别为M、N,求证:直线MN恒过定点,并求出该定点的坐标.2020~2021学年高二第一学期期中联考•数学试题(文科)参考答案、提示及评分细则1.A 记“”的解集为集合B,则,所以“”是“”的充分不必要条件.故选A.2.B 方程化为标准方程为,有.故选B3.B 由旋转体的概念可知,直角三角形绕它的一条直角边所在直线旋转一周形成的曲面围成的几何体是圆锥,当以斜边所在直线旋转一周时所形成的曲面围成的几何体是两个圆锥的组合体.故选B.4.C 命题“若,则”的否命题为“若,则”,A错误;若命题,,则,,B错误;C选项原命题是真命题,所以它的逆否命题也是真命题;“”是“”的充分不必要条件,D错误.故选C.5.D 设该双曲线的方程为,则,,所以该双曲线方程为.故选D.6.B 方程表示椭圆的充要条件是,解得:.故选B7.D 对于A,m与的关系不确定;对于B,n与的关系不确定;对于C,m与n的关系不确定,只有D选项正确.故选D.8.B 由三视图可知该几何体为正四棱台,上底面积,下底面积,所以棱台体积,故选B.9.D 由题可得,准线的方程为.由抛物线的定义可知,,.故选D.10.C 因为的内切圆的周长为所以,,又因为所以,所以符合条件的点P有两个,分别为椭圆的上下顶点.故选C.11.C 圆的圆心关于x轴的对称点为,则.故选C.12.D 设,则由得.由于,,所以,,则的周长为,的周长.根据题意得,得.又因为,所以,代入,可得.故选D.13.,因为全称命题的否定是特称命题,所以命题“,”的否定为“,”.14.易得,所以直线,之间的距离.15.法—:设,则由正六边形性质可得椭圆与双曲线的渐近线在第一象限的交点为点,由点Ⅰ在椭圆上可得,结合可得,∴椭圆离心率为,点在双曲线的渐近线上可得即∴双曲线的离心率为,所以.法二:由图可知双曲线N的渐近线方程为,易得,所以双曲线N的离心率,连结,,则,,易得,由椭圆M的定义可得,所以椭圆M的离心,所以.16.②④①八面体的体积为;②八面体的外接球球心为正方形ABCD对角线交点,易得外接球半径为表面积为;③取AD的中点G,连接EG,FG,EF,易得,平面EGF,过E作,交FG的延长线于H,又,,故平面ADF,解得,所以E到平面ADF的距离为;④因为,所以EC与BF所成角为,正确的说法为②④.17.解:若为真,则或,解得;若q为真,则,即.因为“”为真,“”为假,所以p与q一真一假.若为真,q为假,则;若q为真,p为假,则,综上可知,实数a的取值范围为18.解:(1)设l的方程为,代入得.∴直线l的方程为,(2)当直线l过原点时,直线l的方程是,即;当直线l不过原点时,设直线l的方程是,将点A坐标代入,得,解得,此时直线l的方程是.综上所述,所求直线l的方程是或.19.(1)证明:设AC和BD交于点O,则O为BD的中点.连结PO,又因为P是的中点,所以.又因为平面PAC,平面PAC所以直线平面PAC.(2)解:由(1)知,,所以即为异面直线与AP所成的角.因为,且,所以.又,所以故异面直线与AP所成角的大小为.20.解:(1)由题意可知,所以,,所以椭圆的方程为.(2)设,,由题意得两式相减,得,即,所以直线的斜率.因为点是线段的中点,所以,,所以所以直线的方程为,即.21.(1)证明:连接交于O,连接MO,易得O为,的中点.∵平面ABC,平面ABC,∴.又M为中点,,∴.同理可得.∴.连接MB,同理可得,\.又,,平面.∴平面ABB_1A_1,又平面,∴平面平面.(2)解:易得又由(1)平面平面,平面平面,平面.∴平面.∴即为与平面所成的角.在中,在中,.故与平面所成角的正弦值为.22.解:(1)设圆心,由题意,得,即,所以曲线C的方程为.(2)由题意可知,直线的斜率均存在,设直线的方程为,,联立方程组得,所以,因为点M是线段AB的中点,所以同理.将k换成得,当,即时所以直线MN的方程为即,所以直线MN恒过定点.当时,直线MN的方程为,也过点所以直线MN恒过定点.。
2020~2021学年度第一学期高二期中测试数学试题

2020~2021学年度第一学期高二级期中测试数学试题注意事项:1.本试题共4页,四大题,22小题,满分120分,考试时间120分钟,答案必须填写在答题卡上,在试题上作答无效,考试结束后,只交答题卡。
2.作答前,认真浏览试卷,请务必规范、完整填写答题卡的卷头。
3.考生作答时,请使用0.5mm黑色签字笔在答题卡对应题号的答题区域内作答。
第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,共60分)1.在△ABC中,B=135°,C=15°,a=4,则此三角形的最大边长为()A. 5√2B. 5√3C. 4√2D. 4√32.在△ABC中,已知角A,B,C的对边分别为a,b,c,且a2−b2−c2=−√2bc,则角A的数为()A. 30°B. 45°C. 120°D. 135°3.在△ABC中,c=√3,b=1,B=30∘,则△ABC的面积为()A. √32或√3 B. √34或√32C. √34或√3 D. √34.已知正数组成的等比数列{a n},若a3⋅a18=100,那么a7+a14的最小值为()A. 20B. 25C. 50D. 不存在5.已知1、a1、a2、3成等差数列,1、b、4成等比数列,则a1+a2b=()A. 54B. −2C. 2D. ±26.在递增的等比数列{a n}中,a4,a6是方程x2−10x+16=0的两个根,则数列{a n}的公比q=()A. 2B. ±2C. 12D. 12或27.已知a>0,那么a−2+4a的最小值是()A. 1B. 2C. 4D. 58.设a>b,c>d则下列不等式中一定成立的是()A. a+c>b+dB. ac>bdC. a−c>b−dD. a+d>b+c9. 设p :2x 2−3x +1≤0,q :x 2−(2a +1)x +a(a +1)≤0,若q 是p 的必要不充分条件,则实数a 的取值范围是( )A. [0,12]B. (0,12)C. (−∞,0]∪[12,+∞)D. (−∞,0)∪(12,+∞)10. 命题“∃x 0>0,x 02−4x 0+3<0”的否定是( )A. ∀x ≤0,x 2−4x +3<0B. ∃x 0≤0,x 02−4x 0+3<0 C. ∀x >0,x 2−4x +3≥0D. ∃x 0>0,x 02−4x 0+3≥011. 若平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,−1,0),则平面α和平面β的位置关系是( )A. 平行B. 相交但不垂直C. 垂直D. 重合12. 在空间直角坐标系中,点P(3,4,5)关于yOz 平面对称的点的坐标为( )A. (−3,4,5)B. (−3,−4,5)C. (3,−4,−5)D. (−3,4,−5)第Ⅱ卷 非选择题(共90分)二、填空题(本大题共4小题,共20分)13. 已知空间向量m ⃗⃗⃗ =(1,−2x +1,2),n ⃗ =(y,3,x +z ),且m ⃗⃗⃗ =n ⃗ ,则x +2y +3z =__. 14. 在空间直角坐标系中,已知点A(1,0,2)与点B(1,−3,1),则|AB |=________,若在z轴上有一点M 满足|MA |=|MB |,则点M 的坐标为_________. 15. 记S n 为数列{a n }的前n 项和,若a 1=1,a n =2a n−1+1,则S 6= 16. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若sinAsinB =ba+c ,a =2c ,则cos A =________.三、解答题(本大题共6小题,共70分)17. 