Fourier变换练习题(全,有答案)

合集下载

积分变换习题解答1-2

积分变换习题解答1-2

1-21.求矩形脉冲函数,0()0,A t f t τ⎧≤≤⎪=⎨⎪⎩其他的Fourier 变换.解:[]()j j j j 01e e()()()e d e d 0j j t t t t A F f t f t t A t A τωωωωτωωω-----+∞⎡⎤=====⎢⎥-∞-⎣⎦⎰⎰F 2.设()F ω是函数()f t 的Fourier 变换,证明()F ω与()f t 有相同的奇偶性.证明:()F ω与()f t 是一个Fourier 变换对,即 ()()j e d t F f t t ωω-+∞=-∞⎰,()()j 1e d 2πt f t F ωωω+∞=-∞⎰ 如果()F ω为奇函数,即()()F F ωω-=-,则()()()()()()j j 11e d e d 2π2πt tf t F F ωωωωωω--+∞+∞-==---∞-∞⎰⎰ (令u ω-=)()j 1e d 2πut F u u -∞=+∞⎰(换积分变量u 为ω)()()j 1e d 2πtF f t ωωω+∞=-=--∞⎰ 所以()f t 亦为奇函数.如果()f t 为奇函数,即()()f t f t -=-,则()()()()()j j e d e d t t F f t t f t t ωωω----+∞+∞-==---∞-∞⎰⎰ (令t u -=)()j e d u f u u ω--∞=+∞⎰(换积分变量u 为t )()()j e d t f t t F ωω-+∞=-=--∞⎰所以()F ω亦为奇函数.同理可证()f t 与()F ω同为偶函数.4.求函数()()e 0t f t t -=≥的Fourier 正弦变换,并推证()20012sin πd e αωαωωαω+∞-=>+⎰解:由Fourier 正弦变换公式,有()()s s F f t ω⎡⎤=⎣⎦F ()0sin f t t t ω+∞=⎰d 0sin tt t ω+∞-=⎰e d ()2sin cos 10t t t ωωωω---+∞=+e 21ωω=+ 由Fourier 正弦逆变换公式,有()120022sin ()()sin 1s s s t f t F F t ωωωωωωωω+∞+∞-===⎡⎤⎣⎦+⎰⎰F d d ππ 由此,当0t α=>时,可得()()2sin ππd e 0122f αωαωωααω+∞-==>+⎰5.设()()f t F ω⎡⎤=⎣⎦F ,试证明:1)()f t 为实值函数的充要条件是()()F F ωω-=; 2)()f t 为虚值函数的充要条件是()()F F ωω-=-.证明: 在一般情况下,记()()()r i f t f t f t =+j 其中()r f t 和()i f t 均为t 的实值函数,且分别为()f t 的实部与虚部. 因此()()()()[]j e d j cos jsin d t r i F f t t f t f t t t t ωωωω-+∞+∞⎡⎤==+-⎣⎦-∞-∞⎰⎰ ()()()()cos sin d j sin cos d ri r i f t t f t t t f t t f t t t ωωωω+∞+∞⎡⎤⎡⎤=+--⎣⎦⎣⎦-∞-∞⎰⎰ ()()Re Im F j F ωω⎡⎤⎡⎤=+⎣⎦⎣⎦其中()()()Re cos sin d r i F f t t f t t t ωωω+∞⎡⎤⎡⎤=+⎣⎦⎣⎦-∞⎰, ()a ()()()Im sin cos d ri F f t t f t t t ωωω+∞⎡⎤⎡⎤=--⎣⎦⎣⎦-∞⎰()b 1)若()f t 为t 的实值函数,即()()(),0r i f t t f f t ==.此时,()a 式和()b 式分别为()()Re cos d rF f t t t ωω+∞⎡⎤=⎣⎦-∞⎰()()Im sin d rF f t t t ωω+∞⎡⎤=-⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()()Re jIm F F F ωωω⎡⎤⎡⎤=-=⎣⎦⎣⎦反之,若已知()()F F ωω-=,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的偶函数;()F ω的虚部是关于ω的奇函数.因此,必定有()()()cos d j sin d r rF f t t t f t t t ωωω+∞+∞=--∞-∞⎰⎰ 亦即表明()()r f t f t =为t 的实值函数.从而结论1)获证.2)若()f t 为t 的虚值函数,即()()()j ,0i r f t f f t t ==.此时,()a 式和()b 式分别为()()Re sin d i F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰ ()()Im cos d i F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()Re jIm F F ωω⎡⎤⎡⎤=-+⎣⎦⎣⎦()(){}Re jIm F F ωω⎡⎤⎡⎤=--⎣⎦⎣⎦()F ω=-反之,若已知()()F F ωω-=-,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的奇函数;()F ω的虚部是关于ω的偶函数.