《生物化学》名词解释

合集下载

生物化学名词解释

生物化学名词解释

一.名词解释1. Tm(解链温度):当核酸分子加热变性时,其在260nm处的紫外吸收会急剧增加,当紫外吸收达到最大变化的半数值时,此时对应的温度称为溶解温度,用Tm表示。

热变性的DNA解链到50%时的温度。

2. 增色效应:DNA变性时,其溶液A260增高的现象。

3. 退火:热变性的DNA经缓慢冷却后即可复性,这一过程称为~。

4. 核酸分子杂交:这种杂化双链可以在不同的DNA单链之间形成,也可以在不同的RNA单链形成,甚至还可以在DNA单链和RNA单链之间形成,这一现象叫做核酸分杂交。

5. DNA复性:当变性条件缓慢去除后,两条解链的互补链可以重新配对,恢复到原来的双螺旋结构。

这一现象称为DNA复性。

6. Chargaff规则:包括 [A] = [T],[G] = [C];不同生物种属的DNA的碱基组成不同;同一个体的不同器官或组织的DNA碱基组成相同。

7. DNA的变性: 在某些理化因素作用下,DNA双链解开成两条单链的过程。

8. 核酸酶:所有可以水解核酸的酶。

9. 糖酵解:在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(glycol sis),亦称糖的无氧氧化10. 糖异生:是指从非糖化合物转变为葡萄糖或糖原的过程。

11. 丙酮酸羧化支路:糖异生过程中为绕过糖酵解途径中丙酮酸激酶所催化的不可逆反应,丙酮酸需经丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶作用而生成丙酮酸的过程称为~。

12. 乳酸循环(Cori循环):肌收缩(尤其是供氧不足时)通过糖酵解生成乳酸。

肌内糖异生活性低,所以乳酸通过细胞膜弥散进入血液后,再入肝,在肝内异生为葡萄糖。

葡萄糖释入血液后又可被肌摄取,这就构成了一个循环,此循环称为~,也称Cori循环。

13. 糖原合成:指由葡萄糖合成糖原的过程。

14. 糖原分解:习惯上指肝糖原分解成为葡萄糖的过程。

15. 血糖:血液中的葡萄糖。

16. 脂肪动员:储存在脂肪细胞中的脂肪,经脂肪酶逐步水解为甘油和脂肪酸,并释放入血供全身组织氧化利用的过程称为脂肪动员。

生物化学 名词解释

生物化学 名词解释
12.domain—结构域,是三级结构层次上的局部折叠区,指分子量大的蛋白质常可折叠成多个结构较为紧密的区域,并各行其功能,称为结构域。
五、问答题
1.生物样品的含氮量能表示其蛋白质含量,为什么?试验中是如何计算的。
答:
由于蛋白质是体内的主要含氮物,且平均含氮量为16%,因此测定生物样品的含氮量就可以按照下列公式推算出蛋白质的大致含量:
蛋白质沉淀:
在一定条件下,蛋白疏水侧链暴露在外,肽链融会相互缠绕继而聚集,因而从溶液中析出。
变性的蛋白质易于沉淀,沉淀的蛋白质不一定变性
蛋白质的凝固作用:
蛋白质经强酸、强碱作用发生变性后,若将PH调至等电点,则变性蛋白质立即结成絮状的不溶解物,此絮状物仍可溶解于强酸强碱中。如再加热则絮状物可变成比较坚固的凝块,此凝块不易再溶于强酸和强碱中,这种现象称为蛋白质的凝固作用。
分子筛又称凝胶过滤,是层析的一种,层析柱内填满带有小孔的颗粒,一般由葡聚糖制成。蛋白质溶液加于顶部,任其往下渗漏,小分子蛋白质进入孔内,因而在柱中滞留时间较长,大分子蛋白质不能进入孔内而径直流出,因而不同大小的蛋白质得以分离。超速离心利用的是蛋白质在离心场中沉降系数不同而达到分离的目的。
7.举例说明蛋白质一级结构、空间结构与功能之间的关系。
在许多蛋白质分子中,可发现二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。三级结构:
整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。结构域是三级结构层次上的局部折叠区。(主要化学键是次级键:
疏水键、盐键、氢键和Van der Waals力等结构域:
(四)理化性质:
1.两性解离及等电点:
蛋白质分子除两端的氨基和羧基可解离外,氨基酸残基侧链中某些基团,在一定的溶液pH条件下都可解离成带负电荷或正电荷的基团。蛋白质是两性电解质,其解离程度取决于所处溶液的酸碱度。蛋白质的等电点(pI):