已知△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,向量m⃗⃗⃗ =(cosA,a −2b),n ⃗ =(2c,1)且m ⃗⃗⃗ ⊥n ⃗ . (1)求角C ;(2)若c =2,△ABC 的面积为√3,求△ABC 的周长.18.设向量a⃗=(sinx,cosx),b⃗ =(cosx,√3cosx),x∈R,函数f(x)=a⃗•(a⃗+b⃗ ).(1)求函数f(x)的最小正周期;(2)ΔABC中边a,b,c所对的角为A,B,C,若acosB+bcosA=2ccosC,c=√3,)取最大值时,求△ABC的面积.当f(B219.已知数列{a n}满足:21⋅a1+22⋅a2+23⋅a3+⋯+2n⋅a n=(n−1)⋅2n+1+2对一切n∈N∗成立.(1)求数列{a n}的通项公式;}的前n项和S n.(2)求数列{1a n⋅a n+2(3n+S n)对一切正整数n都成立,20.已知数列{a n}的前n项和为S n,且a n=12(1)证明:数列{a n+3}是等比数列,并求出数列{a n}的通项公式;(a n+3),求数列{b n}的前n项和B n.(2)设b n=n321.如图,在正方体ABCD−A1B1C1D1中,点E为棱AB的中点.(1)证明:A1B//平面D1CE;(2)求平面A1BC1与平面CED1所成二面角的正弦值.22.已知四棱锥P−ABCD中PA⊥平面ABCD,且PA=4PQ=4,底面为直角梯形,∠CDA=∠BAD=90°,AB=2,CD=1,AD=√2,M,N分别是PD,PB的中点.(1)求证:MQ//平面PCB;(2)求截面MCN与底面ABCD所成二面角的大小;(3)求点A到平面MCN的距离.答案和解析1. 解:∵B =135°,∴b 为最大边,A =180°−135°−15°=30°, 由正弦定理得b =asinB sinA=4×√2212=4√2.故选:C .2.解:因为a 2−b 2−c 2=−√2bc ,由余弦定理可得,cosA =b2+c 2−a 22bc=√22, 因为A 为三角形的内角,故A =45°.故选:B .3.解:中,B =30∘,b =1,c =√3,,∴sinC =√32,∴C =60∘或120∘,∴A =90∘或30∘,∴△ABC 的面积为12bcsinA =√32或√34.故选B .4.解:∵正数组成的等比数列{a n },a 3⋅a 18=100,∴a 14⋅a 7=a 3⋅a 18=100,a 7>0,a 14>0,∴a 7+a 14≥2√a 14⋅a 7=2√100=20, 当且仅当a 7=a 14时取等号,∴a 7+a 14的最小值为20.故选:A .5.解:由1、a 1、a 2、3成等差数列,可得a 1+a 2=1+3=4,又1、b 、4成等比数列,可得b 2=4,解得b =±2,则a 1+a 2b=42=2或a 1+a 2b=4−2=−2,故选:D .6.解:根据题意,a 4,a 6是方程x 2−10x +16=0的两个根,则有{a 4+a 6=10a 4a 6=16,解可得:{a 4=8a 6=2或{a 4=2a 6=8,又由等比数列{a n }是递增的,必有{a 4=2a 6=8,则有q 2=a6a 4=4,即q =2;故选:A .7.解:根据题意,a −2+4a =a +4a −2,又由a >0,则a −2+4a =a +4a −2≥2√a ×4a −2=2,当且仅当a =2时等号成立,即a −2+4a 的最小值是2;故选:B .8.解:∵b <a ,d <c ,∴设b =−1,a =−2,d =2,c =3选项B ,(−2)×3>(−1)×2,不成立选项C ,−2−3>−1−2,不成立 选项D ,−2+2>−1+3,不成立故选:A .9.解:p :2x 2−3x +1≤0,解得:12≤x ≤1,q :x 2−(2a +1)x +a(a +1)≤0,解得:a ≤x ≤a +1.若q 是p 的必要不充分条件,则{a ≤121≤a +1,解得:0≤a ≤12.故选:A .10.解:因为特称命题的否定是全称命题,所以命题“∃x 0>0,x 02−4x 0+3<0”的否定是∀x >0,x 2−4x +3≥0.故选:C .11.解:由题意可得(1,2,0)⋅(2,−1,0)=1×2−2×1+0×0=0,故两个平面的法向量垂直,故平面α和平面β的位置关系为垂直,故选C .12.解:在空间直角坐标系中,关于yOz 平面对称,y ,z 不变.点P(3,4,5)关于yOz 平面对称的点的坐标为(−3,4,5), 故选A . 13.解:因为空间向量m⃗⃗⃗ =(1,−2x +1,2),n ⃗ =(y,3,x +z ),且m ⃗⃗⃗ =n ⃗ , 所以{1=y−2x +1=32=x +z ,所以x =−1,y =1,z =3,所以x +2y +3z =−1+2+9=10;故答案为10.14.解:∵点A(1,0,2)与点B(1,−3,1),∴|AB|=√(1−1)2+(−3−0)2+(1−2)2=√10, ∵在z 轴上有一点M 满足|MA|=|MB|,∴设M(0,0,c),则√(1−0)2+(0−0)2+(2−c)2=√(1−0)2+(−3−0)2+(1−c)2, 解得c =−3,∴点M 坐标为(0,0,−3).故答案为:(0,0,−3).15.解:∵a n =2a n−1+1, ∴a n +1=2(a n−1+1),故数列{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2n , 则a n =2n −1,∴S n =2×(1−2n )1−2−n =2n+1−n −2,则S 6=27−8=120.16.解:由题意,sin Asin B =ba+c ,由正弦定理可得ab =ba+c ,因为a =2c ,所以a b =ba+a 2,即b 2=3a 22,所以b =√32a ,所以在△ABC 中由余弦定理得cosA =b 2+c 2−a 22bc=32a 2+14a 2−a 22×√2a×2=√64.故答案为√64.17.解:(1)由m⃗⃗⃗ =(cosA,a −2b),n ⃗ =(2c,1)且m ⃗⃗⃗ ⊥n ⃗ . 所以2ccosA =2b −a .由正弦定理得:2sinCcosA =2sinB −sinA . 2sinCcosA =2sin(A +C)−sinA =2sinAcosC +2cosAsinC −sinA ,整理得2sinAcosC =sinA ,由sinA >0,可得cosC =12,由于0<C <π,所以C =π3. (2)由于,△ABC 的面积为√3,所以12absinC =√3,整理得ab =4,由余弦定理,c 2=a 2+b 2−2abcosC =4,整理得(a +b)2−4=3ab ,解得a +b =4. 所以三角形的周长为a +b +c =4+2=6.18.解:(1)由已知f(x)=a →⋅(a →+b →)=sinx(sinx +cosx)+cosx(cosx +√3cosx)=12sin2x +√32cos2x +1+√32=sin(2x +π3)+1+√32,所以的最小正周期是T =2π2=π;(2)由正弦定理得sinAcosB +sinBbcosA =2sinCcosC , 即sin(A +B)=sinC =2sinCcosC , 因为sinC ≠0,所以cosC =12,又0<C <π,所以C =π3,又f(B 2)=sin(B +π3)+1+√32,因为B ∈(0,2π3),所以 B =π6时f(B2)取到最大值, 此时A =π2,又c =√3,所以b =1,得S ΔABC =12bcsinA =√32.19.