因此,必定有()()()sin d j cos d i iF f t t t f t t t ωωω+∞+∞==+-∞-∞⎰⎰, 亦即表明()()j i f t f t =为t 的虚值函数.从而结论2)获证.6.已知某函数的Fourier 变换sin ()F ωωω=,求该函数()f t .解:sin ()F ωωω=为连续的偶函数,由公式有()()j π1sin e d cos d 2π0tf t F t ωωωωωωω+∞+∞==-∞⎰⎰ ()()sin 1sin 111d d 2π02π0t t ωωωωωω+∞++∞-=+⎰⎰ 但由于当0a >时sin sin sin πd d()d 0002a a t a t t ωωωωωω+∞+∞+∞===⎰⎰⎰ 当0a <时sin sin()πd d 002a a ωωωωωω+∞+∞-=-=-⎰⎰当0a =时,sin d 0,0a ωωω+∞=⎰所以得 ()11211401t f t t t ⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩,,,7.已知某函数的Fourier 变换为()()()00πδδF ωωωωω⎡⎤=++-⎣⎦,求该函数()f t .解:由函数()()()00δd t t g t t g t -=,易知()()()()j j j 001e d 2π11πδe d πδe d 2π2πt t t f t F ωωωωωωωωωωω+∞=-∞+∞+∞=++--∞-∞⎰⎰⎰j j 00011e e cos 22t t t ωωωωωωω=-==+=8.求符号函数(又称正负号函数)()1,0sgn 1,0t t t -<⎧=⎨>⎩的Fourier变换.解:容易看出()()()sgn t u t u t =--,而1[()]()πδ().j u t F ωωω=-+F 9.求函数()()()1δδδδ222aa t a t a t f t t ⎡⎤⎛⎫⎛⎫=++-+++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的Fourier 变换.解 :()()()()j 1δδδδe d 222ta a F f t t a t a t t ωωω+∞--∞⎡⎤⎛⎫⎛⎫⎡⎤==++-+++- ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦⎰F j j j j 1e e e e 222t t t t a a t a t a t t ωωωω----⎡⎤⎢⎥=+++⎢⎥=-==-=⎢⎥⎣⎦cos cos 2aa ωω=+.10 .求函数()cos sin t f t t =的Fourier 变换. 解: 已知()()000sin j πδδt ωωωωω⎡⎤=+--⎡⎤⎣⎦⎣⎦F由()1cos sin sin 22f t t t t ==有()()()πjδ2δ22f t ωω⎡⎤⎡⎤=+--⎣⎦⎣⎦F 11.求函数()3sin f t t =的Fourier 变换.解:已知()0j 0e 2πδtωωω⎡⎤=-⎣⎦F ,由()()3j j 33j j -j 3j e e j sin e 3e 3e e 2j 8t t t t t t f t t --⎛⎫-===-+- ⎪⎝⎭即得()()()()()πjδ33δ13δ1δ34f t ωωωω⎡⎤⎡⎤=---++-+⎣⎦⎣⎦F12.求函数()πsin 53t t f ⎛⎫=+ ⎪⎝⎭的Fourier 变换.解: 由于()π1sin 5sin5cos5322f t t t t ⎛⎫=+=+ ⎪⎝⎭故()()()()()πjδ5δ55δ52f t ωωωω⎤⎡⎤⎡⎤=+--+++-⎥⎣⎦⎣⎦⎣⎦F . 14.证明:若()()j e t F ϕω⎡⎤=⎣⎦F ,其中()t ϕ为一实数,则()()()1cos 2t F F ϕωω⎡⎤⎡⎤=+-⎣⎦⎣⎦F ()()()1sin 2j t F F ϕωω⎡⎤⎡⎤=--⎣⎦⎣⎦F 其中()F ω-为()F ω的共轭函数.证明:因为 ()()j j e e d t t F t ϕωω+∞--∞=⋅⎰()()()j j j j ee d ee d t t tt F t t ϕϕωωω+∞+∞---∞-∞-==⋅⎰⎰()()()()()()j j j j 1e ee d cos e d cos 22t t t t F F t t t t ϕϕωωωωϕϕ-+∞+∞---∞-∞+⎡⎤⎡⎤+-===⎣⎦⎣⎦⎰⎰F 同理可证另一等式.17.求作如图的锯齿形波的频谱图.(图形见教科书).解 :02π,T ω=()1,00,ht t Tf t T ⎧≤≤⎪=⎨⎪⎩其他()00111d d 2TTh C f t t ht t TTT ===⎰⎰()()000j j j 02011e d e d e d TTTn t n t n t n ht h C F n f t t t t t TTT Tωωωω---===⋅=⎰⎰⎰00j j 211j e e d j j 2πTn t n t Thht T n n n ωωωω--⎡⎤=⋅+=⎢⎥-⎣⎦⎰()()()()()000j j 2πδ2πδπδδ.22πn n n n h h hF n h n n nωωωωωωω+∞+∞=-∞=-∞≠≠=+⋅-=+⋅-∑∑。