生物化学名词解释

生物化学名词解释

生物化学名词解释1.结构域:指一些较大的蛋白质分子,其三级结构中具有的两个或多个在空间上可明显区别的局部区域。

2.模体:指由多肽链中相邻的几个二级结构单元在空间上相互接近形成的有规律的二级结构集合。

3.等电点:指在溶液中,氨基酸或蛋白质电离成为电中性的兼性粒子时的溶液PH。

4.蛋白质变性:指在某些理化因素作用下,蛋白质特定的空间结构被破坏,从而导致其理化性质、生物活性丧失的现象。

5.反密码环:tRNA上含有反密码子,可以与mRNA的密码子通过碱基互补配对相互识别的部位。

6.Km值:米氏常数,数值上等于酶促反应速率为最大反应速率一半时的底物浓度。

7.必需基团:酶分子整体构象中对于酶发挥活性所必须的集团。

8.酶的活性中心:酶分子中的必需集团在空间结构上彼此靠近,集中形成的一个特定空间结构区域,可以与底物特异性结合并催化底物转化为产物。

9.酶的竞争性抑制:指抑制剂与酶的底物结构相似,抑制剂可以与底物竞争结合酶的活性中心,从而阻碍酶和底物结合形成的中间产物。

10.变构酶:指受别构效应调节的酶,含有别构位点。

别构位点在结合别构效应物以后酶的构象发生变化,从而影响活性中心的构象,最后影响酶的活性。

11.酶的化学修饰:酶蛋白上的一些基团在特定酶的催化下与某种化学基团发生共价结合而被修饰或酶蛋白身上某些特定的化学基团脱落进而引起酶活性改变的现象。

12.同工酶:指催化相同的反应但结构和理化性质等不同的酶。

13.氧化磷酸化:指代谢物氧化脱下的氢经线粒体呼吸链传给氧生成水,同时释放能量使ADP磷酸化生成ATP的过程。

14.底物水平磷酸化:指代谢物因脱氢、脱水等作用使分子内能量重新分布,形成高能键传给ADP生成ATP的过程。

15.糖的有氧氧化:葡萄糖在有氧条件下彻底氧化分解生成CO2和H2O同时释放大量能量并合成ATP的过程。

16.糖异生:由非糖物质生成葡萄糖或糖原的过程。

17.磷酸戊糖途径:葡萄糖在细胞质中生成核糖-5-磷酸及NADPH+H+,前者再进一步变成甘油醛-3-磷酸和果糖-6-磷酸的反应过程。

生物化学名词解释

生物化学名词解释

绪论1.生物化学(biochemistry):从分子水平来研究生物体(包括人类、动物、植物和微生物内基本物质的化学组成、结构,以及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能关系的一门科学,是一门生物学与化学相结合的基础学科。

2.新陈代谢(metabolism):生物体与外界环境进行有规律的物质交换,称为新陈代谢。

通过新陈代谢为生命活动提供所需的能量,更新体内基本物质的化学组成,这是生命现象的基本特征,是揭示生命现象本质的重要环节。

3.分子生物学(molecular biology):分子生物学是现代生物学的带头学科,它主要研究遗传的分子基础(分子遗传学),生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能等。

4.药学生物化学:是研究与药学科学相关的生物化学理论、原理与技术,及其在药物研究、药品生产、药物质量控制与药品临床中应用的基础学科。

第一章糖的化学1.糖基化工程:通过人为的操作(包括增加、删除或调整)蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。

2.单糖(monosaccharide):凡不能被水解成更小分子的糖称为单糖。

单糖是糖类中最简单的一种,是组成糖类物质的基本结构单位。

3.多糖(polysaccharide):由许多单糖分子缩合而成的长链结构,分子量都很大,在水中不能成真溶液,有的成胶体溶液,有的不溶于水,均无甜味,也无还原性。