解:(1)由题意,当n =1时,21⋅a 1=2,解得a 1=1,当n ≥2时,由21⋅a 1+22⋅a 2+23⋅a 3+⋯+2n ⋅a n =(n −1)⋅2n+1+2,可得 21⋅a 1+22⋅a 2+23⋅a 3+⋯+2n−1⋅a n−1=(n −2)⋅2n +2, 两式相减,可得2n ⋅a n =(n −1)⋅2n+1+2−(n −2)⋅2n −2=[2(n −1)−(n −2)]⋅2n =n ⋅2n , ∴a n =n ,当n =1时,a 1=1也符合上式,∴a n =n ,n ∈N ∗. (2)由(1)知,1a n ⋅a n+2=1n(n+2)=12(1n−1n+2),∴S n =1a 1⋅a 2+1a 2⋅a 3+1a 3⋅a 4+1a 4⋅a 5+⋯+1a n−1⋅a n+1+1a n ⋅a n+2=12(1−13)+12(12−14)+12(13−15)+12(14−16)+⋯+12(1n −1−1n +1)+12(1n −1n +2) =12(1−13+12−14+13−15+14−16+⋯+1n −1−1n +1+1n −1n +2) =12(1+12−1n+1−1n+2)=n(3n+5)4(n+1)(n+2).20.解:(1)数列{a n }的前n 项和为S n ,且a n =12(3n +S n ),由已知得S n =2a n −3n ①,所以S n+1=2a n+1−3(n +1)② 由②−①得:a n+1=2a n +3,即a n+1+3=2(a n +3),所以a n+1+3a n +3=2(常数),又a 1=2a 1−3,解得 a 1=3.所以数列{a n +3}是以6为首项,2为公比的等比数列. 故a n +3=6⋅2n−1,即a n =3(2n −1).(2)由于b n =n3(a n +3),所以b n =n3⋅(3×2n −3+3)=n ⋅2n .设B n =1⋅2+2⋅22+⋯+n ⋅2n ③2B n =1⋅22+2⋅23+⋯+n ⋅2n+1 ④ ④−③得:B n =−(2+22+23+⋯+2n )+n ⋅2n+1=−2n+1−22−1+n ⋅2n+1.整理得B n =2+(n −1)⋅2n+1.21.(1)证明:在正方体ABCD −A 1B 1C 1D 1中,A 1D 1= //BC ,∴四边形ABCD 为平行四边边形,∴A 1B//CD 1,∵CD 1⊂平面D 1CE ,A 1B ⊄平面D 1CE ,∴A 1B 平行平面D 1CE , (2)解:如图:以点D 为坐标原点,DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系D −xyz :设AB =2,则D(0,0,0),A(2,0,0),B(2,2,0),E(2,1,0),C 1(0,2,2),A 1(2,0,2),D 1(0,0,2),C(0,2,0),设平面A 1BC 1的法向量为n ⃗ =(x,y ,z), 由A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,−2),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(−2,2,0),则{A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ·n ⃗ =2y −2z =0,A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n ⃗ =−2x +2y =0,取x =1,y =1,z =1,则n ⃗ =(1,1,1) 设平面CED 1的法向量为m ⃗⃗⃗ =(a,b ,c),由D 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,2,−2),EC ⃗⃗⃗⃗⃗ =(−2,1,0), 则{D 1C ⃗⃗⃗⃗⃗⃗⃗ ·m ⃗⃗⃗ =2b −2c =0,AC ⃗⃗⃗⃗⃗ ·m ⃗⃗⃗ =−2a +b =0,取a =1,b =2,z =2,则m⃗⃗⃗ =(1,2,2), 可得m ⃗⃗⃗ ·n ⃗ =3,|m ⃗⃗⃗ |=3,|n ⃗ |=√3,cos <m⃗⃗⃗ ·n ⃗ >=53√3=5√39, ∴平面A 1BC 1与平面CED 1所成二面角的正弦值为√1−(5√39)2=√69.22.解:以A 为原点,以AD ,AB ,AP 分别为x ,y ,z 建立空间直角坐标系O −xyz ,由AB =2,CD =1,AD =√2,PA =4PQ =4,M ,N 分别是PD ,PB 的中点, 可得:A(0,0,0),B(0,2,0),C(√2,1,0),D(√2,0,0),P(0,0,4),Q(0,0,3),M(√22,0,2),N(0,1,2),∴BC ⃗⃗⃗⃗⃗ =(√2,−1,0),PB ⃗⃗⃗⃗⃗ =(0,2,−4),MQ ⃗⃗⃗⃗⃗⃗⃗ =(−√22,0,1) 设平面的PBC 的法向量为n 0⃗⃗⃗⃗ =(x,y,z), 则有:{n 0⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ⇒(x,y,z)⋅(√2,−1,0)=0⇒√2x −y =0n 0⃗⃗⃗⃗ ⊥PB ⃗⃗⃗⃗⃗ ⇒(x,y,z)⋅(0,2,−4)=0⇒2y −4z =0令z =1,则x =√2,y =2⇒n 0⃗⃗⃗⃗ =(√2,2,1),(3分) ∴MQ ⃗⃗⃗⃗⃗⃗⃗ ⋅n 0⃗⃗⃗⃗ =(−√22,0,1)⋅(√2,2,1)=0,又MQ ⊄平面PCB ,∴MQ//平面PCB ;(2)设平面的MCN 的法向量为n ⃗ =(x,y,z),又CM ⃗⃗⃗⃗⃗⃗ =(−√22,−1,2),CN⃗⃗⃗⃗⃗⃗ =(−√2,0,2) 则有:{n ⃗ ⊥CM⃗⃗⃗⃗⃗⃗ ⇒(x,y,z)⋅(−√22,−1,2)=0⇒−√22x −y +2z =0n ⃗ ⊥CN ⃗⃗⃗⃗⃗⃗ ⇒(x,y,z)⋅(−√2,0,2)=0⇒−√2x +2z =0令z =1,则x =√2,y =1⇒n ⃗ =(√2,1,1), 又AP⃗⃗⃗⃗⃗ =(0,0,4)为平面ABCD 的法向量, ∴cos〈n ⃗ ,AP⃗⃗⃗⃗⃗ >=n⃗⃗ ⋅AP ⃗⃗⃗⃗⃗ |n ⃗⃗ |⋅|AP⃗⃗⃗⃗⃗ |=42×4=12,又截面MCN 与底面ABCD 所成二面角为锐二面角,∴截面MCN 与底面ABCD 所成二面角的大小为π3,(3)∵CA ⃗⃗⃗⃗⃗ =(−√2,−1,0),∴所求的距离d =|n ⃗⃗ ⋅CA ⃗⃗⃗⃗⃗||n ⃗⃗ |=|−√2×√2−1×1+1×0|2=32;。
2020-2021学年高二上学期期中考试数学(文)试卷

2020—2021学年度上学期期中考试高二数学(文)试卷一、选择题 (每小题5分,共60分)1.经过点()1,4A -且在x 轴上的截距为3的直线方程是( ) A .3y x =--B .3y xC .3y x =-+D .5y x =-+2.已知()2,0A ,()1,2B -,则以AB 为直径的圆的方程为( )A .()2233124x y ⎛⎫-+-= ⎪⎝⎭ B .()2233124x y ⎛⎫-++= ⎪⎝⎭C .()2235124x y ⎛⎫-+-= ⎪⎝⎭ D .()2235124x y ⎛⎫-++= ⎪⎝⎭3.两条平行直线3450x y +-=与6890x y +-=间的距离等于( )A .110B .15C .45D .4104.已知点,点Q 是直线l :上的动点,则的最小值为 A .2B .C .D .5.已知双曲线C :22221x y a b-=(0a >,0b >)的实轴长为4,左焦点F 到C 的一条渐近线的距离为3,则C 的方程为( )A .22123x y -=B .22143x y -=C .22149x y -=D .221169x y -= 6.已知圆()22:22440C x y x my m m R ++---=∈,则当圆C 的面积最小时,圆上的点到坐标原点的距离的最大值为( ) A .5 B .6C .51-D .51+7.