4.寡糖(oligosaccharide):是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。

5.结合糖(glycoconjugate):也称糖复合物或复合糖,是指糖和蛋白质、脂质等非糖物质结合的复合分子。

6.同聚多糖(homopolysaccharide):也称为均一多糖,由一种单糖缩合而成,如淀粉、糖原、纤维素、戊糖胶、木糖胶、阿拉伯糖胶、几丁质等。

7.杂多糖(heteropolysaccharide):也称为不均一多糖,由不同类型的单糖缩合而成,如肝素、透明质酸和许多来源于植物中的多糖如波叶大黄多糖、当归多糖、茶叶多糖等。

生物化学名词解释大全

生物化学名词解释大全

生物化学名词解释大全1. 生物化学(Biochemistry):研究生物体内化学成分、结构和功能之间的关系的学科。

2. 多肽(Polypeptide):由多个氨基酸残基通过肽键连接而成的聚合物,是蛋白质的组成部分。

3. 氨基酸(Amino Acid):生物体内构成蛋白质的基本单位,包含一个氨基(NH2)和一个羧基(COOH),以及一个特定的侧链。

4. 聚合酶链式反应(Polymerase Chain Reaction,PCR):一种体外复制DNA的技术,通过反复循环的酶催化,使得目标DNA序列在简单的反应体系中大量扩增。

5. 糖(Sugar):生物体内分子中含有羟基的有机化合物,是能源的重要来源,也是构成核酸和多糖的基本单元。

6. 代谢(Metabolism):生物体内发生的化学反应的总和,包括物质合成与分解、能量转化以及调节和控制这些反应的调节机制。

7. 酶(Enzyme):催化生物化学反应的蛋白质分子,可以促进反应速率,但本身在反应中不被消耗。

8. 核酸(Nucleic Acid):生物体内储存和传导遗传信息的分子,包括DNA和RNA,由核苷酸链组成。

9. 基因(Gene):DNA分子上的特定区域,编码了一种特定蛋白质的信息,是遗传信息的基本单位。

10. 代谢途径(Metabolic Pathway):由一系列相互作用的酶催化的反应组成的序列,用于维持生物体内能量和物质的平衡。

11. 脂质(Lipid):一类不溶于水的化合物,在生物体内发挥结构和能量储存的重要作用,常见的脂质包括脂肪酸、甘油和胆固醇等。

12. 细胞呼吸(Cellular Respiration):通过氧化分解有机物质以释放能量的过程,通常包括糖的氧化并产生二氧化碳和水。

13. 光合作用(Photosynthesis):将光能转化为化学能的过程,植物和一些微生物通过光合作用将二氧化碳和水转化为有机物质和氧气。

14. 激素(Hormone):由内分泌腺分泌并通过血液传递到细胞中起作用的化学物质,调节和控制生物体内的各种生理过程。

生物化学名词解释

生物化学名词解释

脂肪动员(fat mobilization): 储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂酸(free fatty acid, FFA)及甘油并释放入血以供其他组织氧化利用的过程。

脂解激素:能直接激活甘油三酯脂肪酶,促进脂肪分解的激素,如胰高血糖素、肾上腺素、去甲肾上腺素等。

酮体的定义:脂肪酸在分解代谢过程中生的乙酰乙酸(acetoacetate)、β-羟丁酸(β-hydroxybutyrate)及丙酮(acetone),三者统称酮体(ketone bodies)。

血脂:血浆所含脂类统称血脂,包括:三酰甘油及少量二酰甘油及单酰甘油,胆固醇及其酯、磷脂以及游离脂酸。

载脂蛋白:载脂蛋白(apolipoprotein, apo) 指血浆脂蛋白中的蛋白质部分。

LDL受体:能特异识别与结合含ApoE或Apo B100的脂蛋白。

必需脂肪酸:人体自身不能合成,必须从食物中获得的脂肪酸。

脂肪酸的B-氧化:脂肪酸的氧化分解是从B-碳原子开始,两个两个碳原子依次进行水解。

这一过程称为脂肪酸的B-氧化氮平衡(nitrogen balance):每日氮的摄入量与排出量的对比关系。

蛋白质的腐败作用(putrefaction):肠道细菌对未被消化和吸收的蛋白质及其消化产物的分解与转化作用。

转氨基作用(transamination):在转氨酶(transaminase)的作用下,某一氨基酸去掉α-氨基生成相应的α-酮酸,而另一种α-酮酸得到此氨基生成相应的氨基酸的过程,即α-氨基酸和α-酮酸在转氨酶作用下实现氨、酮二基的互换过程。

氧化脱氨基作用:氨基酸先经脱氢作用生成不稳定的亚氨基酸,然后水解产生a-酮酸和氨。

联合脱氨基作用:转氨和脱氨相偶联而脱掉氨基的作用称为联合脱氨基作用。

鸟氨酸循环:肝中合成尿素的代谢通路。

由氨及二氧化碳与鸟氨酸缩合形成瓜氨酸、精氨酸,再由精氨酸分解释出尿素。

此过程中鸟氨酸起了催化尿素产生的作用S-腺苷甲硫氨酸(SAM):它是甲硫氨酸的活性形式,在动植物体内广泛存在,它是由底物L-甲硫氨酸和ATP经S-腺苷甲硫氨酸合成酶酶促合成的高血氨症( hyperammonemia):血氨浓度升高,常见于肝功能严重损伤时。

生物化学名词解释

1、蛋白质的变性作用:在某些物理和化学因素的作用下,蛋白质特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。

2、酶的活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的部位,称为酶的活性中心。

3、可逆抑制:抑制剂与酶分子中活性中心的某些必需基团的结合是非共价的、可逆的,结合后可以用透析或者超过滤等物理方法除去反应系统中的抑制剂,使酶活性恢复。

4、不可逆抑制:抑制剂与酶分子活性中心的某些必需基团以比较牢固的共价键结合,并且这种结合不能用简单的透析、超过滤等物理方法予以除去而使酶恢复活性。

5、盐析:在蛋白质溶液中加入一定量的中性盐使蛋白质从溶液中沉淀析出的现象。

较高浓度时,由于水化层被破坏和表面电荷被中和。

6、DNA的变性温度:DNA热变性时,其紫外吸收值达到总增加值一半时的温度。

7、兼性离子:在同一个氨基酸分子上带有等量的正负两种电荷,由于正负电荷相互中和而呈电中性,这种形式称为兼性离子。

8、双缩脲反应:双缩脲是由两个分子尿素缩合而成的化合物,双缩脲在碱性溶液中能与硫酸铜反应生成紫色的络合物,此反应称为双缩脲反应。

蛋白质分子中含有许多结构与双缩脲相似的肽键,因此也能称为双缩脲反应。

9、增色效应:DNA变性后,由于双螺旋解体,碱基堆积已经不存在,藏于螺旋内部的碱基暴露出来,这样就可以使得变性后的DNA对260nm紫外光的吸光率比变性之前明显升高,这种现象称为增色效应。

10、等电点:在某一pH的溶液中,氨基酸或蛋白质解离成阳离子和阴离子的趋势或程度相等,成为兼性离子,静电荷为零,呈电中性,此时溶液的pH成为该氨基酸或蛋白质的等电点。

11、茚三酮反应:在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。

可检测和定量氨基酸。

12、层析:按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的技术。

《生物化学》名词解释大全

《生物化学》名词解释大全第一章蛋白质1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。

2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。

3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI表示。

4.稀有氨基酸:指存在于蛋白质中的20 种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。

5.非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。

6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。

构型的转变伴随着共价键的断裂和重新形成。

7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。

8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。

一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。

构象改变不会改变分子的光学活性。

9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。

10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。

11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。

12.氢键:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。

13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。

14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。

15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、在空间上能辨认的二级结构组合体。

16.疏水键:非极性分子之间的一种弱的、非共价的相互作用。

如蛋白质分子中的疏水侧链避开水相而相互聚集而形成的作用力。

生物化学名词解释

反密码子:转移核糖核酸中能与信使核糖核酸的密码子互补配对的三核苷酸残基。

Chargaff规则:Chargaff等应用层析法对多种生物DNA的碱基组成进行分析,发现DNA中腺嘌呤和胸腺嘧啶的数目基本相等,胞嘧啶(包括5-甲基胞嘧啶)和鸟嘌呤的数目基本相等,这一规律被称作Chargaff规则。