若直线2244mx ny x y +=+=和圆没有交点,则过点(,)m n 的直线与椭圆22194x y +=的交点个数为( ) A .2个B .至多一个C .1个D .0个8.与圆221x y +=及圆22870x y x +-+=都外切的圆的圆心在( ). A .一个圆上 B .一个椭圆上 C .双曲线的一支上 D .抛物线上 9.过点作圆(x+1)2+(y-2)2=169的弦,其中弦长为整数的弦共有( ) A .16条 B .17条 C .32条 D .34条10.已知斜率为k (0)k >的直线l 过抛物线2:2(0)C x py p =>的焦点F ,与抛物线C 交于A ,B 两点,又直线l 与圆222304x y py p +--=交于C ,D 两点.若||3||AB CD =,则k 的值为( ) A .2B .22C .4D .811.点P 为双曲线()222210,0x y a b a b-=>>右支上的一点,其左、右焦点分别为12,F F ,若12PF F ∆的内切圆I 与x 轴相切于点A ,过2F 作PI 的垂线,垂足为,B O 为坐标原点,那么OAOB的值为( ) A .1B .2C .b aD .a b12.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行.已知椭圆轨道Ⅰ和Ⅱ的中心与F 在同一直线上,设椭圆轨道Ⅰ和Ⅱ的长半轴长分别为1a ,2a ,半焦距分别为1c ,2c ,则以下四个关系①1122a c a c ->-,②1212c c a a >,③a 1+c 2=a 2+c 1,④1212c ca a <中正确的是( ) A.①②B.①④C.②③D.③④二、填空题(每小题5分,共20分)13.直线()2120mx m y ++-=和直线310x my ++=垂直,则实数m 的值为_______.14.若圆()2244x y -+=与双曲线C :()222210,0y x a b a b-=>>的渐近线相切,则双曲线C 的离心率为_______.15.若过点(01)-,的直线l 与抛物线22y x =有且只有一个交点,则这样的直线l 共有_____条. 16.已知直线y=-x+1与椭圆)0(12222>>=+b a b y a x 相交于A ,B 两点,且OA OB ⊥(O 为坐标原点),若椭圆的离心率13,22e ⎡⎤∈⎢⎥⎣⎦,则a 的最大值为___________.三、解答题(共70分)17.(10分)设直线的方程为(1)20,a x y a a R +++-=∈.(1)若在两坐标轴上的截距相等,求直线的方程; (2)若与两坐标轴围成的三角形的面积为1,求a 的值.18.(12分)在平面直角坐标系xoy 中,已知中心在原点,焦点在x 轴上的双曲线C 的离心率为2,且双曲线C 与斜率为2的直线l 相交,且其中一个交点为P (﹣3,0).(1)求双曲线C 的方程及它的渐近线方程;(2)求以直线l 与坐标轴的交点为焦点的抛物线的标准方程.19.(12分)已知抛物线E :x 2=2py (p >0)的焦点为F ,直线x=2与x 轴的交点为M ,与抛物线E 的交点为N ,且4|FN|=5|MN|.(1)求p 的值;(2)若直线y=kx+2与E 交于A ,B 两点,C (0,-2),记直线CA ,CB 的斜率分别为k 1,k 2,求证:k 12+k 22-2k 2为定值. 20.(12分)已知直线:(1)2530()l k x y k k R --+-=∈恒过定点P ,圆C 经过点(4,0)A 和点P ,且圆心在直线-2 10x y +=上.(1)求定点P 的坐标与圆C 的标准方程;(2)已知点P 为圆C 直径的一个端点,若另一个端点为点Q ,问:在y 轴上是否存在一点(0, )M m ,使得PMQ ∆为直角三角形,若存在,求出m 的值,若不存在,请说明理由.21.(12分)已知椭圆的中心在原点,焦点在轴,焦距为2,且长轴长是短轴长的倍.(1)求椭圆的标准方程; (2)设,过椭圆左焦点的直线交于、两点,若对满足条件的任意直线,不等式()恒成立,求的最小值.22.(12分)已知F 为抛物线()21:201C y px p =<<的焦点,E 为圆()222:41C x y -+=上任意点,且EF 最大值为194. (1)求抛物线1C 的方程;(2)若()()000,24M x y y ≤≤在抛物线1C 上,过M 作圆2C 的两条切线交抛物线1C 于A 、B (A 、B 异于点M ),求AB 中点D 的纵坐标的取值范围.高二期中考试数学(文)试卷参考★答案★1.经过点()1,4A -且在x 轴上的截距为3的直线方程是( ) A .3y x =-- B .3yx C .3y x =-+ D .5y x =-+【★答案★】C 【详解】根据题意,所求直线过点()1,4A -,故可设为()41y k x -=+,0k ≠ ,令0y =,得134kx =--=,即1k =-,即所求直线的方程为3y x =-+.故选C.2.已知()2,0A ,()1,2B -,则以AB 为直径的圆的方程为( )A .()2233124x y ⎛⎫-+-= ⎪⎝⎭ B .()2233124x y ⎛⎫-++= ⎪⎝⎭ C .()2235124x y ⎛⎫-+-= ⎪⎝⎭ D .()2235124x y ⎛⎫-++= ⎪⎝⎭ 【★答案★】D【详解】由()2,0A ,()1,2B -,且AB 为直径, 所以圆的圆心为,A B 的中点,即为3,12⎛⎫- ⎪⎝⎭, 又()()2221025AB =-++=,所以522AB r ==, 所以以AB 为直径的圆的标准方程为()2235124x y ⎛⎫-++= ⎪⎝⎭,故选:D3.两条平行直线3450x y +-=与6890x y +-=间的距离等于( ) A .110B .15C .45D .410【★答案★】A 【详解】直线6890x y +-=方程可化为:93402x y +-=, 由平行直线间距离公式可知所求距离2295211034d ⎛⎫--- ⎪⎝⎭==+.故选:A . 4.已知点,点Q 是直线l :上的动点,则的最小值为 A .2B .C .D .【★答案★】B 解:点,点Q 是直线l :上的动点, 的最小值为点Q 到直线l 的距离, 的最小值为.故选:B .5.已知双曲线C :22221x y a b-=(0a >,0b >)的实轴长为4,左焦点F 到C 的一条渐近线的距离为3,则C 的方程为( )A .22123x y -=B .22143x y -=C .22149x y -=D .221169x y -=【★答案★】C 【详解】因为实轴长24a =,所以2a =,(),0F c -,由对称性,双曲线的一个焦点到两条渐近线的距离相等,不妨取渐近线为by x a=,即0bx ay -=, 点(),0F c -到渐近线的距离()220b c bcd b c a b⋅--===+,所以3b =,所以C 的方程为22149x y -=,故选:C.6.已知圆()22:22440C x y x my m m R ++---=∈,则当圆C 的面积最小时,圆上的点到坐标原点的距离的最大值为( ) A .5 B .6 C .51- D .51+【★答案★】D 【详解】由2222440x y x my m ++---=得()()222145x y m m m ++-=++,因此圆心为()1,C m -,半径为()2245211r m m m =++=++≥,当且仅当2m =-时,半径最小,则面积也最小;此时圆心为()1,2C --,半径为1r =, 因此圆心到坐标原点的距离为()()22125d r =-+-=>,即原点在圆C 外,根据圆的性质,圆上的点到坐标原点的距离的最大值为51d r +=+.故选:D.7.