核酸的变性:在物理和化学因素的作用下,维系核酸二级结构的氢键和碱基堆积力受到破坏,DNA由双链解旋为单链的过程。

退火:热变性核酸经缓慢降温后的复性过程。

增色效应:若将核酸水解为核苷酸,紫外吸收值通常增加3%~4%的现象。

减色效应:复性后。

核酸的紫外线吸收降低,这种现象被称作减色效应。

发夹结构:多核苷酸链中由茎区(双链区、螺旋区)和环区(单链区)组成的类似于“发夹”状的结构。

分子杂交:在退火条件下,不同来源地DNA互补区形成双链,或DNA单链和RNA单链的互补区形成DNA-RNA杂合双链的过程。

DNA的解链(溶解)温度:将紫外吸收的增加量达最大增量一半时的温度值称溶解温度。

碱基堆积力:碱基平面见的范德华作用力和疏水作用力统称为碱基堆积力。

超螺旋DNA: 具有超螺旋结构的DNA分子。

DNA的一级结构:就是指4种核苷酸的链接及排列顺序,表示了该DNA分子的化学构成。

DNA的二级结构:DNA双链的螺旋形空间结构称DNA的二级结构。

二面角:平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形,叫做二面角。

蛋白质一级结构:指多肽链中的氨基酸序列,氨基酸序列的多样性决定了蛋白质空间结构和功能的多样性。

蛋白质二级结构:指多肽主链有一定周期性的,有氢键维持的局部空间结构。

蛋白质三级结构:球状蛋白的多肽链在二级结构、超二级结构和结构域等结构层次的基础上,组装而成的完整的结构单元。

蛋白质四级结构:指分子中亚基的种类、数量以及相互关系。

超二级结构:指若干相邻的二级结构中的构象单元彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。

生物化学名词解释

生物化学名词解释零、绪论1.生物化学:从分子水平来研究生物体内基本物质的化学组成、结构,及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能的关系的一门科学,是一门生物学与化学相结合的基础学科。

2.新陈代谢:生物体与外界环境进行有规律的物质交换,称为新陈代谢。

3.分子生物学:是现代生物学的带头学科,主要研究分子遗传学,生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能。

4.药学生物化学:是研究与药学科学相关的生物化学理论、原理和技术,及其在药物研究、药品生产、药物质量监控与药品临床方面应用的基础学科。

一、糖的化学1、糖基化工程:通过增加、删除或调整蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。

2、单糖:凡不能被水解成更小分子的糖称为单糖。

3、多糖:由许多单糖分子缩合而成的长链结构。

4、寡糖:是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。

5、结合糖:也称糖复合物或复合糖,是指糖和蛋白、脂质等非糖物质结合的复合分子。

6、同聚多糖:也称均一多糖,由同类型的单糖缩合而成。

7、杂多糖:也称不均一多糖,由不同类型的单糖缩合而成。

8、粘多糖:也称糖胺聚糖,是一类含氮的不均一多糖,其化学组成通常为糖醛酸及氨基己糖或其衍生物,有的还含有硫酸。

9、糖蛋白:是糖与蛋白质以共价键结合的复合分子。

10、肽聚糖:又称胞壁质,是构成细菌细胞壁基本骨架的主要成分,是一种多糖与氨基酸链相连的多糖复合物。

11、蛋白质聚糖:是一类由糖和蛋白质结合形成的非常复杂的大分子糖复合物,其中蛋白质含量一般少于多糖。

12、脂多糖:一般由外层低聚糖链、核心多糖及脂质三部分组成。

13、内切糖苷酶:可水解糖链内部的糖苷键,有的可将长的多糖链切为较短的寡糖片段。

14、外切糖苷酶:只能切下多糖非还原末端的一个单糖,并对单糖组成和糖苷键有专一性要求。

二、脂的化学1、必需脂肪酸:人体不能合成必须从食物获取的脂肪酸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物化学:用化学的理论和方法研究生物体组成、结构、功能和生命过程中物质及能量变化规律的学科。