若直线2244mx ny x y +=+=和圆没有交点,则过点(,)m n 的直线与椭圆22194x y +=的交点个数为( )A .2个B .至多一个C .1个D .0个【★答案★】A 【详解】直线2244mx ny x y +=+=和圆没有交点,故40242222<+<∴>+n m n m ,点P(m,n)在以原点为圆心,半径为2的圆内,故圆22m n +=2内切于椭圆,故点P(m,n)在椭圆内,则过点(,)m n 的直线与椭圆22194x y +=的交点个数为2个8.与圆221x y +=及圆22870x y x +-+=都外切的圆的圆心在( ).A .一个圆上B .一个椭圆上C .双曲线的一支上D .抛物线上【★答案★】C 【详解】设动圆的圆心为P ,半径为r ,而圆221x y +=的圆心为(0,0)O ,半径为1;圆22870x y x +-+=的圆心为(4,0)F ,半径为3.依题意得3,1PF r PO r =+=+,则()()312PF PO r r FO -=+-+=<, 所以点P 的轨迹是双曲线的一支(除(1,0)). 故选C . 9.过点作圆(x+1)2+(y-2)2=169的弦,其中弦长为整数的弦共有( ) A .条 B .条 C .条 D .条 【★答案★】C 【解析】试题分析:圆的标准方程是:,圆心,半径,过点的最短的弦长为10,最长的弦长为26,(分别只有一条)还有长度为的各2条,所以共有弦长为整数的条.选C .10.已知斜率为k (0)k >的直线l 过抛物线2:2(0)C x py p =>的焦点F ,与抛物线C 交于A ,B两点,又直线l 与圆222304x y py p +--=交于C ,D 两点.若||3||AB CD =,则k 的值为( ) A .2B .22C .4D .8【★答案★】A 【详解】设直线l 的方程为2p y kx =+代入抛物线2:2(0)C x py p =>消去x , 整理得:222(2)04p y p pk y -++=,则2122y y p pk +=+,所以2212||222AB y y p p pk p p pk =++=++=+,圆22222230()42px y py p x y p +--=⇒+-=, 圆心为(0,)2p,半径为p , 因为直线过圆心,所以||2CD p =,因为||3||AB CD =,所以22262p pk p k +=⇒=.故选:A.11.点P 为双曲线()222210,0x y a b a b-=>>右支上的一点,其左、右焦点分别为12,F F ,若12PF F ∆的内切圆I 与x 轴相切于点A ,过2F 作PI 的垂线,垂足为,B O 为坐标原点,那么OAOB的值为( ) A .1B .2C .b aD .a b【★答案★】A 【解析】F 1(−c ,0)、F 2(c ,0),内切圆与x 轴的切点是点A ∵|PF 1|−|PF 2|=2a ,及圆的切线长定理知, |AF 1|−|AF 2|=2a ,设内切圆的圆心横坐标为x , 则|(x +c )−(c −x )|=2a ∴x =a ; 即|OA |=a ,在三角形PCF 2中,由题意得,它是一个等腰三角形,PC =PF 2, ∴在三角形F 1CF 2中,有:OB =12CF 1=12 (PF 1−PC )=1 2 (PF 1−PF 2)=1 2×2a =a , ∴|OB |=|OA |,所以1OAOB=,故选A.12.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行.已知椭圆轨道Ⅰ和Ⅱ的中心与F 在同一直线上,设椭圆轨道Ⅰ和Ⅱ的长半轴长分别为1a ,2a ,半焦距分别为1c ,2c ,则以下四个关系①1122a c a c ->-,②1212c c a a >,③a 1+c 2=a 2+c 1,④1212c ca a <中正确的是( )A.①②B.①④C.②③D.③④【★答案★】C【详解】由图可知,11a c PF -=,22a c PF -=,故①不正确; 由①可得1122a c a c -=-,则1221a c a c +=+,故③正确;由③可得()()221221a c a c +=+,则22221212212122a c a c a c a c ++=++,即22221112222122a c a c a c a c -+=-+,所以2211222122b a c b a c +=+,因为12b b >,所以1221a c a c <,则1212a a c c <,所以1212c c a a >,故②正确,④错误. 故★答案★为:C13.直线()2120mx m y ++-=和直线310x my ++=垂直,则实数m 的值为_______. 【★答案★】-2或0【详解】因为直线()2120mx m y ++-=和直线310x my ++=垂直,所以()3210m m m ++=, 即()240m m +=,解得0m =或2-.14.若圆()2244x y -+=与双曲线C :()222210,0y x a b a b-=>>的渐近线相切,则双曲线C 的离心率为_______. 【★答案★】2 【详解】设双曲线的一条渐近线为ay x b=,即0ax by -= 因为其与圆()2244x y -+=相切,故2242a a b=+ 整理可得223b a =,故离心率为2212?b e a=+=.15.若过点(01)-,的直线l 与抛物线22y x =有且只有一个交点,则这样的直线l 共有_______条. 【★答案★】3解:(1)当过点(01)-,的直线斜率不存在时,显然0x =与抛物线22y x =有且只有一个交点, (2)①当过点(01)-,且直线抛物线22y x =的对称轴平行,即斜率为0时,显然1y =-与抛物线22y x =有且只有一个交点,②当直线过点(01)-,且斜率存在,且与抛物线相切时,直线与抛物线只有一个交点,设直线方程为1y kx =-,代入到抛物线方程 22y x =,消y 得:222(1)10k x k x -++=,由已知有0k ≠,则224(1)40k k ∆=+-= ,解得:12k =-,即直线线方程为112y x =--,综上可得:过点(01)-,的直线l 与抛物线22y x =有且只有一个交点的直线l 共有3条, 16.已知直线1y x =-+与椭圆)0(12222>>=+b a b ya x 相交于A ,B 两点,且OA OB ⊥(O 为坐标原点),若椭圆的离心率13,22e ⎡⎤∈⎢⎥⎣⎦,则a 的最大值为___________.【★答案★】102解:设()()1122,,,A x y B x y ,由222211y x x y ab =-+⎧⎪⎨+=⎪⎩,消去y ,可得()()222222210a b x a x a b +-+-=, ∴则()2221212222212,a b a x x x x a b a b-+==++, 由()()()2222222410a a a b b ∆=--+->,整理得221a b +>.()()()12121212111y y x x x x x x ∴=-+-+=-++.OA OB ⊥(其中O 为坐标原点),可得0OA OB ⋅=, 12120x x y y ∴+=,即()()1212110x x x x +-+-+=,化简得()1212210x x x x -++=.()222222212210a b a a b a b -∴⋅-+=++.整理得222220a b a b +-=. 222222b a c a a e =-=-,∴代入上式,化简得221211a e=+-, 2211121a e ⎛⎫∴=+ ⎪-⎝⎭. 13,22e ⎡⎤∈⎢⎥⎣⎦,平方得21344e ≤≤, 213144e ∴≤-≤,可得 241431e≤≤-, 因此2227175215,3162a a e ≤=+≤≤≤-,可得2a 的最大值为52, 满足条件221a b +>,∴当椭圆的离心率32e =时,a 的最大值为102. 