转化作用:从一种细菌中得到DNA通过一定途径进入另一种细菌,从而引起后者遗传特性的改变。

核酸:是由几十个甚至几千万个核苷酸聚合而成的具有一定空间结构的大分子化合物。

超螺旋:双螺旋进一步扭曲形成的更高层次的空间结构,包括DNA扭曲、超螺旋、多重螺旋和连环等。

核酸的杂交:是指不同来源的单链核酸之间可通过碱基互补形成双螺旋结构。

寡聚蛋白质:某些蛋白质是由两个或更多个蛋白质亚基(多肽链)通过非共价结合而成,称寡聚蛋白质。

α-氨基酸:与羧基相邻的α-碳原子上都有一个氨基,因而称为α-氨基酸。

肽:一个氨基酸的羧基与另一个氨基酸的氨基脱去一分子水而形成酰胺键,这个键称为肽键,产生的化合物叫做肽。

蛋白质的一级结构:是指蛋白质肽链中氨基酸的排列顺序。

蛋白质的二级结构:是指蛋白质多肽链主链原子局部的空间结构,但不包括与其他肽段的相互关系及侧链构象的内容。

β-折叠:是由两条或多条伸展的多肽链靠氢键联结而成的锯齿状片状结构。

无规则卷曲:又称自由卷曲,是指没有一定规律的松散肽链结构。

酶的功能部位常常处于这种构象区域。

超二级结构:指蛋白质中相邻的二级结构单位组合在一起,形成有规则的在空间上能辩认的二级结构组合体。

结构域:指多肽链在二级结构或超二级结构的基础上形成三级结构的局部折叠区,它是相对独立的紧密球状实体,称为结构域(domain)或功能域。

蛋白质的三级结构:指的是多肽链在二级结构、超二级结构和结构域的基础上,主链构象和侧链构象相互作用,进一步盘曲折叠形成球状分子结构。

蛋白质的四级结构:由两条或两条以上具有三级结构的多肽链聚合而成、有特定三维结构的蛋白质构象。

每条多肽链又称为亚基。

同源蛋白质:在不同的生物体内行使相同或相似功能的蛋白质。

别构效应:是指含亚基的蛋白质分子由于一个亚基构象的改变而引起其余亚基以至整个分子构象、性质和功能发生变化。

蛋白质的等电点(pI):当某蛋白质在一定的pH的溶液中,所带的正负电荷相等,它在电场中既不向阳极也不向阴极移动,此时溶液的pH值叫做该蛋白质的等电点。

变性作用:蛋白质受到某些理化因素的影响,其空间结构发生改变,蛋白质的理化性质和生物学功能随之改变或丧失,但未导致蛋白质一级结构的改变,这种现象叫变性作用。

复性:蛋白质的变性作用若不过于剧烈,则是一种可逆过程。

高级结构松散了的变性蛋白质通常在除去变性因素后,可缓慢地重新自发折叠形成原来的构象,恢复原有的理化性质和生物活性,这种现象称为复性。

蛋白质的沉淀作用:蛋白质在溶液中靠水膜和电荷保持其稳定性,水膜和电荷一旦除去,蛋白质溶液的稳定性就被破坏,蛋白质就会从溶液中沉淀下来,此现象即为蛋白质的沉淀作用。

胞内酶:由细胞内产生并在细胞内发挥作用的酶。

胞外酶:将细胞内产生后分泌细胞外起作用的酶。

酶所催化的反应称作酶促反应,发生化学反应前的物质称底物,而反应后生成的物质称产物。

同工酶:指具有不同分子结构但催化相同反应的一组酶。

变构酶(别构酶):是指一些含有2个或2个以上亚基的寡聚酶。

具有变构效应的酶叫变构酶,引起变构的小分子物质叫变构剂(调节物)。

正变构剂(正调节物):使酶活性升高的变构叫正变构,此时的变构剂叫正变构剂(正调节物)。

负变构剂(负调节物):使酶活性降低的变构叫负变构,此时的变构剂叫负变构剂(负调节物)。

酶原:酶在生物体内首先合成出来的无活性前体。

酶原的激活:酶原必须在一定的条件下去掉一个或几个特殊的肽键,从而使酶的构象发生一定的变化,才有活性,这一过程称为酶原激活。

活化能:分子由常态转变为活化状态所需要的能量称为活化能。

邻近效应:两个底物分子相邻近,大大提高了底物的有效浓度。

定向效应:底物分子还在活性中心“定向”排布,有利于原子轨道的重叠——轨道定向,使分子间反应近似于分子内反应。

酸碱催化:酶活性部位上的某些基团可以作为质子供体(或质子受体)对底物进行酸或碱催化。

酸催化:在酶的活性中心上,有些基团是质子供体(酸催化基团),可以向底物分子提供质子,称为酸催化。

碱催化:有些催化基团是质子受体(碱催化基团),可以从底物分子上接受质子称为碱催化。

酸碱共同催化:酶活性部位上有几个基团分别作为质子的供体和受体。

竞争性抑制作用:某些抑制剂的化学结构与底物相似,与底物竞争酶的活性中心并与之结合,从而减少了酶与底物的结合,因而降低酶反应速度。

这种作用称为竞争性抑制作用。

非竞争性抑制作用:某些抑制剂结合在酶活性中心以外的部位,因而与底物和酶的结合无竞争,即底物与酶结合后还能与抑制剂结合,同样抑制剂与酶结合后还能与底物结合。

但酶分子上有了抑制剂后其催化功能基团的性质发生改变,从而降低了酶活性。

这种作用称为非竞争性抑制作用。

反竞争性抑制作用:某些抑制剂不能与游离的酶结合,而只能在酶与底物结合成复合物后再与酶结合。

当酶分子上有了抑制剂后其催化功能被削弱。

这种作用称为反竞争性抑制作用。

不可逆抑制作用:抑制剂以共价键不可逆地与酶相结合而抑制酶的活性,这种抑制作用叫不可逆抑制作用。

酶活力:是酶促反应的能力。

诱导作用:指用诱导物(inducer)来促进酶的合成,这种作用称诱导作用。

阻遏作用:指用阻遏物(repressor)阻止或降低酶的合成,这种作用称阻遏作用。

调节酶:活性可被调节的酶,主要是别构酶和共价修饰酶。

同促效应(同种协同效应):它的调节物分子就是底物分子,这种酶分子上有两个以上的底物结合中心,其调节作用取决于酶是有多少个底物结合中心被占据。

异促效应:这种别构酶除了与底物分子作用外,还可与其他的调节物分子结合,它的调节物分子不是底物分子。

新陈代谢:是所有生物维持其生命活动的最基本的特性,是生物体内有机物合成和分解作用,包括物质转变和能量转化。

合成代谢:获取营养物质,并将其转化为自身所需的物质,称作合成代谢。

分解代谢:分解营养物质提供生命活动所需的能量。

两用代谢途径:有些代谢环节是合成代谢和分解代谢共同利用的,称作两用代谢途径。

糖酵解:指葡萄糖通过一系列步骤,降解成三碳化合物(丙酮酸)的过程。

回补反应:生物体中存在着及时补充草酰乙酸的反应,称为回补反应。

葡萄糖异生作用:是指以非糖有机物作为前体合成为葡萄糖的过程。

底物循环:一对由不同酶催化所进行的正逆反应称之为底物循环。

生物氧化:糖、脂、蛋白质等有机物在细胞内氧化分解,最终生成CO2和水并释放能量的过程。

又称细胞氧化或细胞呼吸。

高能化合物:在标准条件下发生水解时,可释放出大量自由能的化合物。

高能磷酸化合物:分子中含磷酸基团,它被水解下来时释放出大量的自由能,这类高能化合物。

高能键:在高能化合物分子中,被水解断裂时释放出大量自由能的活泼共价键。

呼吸链:在生物氧化过程中,代谢物脱下的氢经过一系列的传递体的传递,最终交给分子氧生成水,这一电子传递体系称为呼吸链。