故★答案★为:102. 17.设直线的方程为(1)20,a x y a a R +++-=∈.(1)若在两坐标轴上的截距相等,求直线的方程; (2)若与两坐标轴围成的三角形的面积为1,求a 的值. 【★答案★】(1)30x y +=或20x y ++=(2)37a =± 【详解】(1)由题意知,当直线过原点时,该直线在两条坐标轴上的截距都为0, 此时2a =,直线的方程为30x y +=; 当直线不过原点时,由截距相等,得221a a a --=+,则0a =, 直线的方程为20x y ++=,综上所述,所求直线的方程为30x y +=或20x y ++=. (2)由题意知,直线在x 轴,y 轴上的截距分别为21a a -+、2a -, ()122121a a a -⨯-=+,解得37a =±.18.在平面直角坐标系xoy 中,已知中心在原点,焦点在x 轴上的双曲线C 的离心率为2,且双曲线C 与斜率为2的直线l 相交,且其中一个交点为P (﹣3,0). (1)求双曲线C 的方程及它的渐近线方程;(2)求以直线l 与坐标轴的交点为焦点的抛物线的标准方程.【★答案★】(1)22199x y -=,y x =±;(2)y 2=﹣12x ,x 2=24y. 试题解析:(1)由题意,设双曲线的方程为()222210,0x y a b a b-=>>,∵点P (﹣3,0)在双曲线上,∴a=3.∵双曲线C 的离心率为:2,∴32c =,∵c 2=a 2+b 2,∴b=3,∴双曲线的方程为:22199x y -=,其渐近线方程为:y=±x . (2)由题意,直线l 的方程为y=2(x+3),即y=2x+6,直线l 与坐标轴交点分别为 F 1(﹣3,0),F 2(0,6),∴以F 1为焦点的抛物线的标准方程为y 2=﹣12x ; 以F 2为焦点的抛物线的标准方程为x 2=24y.19.已知抛物线E :x 2=2py (p >0)的焦点为F ,直线x=2与x 轴的交点为M ,与抛物线E 的交点为N ,且4|FN|=5|MN|. (1)求p 的值;(2)若直线y=kx+2与E 交于A ,B 两点,C (0,-2),记直线CA ,CB 的斜率分别为k 1,k 2,求证:k 12+k 22-2k 2为定值. 【★答案★】(1)P=1;(2)见解析 【详解】(1)设N (2,y 0),代入x 2=2py ,得02y p =,而M (2,0),则2MN p =.又p F 02⎛⎫⎪⎝⎭,,0p 2p NF y 2p 2=+=+,由4|FN|=5|MN|,得8102p p p+=,则p=1,(2)设点A (x 1,y 1)、B (x 2,y 2),由2x 2yy kx 2⎧=⎨=+⎩,得x 2-2kx-4=0.由韦达定理可得x 1+x 2=2k ,x 1x 2=-4.△=4k 2+16>0,2222121212y 2y 2k k ()()x x +++=+=22122212(kx 4)(kx 4)x x +++=222211222212k x 8kx 16k x 8kx 16x x +++++ =222121211112k 8k 16x x x x ⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭=()212212122212128k x x (x x )2x x 2k 16x x x x ++-++⋅ =2k 2-4k 2+4k 2+8=2k 2+8,因此,22212k k 2k 8+-=.20.已知直线:(1)2530()l k x y k k R --+-=∈恒过定点P ,圆C 经过点(4,0)A 和点P ,且圆心在直线-2 10x y +=上.(1)求定点P 的坐标与圆C 的标准方程;(2)已知点P 为圆C 直径的一个端点,若另一个端点为点Q ,问:在y 轴上是否存在一点(0, )M m ,使得PMQ ∆为直角三角形,若存在,求出m 的值,若不存在,请说明理由. 【★答案★】(1)(3,1),22(7)(4)25x y -+-=;(2)存在,5m =或653. 【详解】(1)由(1)2530k x y k --+-=得,(3)(25)0k x x y --+-=, 令30250x x y -=⎧⎨+-=⎩,得31x y =⎧⎨=⎩,即定点P 的坐标为(3,1). 设圆C 的方程为220x y Dx Ey F ++++=,由条件得1640913021022D F D E F D E ⎧⎪++=⎪⎪++++=⎨⎪⎛⎫⎛⎫⎪---+= ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得14840D E F =-⎧⎪=-⎨⎪=⎩.所以圆C 的方程为22148400x y x y +--+=,所以化为标准方程为22(7)(4)25x y -+-=.(2)设点(3,1)P 关于圆心(7,4)的对称点为()00,x y ,则有0031418x y +=⎧⎨+=⎩,解得011x =,07y =,故点Q 的坐标为(11,7).因为M 在圆外,所以点M 不能作为直角三角形的顶点,若点P 为直角三角形的顶点,因为413734CP k -==-则有131,5034m m -⋅=-=-, 若点Q 是直角三角形的顶点,则有73651,01143m m -⋅=-=-, 综上,5m =或653. 21.已知椭圆的中心在原点,焦点在轴,焦距为2,且长轴长是短轴长的倍.(1)求椭圆的标准方程; (2)设,过椭圆左焦点的直线交于、两点,若对满足条件的任意直线,不等式()恒成立,求的最小值.【★答案★】(1)(2)的最小值为()恒成立,只需,即的最小值为.试题解析:(1)依题意,,,解得,,∴椭圆的标准方程为.(2)设,,所以,当直线垂直于轴时,,且,此时,,所以.当直线不垂直于轴时,设直线:, 由整理得,所以,,所以. 要使不等式()恒成立,只需 ,即的最小值为.22.已知F 为抛物线()21:201C y px p =<<的焦点,E 为圆()222:41C x y -+=上任意点,且EF 最大值为194. (1)求抛物线1C 的方程;(2)若()()000,24M x y y ≤≤在抛物线1C 上,过M 作圆2C 的两条切线交抛物线1C 于A 、B (A 、B 异于点M ),求AB 中点D 的纵坐标的取值范围. 【★答案★】(1)2y x =;(2)42,5⎡⎤--⎢⎥⎣⎦.【详解】(1)抛物线1C 的焦点为,02p F ⎛⎫⎪⎝⎭,圆2C 的圆心为()24,0C ,半径为1, 所以,2max1914124p EF FC =+=-+=,01p <<,解得12p =, 因此,抛物线1C 的方程为2y x =;[],即在时当两条切线的斜率都存;得,的方程:,得由)即(的方程:设),,(的斜率不存在,则不妨设),(时,则,另一条切线斜率存在当一条切线斜率不存在5y ,453-y 25-y 5-x 552y 5-x 552y 552k 11554d ,0555-x k 5-y 5-55516,4)2(022200≠=⇒=⎪⎩⎪⎨⎧===∴==++-==+--=∈=DB xy MB k k k k y kx MB A MA M y x设点()11,A x y 、()22,B x y ,设过点M 的圆2C 的切线方程为()200y y k x y-=-,则()22411y k y k-+=+,整理得()()42222000008152410y y k y y k y -++-+-=,设两切线的斜率分别为1k 、()212k k k ≠,则1k 、2k 是上述方程的两根,由韦达定理得()()20012420024815y y k k y y -+=-+,201242001815y k k y y -=-+, 将方程()200y y k x y -=-代入抛物线2C 的方程得()2200y y k y y -=-, 整理得()()0010y y ky ky -+-=,所以,1011y y k =-,2021y y k =-, 线段AB 中点D 的纵坐标为012121202120001123312221y y y y k k k k y y k k y y y +-++===-=-=---)5(0≠y ,函数()1f x x x=-在区间[][]4,55,2⋃上为增函数,.54)(453453)(2,415)(554554)(23-≤<--<≤-∴≤<<≤x f x f x f x f 或或因此,线段AB 的中点D 的纵坐标的取值范围是42,5⎡⎤--⎢⎥⎣⎦.感谢您的下载!快乐分享,知识无限!。