细胞色素:以铁卟啉(血红素)为辅基的蛋白质,因为有红颜色,又广泛存在于生物细胞中,故称为细胞色素。

氧化磷酸化:指细胞内伴随有机物氧化,利用生物氧化过程中释放的自由能,促使ADP与无机磷酸结合生成ATP的过程。

P/O(磷氧比):在生物氧化过程中,伴随ADP磷酸化所消耗的无机磷酸的磷原子数与消耗的分子氧的氧原子数之比。

解偶联剂:是指那些不阻断呼吸链的电子传递,但能抑制ADP通过磷酸化作用转化为ATP 的化合物,它们也被称为氧化磷酸化解偶联剂。

离子载体抑制剂:是指那些能与某种离子结合,并作为这些离子的载体携带离子穿过线粒体内膜的脂双层进入线粒体的化合物。

β-氧化:饱和脂肪酸在一系列酶的作用下,羧基端的β位C原子发生氧化,碳链在α位C 原子与β位C原子间发生断裂,每次生成一个乙酰COA和较原来少二个碳单位的脂肪酸,这个不断重复进行的脂肪酸氧化过程称为β-氧化。

α-氧化:脂肪酸在一些酶的催化下,其α-C原子发生氧化,结果生成一分子CO2和较原来少一个碳原子的脂肪酸,这种氧化作用称为α-氧化。

DNA的半保留复制:DNA在复制时,两条链解开分别作为模板,在DNA聚合酶的催化下按碱基互补的原则合成两条与模板链互补的新链,以组成新的DNA分子。

这样新形成的两个DNA分子与亲代DNA分子的碱基顺序完全一样。

由于子代DNA分子中一条链来自亲代,另一条链是新合成的,这种复制方式称为半保留复制。

复制叉:在复制的起始点处,DNA双链部分解开为单链,形成叉子形状称复制叉。

DNA的损伤:DNA分子受到物化及生物因素影响,使其结构和功能发生改变的现象,称为DNA的损伤。

DNA的突变:DNA分子中的核苷酸序列发生突然而稳定的改变,从而导致DNA的复制以及后来的转录和翻译产物随之发生变化,表现出异常的遗传特性,称为DNA的突变。

内含子:真核细胞基因DNA中的不编码序列,这部分序列并不编码蛋白质,又称间隔序列或插入序列。

诱导作用:指用诱导物(inducer)来促进酶的合成,这种作用称诱导作用。

阻遏作用:指用阻遏物(repressor)阻止或降低酶的合成,这种作用称阻遏作用。

变构调节:小分子化合物与酶分子活性中心以外的某一部位特异结合,引起酶蛋白分子构象变化,从而改变酶的活性,这种调节称为酶的变构调节或别构调节。

反馈抑制:指在系列反应中终产物对反应序列前头的标兵酶发生的抑制作用,从而调节整个系列反应的速度。

正调控:在没有调节蛋白质存在时,基因是关闭的,加入调节蛋白后,基因活性被开启,此为正调控。

负调控:在没有调节蛋白存在时,基因是表达的,加入调节蛋白后基因表达活必被关闭,此为负调控。

DNA和RNA分布、化学组成和生物学功能上的异同DNA主要分布在细胞核中,RNA则在细胞质中。

化学组成上,DNA含有脱氧核糖核苷酸,而RNA含有核糖核苷酸,共同有碱基、磷酸基团,且T只存在于DNA,U只存在于RNA,分子分子结构上DNA是双螺旋结构且双链碱基互补,RNA是单链结构。

生物功能上,DNA是生物体内主要的遗传信息,RNA分为tRNA、mRNA、Lrna,分别是mRNA 上碱基序列的识别者和氨基酸的转运者、合成蛋白的模版、合成蛋白的场所蛋白质功能多样性催化(酶)、调节(激素)、运输(运载蛋白)、贮藏(贮藏蛋白)、运动(运动蛋白)、抵御(抗体)、结构(胶原蛋白)、其他(毒蛋白)三羧酸循环的生物学意义为生物提供了大量的能量三羧酸循环的中间产物为其他物质的合成提供了原料三羧酸循环是糖、脂、蛋白质和核酸等代谢枢纽三羧酸循环的重要表现(物质能量角度)物质:三羧酸循环是乙酰COA最终氧化生成CO2和H2O的途径糖代谢产生的碳骨架最终进入三羧酸循环氧化脂肪分解产生的甘油可通过有氧氧化进入三羧酸循环氧化,脂肪酸经B-氧化产生乙酰COA可进入三羧酸循环氧化蛋白质分解产生的氨基酸经脱氨后碳骨架可以进入三羧酸循环,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架接受氨后合成必需氨基酸。

相关文档
最新文档