2020-2021学年高二数学上学期期中测试试题

2020-2021学年高二数学上学期期中测试试题注意事项考生在答题前请认真阅读本注意事项及各题答题要求1、 本试卷共4页,包含填空题(第1题~第14题)、解答题(第15题~第20题)两部分。
本试卷满分160分,考试时间为120分钟。
考试结束后,请将答题纸上交。
2、 答题前,请务必将自己的姓名、考试证号、座位号用0.5毫米黑色签字笔填写在试卷及答题纸上。
3、 作答时必须用0.5毫米黑色签字笔写在答题纸上的指定位置,在其它位置作答一律无效。
4、 如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚。
1. 命题“∀0x ∈R ,02x>0”的否定是 ▲ .2. 经过点()2,1P 且与直线0943=++y x 垂直的直线方程是 ▲ .3. 已知正四棱柱的底面边长为2cm ,高为1cm ,则正四棱柱的侧面积是 ▲ 2cm .4. 圆心是(-1,0)且过原点的圆的方程是 ▲ .5. 已知m 为实数,直线1:30l mx y ++=,2:(32)20l m x my -++=, 则“1m =”是“12//l l ”的 ▲ 条件.(请在“充要、充分不必要、必要不充分、既不充分也不必要” 中选择一个)6. 设直线x y =与圆C :0222=-+ay y x 相交于A ,B 两点,若32=AB ,则圆C 的半径为 ▲ .7. 已知圆柱M 的底面半径为3,高为2,圆锥N 的底面直径和高相等,若圆柱M 和圆锥N 的体积相同,则圆锥N 的高为 ▲ . 8. 已知平面α,β,直线n m ,,给出下列命题:①若βα⊥, ,m n αβ⊥⊥,则m n ⊥.②若//m α,//,n m n β⊥,则βα⊥, ③若//αβ,//,//m n αβ,则||m n ,④若,,m n m n αβ⊥⊥⊥,则αβ⊥, 其中是真命题的是 ▲ .(填写所有真命题的序号)9. 圆221:4450C x y x y ++--=与圆222:8470C x y x y +-++=的公切线有 ▲ 条. 10. 如图,长方体1111ABCD A B C D -中,O 为1BD 的中点,三棱锥O ABD -的体积为1V ,四棱锥11O ADD A -的体积为2V ,则12V V 的值为 ▲ .11. 已知命题12:≤-x p ,命题0)4)((:≤+--a x a x q ,若q p 是成立的充分非必要 条件,则实数a 的取值范围是 ▲ .12. 关于x 的方程222+=-kx x x 有两个不同的实数根,则k 的范围为 ▲ . 13. 在平面直角坐标系xOy 中,圆C 的方程为2240x y x +-=.若直线)2(+=x k y 上存在一点P ,使过P 所作的圆的两条切线相互垂直,则实数k 的取值范围为 ▲ .14. 已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a -4)2=1.若圆M 上存在点P ,过点P 作圆O的两条切线,切点为A ,B ,使得∠APB =60°,则实数a 的取值范围为 ▲ . 二、解答题:(本大题共90分,解答应写出文字说明,证明过程或演算步骤) 15.(本小题满分14分)设命题p :032,2>--∈a a R a ;命题q :不等式x 2+ax +1>0∀x ∈R 恒成立,若p 且q为假,p 或q 为真,求a 的取值范围.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,, 的中点.已知 AC PA ⊥,,6=PA .5,8==DF BC 求证: (1)直线//PA 平面DEF ;(2) 平面⊥BDE 平面ABC .17.(本小题满分14分)矩形ABCD 的两条对角线相交于点M(2,0),AB 边所在直线的方程为,063=--y x 点()1,1-T 在AD 边所在直线上.(1)求AD 边所在的直线方程及A 的坐标. (2)求矩形ABCD 外接圆方程.18.(本小题满分16分)在三棱锥P - ABC 中,已知平面PBC ⊥平面ABC . (1)若AB ⊥BC ,CP ⊥PB ,求证:CP ⊥PA :(2)若过点A 作直线⊥l 平面ABC ,求证:l //平面PBC .19. (本小题满分16分)已知圆O :122=+y x 和A (4,2)(1)过点A 向圆O 引切线l ,求切线l 的方程.(2)设P 为圆A :9)2-()4-(22=+y x 上的任意一点,过点P 向圆O 引切线,切点为B.试探究:平面内是否存在一定点C,使得PCPB为定值,若存在,求出此定值,若不存在,说明理由.20. (本小题满分16分)已知圆M 的方程为062222=---+y x y x ,以坐标原点为圆心的圆N 与圆M 相切.(1)求圆N 的方程;(2)圆N 与x 轴交于E ,F 两点,圆N 内的动点D 使得DE ,DO ,DF 成等比数列,求DEDF •的取值范围;(3)过点M 作两条直线分别与圆N 相交于A ,B 两点,且直线MA 和直线MB 的倾斜角互补,试判断直线MN 和AB 是否平行?并说明理由.xx 第一学期期中测试高二数学试题参考答案一、填空 1、02,00≤∈∃x R x 2、0234=+-y x 3、8 4、()1122=++y x5、充分不必要6、67、 68、①④9、3 10、21 11、[]5,312、⎪⎭⎫⎢⎣⎡--43,1 13、[]1,1-14、⎥⎦⎤⎢⎣⎡+---222,222 二、解答 15.解:由题知 q p ,一真一假。
广东省高二上学期期中数学试卷含答案(共5套)

21.(本小题满分 12 分)
设函数
在点
处的切线方程为
.
(1)求 的值,并求
的单调区间;
(2)证明:当
时,
.
22.(本小题满分 12 分)
已知椭圆 的标准方程为 (1)求椭圆的标准方程;
,该椭圆经过点
,且离心率为 .
(2)过椭圆
长轴上一点
,证明:直线
恒过定点.
作两条互相垂直的弦
.若弦
的中点分别为
深圳市高级中学第一学期期中考试 高二数学参考答案
的最小值是
C. 恒过定点 A .若直线
D. 过点 A ,其中 是正实
A.
B.
C.
D. 5
11.若
,
,则
的最小值为
A.
B.
C.
D.
12.设 是定义在 上的奇函数 ,且
,当
时,有 f (x) xf ( x) 恒成立,则不等式
的
解集为
A.
B.
C.
D.
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
当 n≤9 时, an< 0, 当 n=10 时, an= 0,
当 n≥11 时, an> 0. 所以当 n= 9 或 n= 10 时,由 Sn=- 18n+ n( n-1) = n2-19n 得 Sn 取得最小值为 S9= S10=- 90.
(3) 记数列 { bn} 的前 n 项和为 Tn,由题意可知
联立
,消去 x,得 ky2+y–k=0.
如图,设 A( x1, y1), B( x2, y2),则 x1≠0, x2≠0,
2 A.
3
2 B. -
3
2023-2024学年广东省揭阳市普宁市兴文中学高二上学期期中数学试题

2023-2024学年广东省揭阳市普宁市兴文中学高二上学期期中数学试题1. 已知集合A ={(x,y)|x 2+y 2=1},B ={(x,y)|y =x},则A ∩B 中元素的个数为( )A . 3B . 2C . 1D . 02. 已知向量a ⃗=(−3,2,5),b ⃗⃗=(1,x,−1)且a ⃗⟂b⃗⃗,则x 的值为( ) A .4 B .2 C .3 D .13. 在直角坐标系中,直线x +√3y −3=0的倾斜角是( )A . 30∘B . 60∘C . 150∘D . 120∘4. 两条平行直线3x +4y -10=0与ax +8y +11=0之间的距离为( )A . 315B . 3110C . 235D . 2310 5. 如图,在四面体ABCD 中,点E 为棱CD 的中点,设AB ⃗⃗⃗⃗⃗⃗=a ⃗,AC⃗⃗⃗⃗⃗⃗=b ⃗⃗,AD ⃗⃗⃗⃗⃗⃗=c ⃗,则BE ⃗⃗⃗⃗⃗⃗=( )A . −a ⃗+12b ⃗⃗+12c ⃗B . −a ⃗+32b ⃗⃗−12c ⃗C . −2a ⃗+b ⃗⃗+c ⃗D . a ⃗+32b ⃗⃗+12c ⃗ 6. 直三棱柱ABC —A′B′C′中,AC =BC =AA′,∠ACB =90°,E 为BB′的中点,异面直线CE 与C ′A 所成角的余弦值是( )A . √55B . −√55C .- √1010D . √10107. 设点A(4,−3),B(−2,−2),直线l 过点P(1,1)且与线段AB 相交,则直线l 的斜率k 的取值范围是( )A . k ≥1 或 k ≤−4B . k ≥1 或 k ≤−43C . −4≤k ≤1D . −43≤k ≤1 8. 唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在位置为B(−1,−4),若将军从点A(−1,2)处出发,河岸线所在直线方程为x +y =3.则“将军饮马“的最短总路程为( )A . √13B . √17C . 2√17D . 109. 下列说法中,正确的有( )A .直线 y =3x −2 在 y 轴上的截距是2B .直线 2x −y +5=0 经过第一、二、三象限C .过点 (5,0) ,且倾斜角为90°的直线方程为 x −5=0D .过点 P(1,2) 且在 x 轴, y 轴上的截距相等的直线方程为 x +y −3=010. 已知空间中三点A (0,1,0),B (1,2,0),C (-1,3,1),则正确的有( )A . AB ⃗⃗⃗⃗⃗⃗ 与 AC⃗⃗⃗⃗⃗⃗ 是共线向量 B .平面 ABC 的一个法向量是(1,-1,3)C . AB ⃗⃗⃗⃗⃗⃗ 与 BC ⃗⃗⃗⃗⃗⃗ 夹角的余弦值是 −√36D .与 AB ⃗⃗⃗⃗⃗⃗ 方向相同的单位向量是(1,1,0)11. 以下四个命题表述正确的是( )A .直线 mx +4y −12=0(m ∈R) 恒过定点 (0,3)B .圆C 1 : x 2+y 2+2x =0 与圆 C 2 : x 2+y 2−4x −8y +4=0 恰有三条公切线 C .两圆 x 2+y 2+4x −4y =0 与 x 2+y 2+2x −12=0 的公共弦所在的直线方程为 x +2y +6=0D .已知圆 C : x 2+y 2=2 , P 为直线 x +y +2√3=0 上一动点,过点 P 向圆 C 引条切线 PA ,其中 A 为切点,则 PA 的最小值为 √212. 古希腊著名数学家阿波罗尼斯发现:平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,已知A(−4,2),B(2,2),点P 满足|PA||PB|=2,设点P 的轨迹为圆C ,下列结论正确的是( )A .圆 C 的方程是 (x −4)2+(y −2)2=16B .过点 A 向圆C 引切线,两条切线的夹角为 π3C .过点 A 作直线 l ,若圆 C 上恰有三个点到直线 l 距离为2,该直线斜率为 ±√155D .在直线 y =2 上存在异于 A , B 的两点 D ,E ,使得 |PD||PE|=213. 已知空间中非零向量a ⃗,b ⃗⃗,且|a ⃗|=2,|b ⃗⃗|=3,⟨a ⃗,b ⃗⃗⟩=60∘,则|2a ⃗−3b⃗⃗|= _________ 14. 已知直线l 1:ax +2y +3=0与直线l 2:2x +ay +a +1=0平行,则a =___________. 15. 已知⊙C 1的圆心在x 轴上,半径为1,且过点(2,−1),⊙C 2:(x −4)2+(y −2)2=10,则⊙C 1与⊙C 2的公共弦长为___________.16. 已知P(a,b)为圆C:x 2+y 2−2x −4y +4=0上任意一点,则b−1a+1的最大值是______.17. 已知△ABC 的内角A ,B ,C 的对边分别为a,b,c ,且 2cosC(acosB +bcosA)=c.(1)求C;(2)若c=√7,△ABC的面积为3√3,求△ABC的周长.218.直线l经过两直线l1:3x+4y−2=0和l2:2x+y+2=0的交点.(1)若直线l与直线3x+y−1=0平行,求直线l的方程;(2)若点A(3,1)到直线l的距离为5,求直线l的方程.19.如图,在正四棱柱ABCD−A1B1C1D1中,已知AB=AD=2,AA1=5,E,F分别为DD1,BB1上的点,且DE=B1F=1.(1)求证:BE⟂平面ACF:(2)求点B到平面ACF的距离.20.已知ΔABC的三个顶点坐标分别是A(0,5),B(1,−2),C(−3,−4).求:(1)ΔABC外接圆的方程;(2)若点P是ΔABC外接圆上的一动点,点M(3,−1)为平面内一定点,求线段MP的中点N的轨迹方程.21. 如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =√2,AF =t ,M 是线段EF 的中点.(1)求证:AM//平面BDE ;(2)若t =1,求二面角A −DF −B 的大小;(3)若线段AC 上总存在一点P ,使得PF⟂BE ,求t 的最大值.22. 已知过点A (0,4),且斜率为k 的直线与圆C :(x −2)2+(y −3)2=1,相交于不同两点M 、N.(1)求实数k 的取值范围;(2)求证:AM ⃗⃗⃗⃗⃗⃗⃗·AN⃗⃗⃗⃗⃗⃗⃗为定值; (3)若O 为坐标原点,问是否存在以MN 为直径的圆恰过点O ,若存在则求k 的值,若不存在,说明理由.。
广东省普宁市2020-2021学年高二上学期期中素质监测数学试题 答案

时,等号成立。……………………………………………
9分
x 2
∴ xy 4 xy 5 0 …………………………………………… 11 分
∴ xy 1
∴xy 的最大值为 1 …………………………………………… 12 分
2
20 解:由题意知 AB = 5 3 3 海里,
DBA 90 60 30,DAB 45, …………………………………… 1 分
2020-2021 学年度第一学期期中高中二年级质量测试
数学科试题参考答案
一、填空题:
题号 1
2
3
4
5
6
7
8
答案 A
DB
A
C
D
A
B
二、多选题 9 10 11 12 ABC BC ACD ABD
三、填空题
(13)
x
2
x
1 2
.
四、解答题:
17(本小题满分 10 分)
(14)0.(15)6 .(16) 2n 1 , 2n1 (n 1) 2 4
∴ n Sn 2an ,即 n , an , Sn 成等差数列.………………………………… 12 分
19. (本小题满分 12 分)
解:(1)已知 x<2,∴x-2<0. …………………………………………… 1 分
∴4 x 1 4(x 2) 1 8 …………………………………………… 2 分
(2)由(1) an 1 2n ,…………………………………………… 6 分
∴ an 2n 1. ……………………………………… 7 分
∴
Sn
2 2n1 1 2
n
2………………………………
9分