积分变换习题解答

积分变换习题解答

⎧ 0, −∞ < t < −1 ⎪−1, −1 < t < 0 ⎪ (3) f ( t ) = ⎨ 0 < t <1 ⎪ 1, ⎪ ⎩ 0, 1 < t < +∞

(1)函数 f (t ) = ⎨
⎧1 − t 2 , | t |< 1 满足傅氏积分定理的条件,傅氏积分公式为 | t |> 1 ⎩ 0,
| t |< 1 | t |= 1 。 | t |> 1
习题二
1. 求矩形脉冲函数 f (t ) = ⎨
F (ω ) = ¶ ⎡ ⎣ f ( t )⎤ ⎦=
⎧ A, 0 ≤ t ≤ τ 的傅氏变换。 其他 ⎩ 0,
+∞ τ − jωt − jω t = f t e dt ( ) ∫ −∞ ∫ 0 Ae dt
⎧sin t , | t |≤ π , (3) f (t ) = ⎨ 证明 ⎩ 0, | t |> π ,

+∞
0
⎧π sin ωπ sin ωt ⎪ sin t , | t |≤ π dω = ⎨ 2 2 1− ω ⎪ | t |> π ⎩ 0,
e dt = 2 ∫ e
0 +∞ −βt
解 (1) F (t ) = ¶ ⎡ ⎣ f ( t )⎤ ⎦=
−∞
1 2π
+∞ −∞
∫ ∫
−∞
+∞ −∞
+∞
+∞
−∞
f (τ ) e− jωτ dτ e jωt dω =
1 2π
∫ ∫
−∞
+∞
+∞
−∞
f (τ ) (cos ωτ − jsin ωτ ) cos ωtdτ dω

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

工程数学-积分变换(第四版)-高等教育出版社-课后答案(1)

工程数学-积分变换(第四版)-高等教育出版社-课后答案(1)

再由 Fourier 变换公式得
f (t ) =
1 +∞ 1 +∞ 1 +∞ ω 2 + 2 jω t F ω e d ω = F ω cos ω t d ω = cos ω t dω ( ) ( ) 2 π ∫ −∞ π∫0 π ∫ 0 ω4 + 4 +∞ ω 2 + 2 π −t ∫ 0 ω 4 + 4 cos ω tdω = 2 e cos t
f (t) =
2 +∞ ⎡ +∞ f (τ ) sin ωτ dτ ⎤ sin ω tdω ⎢ ∫0 ⎥ ⎦ π ∫0 ⎣
=
2 +∞ ⎡ +∞ − β t sin ω tdω e sin ωτ dτ ⎤ ∫ ∫ ⎢ ⎥ 0 0 ⎣ ⎦ π
− βτ 2 +∞ ⎡ e ( β sin ωτ − ω cos ω t ) +∞ ⎤ = ∫ ⎢ ⎥ sin ω tdω π 0 ⎣ β 2 + ω2 0 ⎦
=
=
由于 a ( ω ) = a ( −ω ) , b ( ω ) = − b ( −ω ) , 所以
f (t) =
1 +∞ 1 +∞ a ( ω ) cos ω t dω + ∫ b ( ω ) sin ω tdω ∫ 2 −∞ 2 −∞
+∞ +∞ 0 0
= ∫ a ( ω ) cos ω t dω + ∫ b ( ω ) sin ω t dω 2.求下列函数的 Fourier 积分:
2 2 ⎧ ⎪1 − t , t ≤ 1 1)函数 f ( t ) = ⎨ 解: 解:1 为连续的偶函数,其 Fourier 变换为 2 0, 1 t > ⎪ ⎩

快速傅里叶变换FFT试题

快速傅里叶变换FFT试题

第一章快速傅里叶变换(FFT )4.1 填空题(1)如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 点。

解:64+128-1=191点; 256(2)如果一台通用机算计的速度为:平均每次复乘需100s μ,每次复加需20s μ,今用来计算N=1024点的DFT )]([n x 。

问直接运算需( )时间,用FFT 运算需要( )时间。

解:①直接运算:需复数乘法2N 次,复数加法)(1-N N 次。

直接运算所用计算时间1T 为s s N N N T 80864.12512580864020110021==⨯-+⨯=μ)(② 基2FFT 运算:需复数乘法N N2log 2次,复数加法N N 2log 次。

用FFT 计算1024点DTF 所需计算时间2T 为s s N N N NT 7168.071680020log 100log 2222==⨯+⨯=μ。

(3)快速傅里叶变换是基于对离散傅里叶变换 和利用旋转因子k Nj e π2-的来减少计算量,其特点是 _______、_________和__________。

解:长度逐次变短;周期性;蝶形计算、原位计算、码位倒置 (4)N 点的FFT 的运算量为复乘 、复加 。

解:N NL N mF 2log 22==;N N NL aF 2log ==4.2 选择题1.在基2DIT —FFT 运算中通过不断地将长序列的DFT 分解成短序列的DFT ,最后达到2点DFT 来降低运算量。

若有一个64点的序列进行基2DIT —FFT 运算,需要分解 次,方能完成运算。

A.32 B.6 C.16 D. 8 解:B2.在基2 DIT —FFT 运算时,需要对输入序列进行倒序,若进行计算的序列点数N=16,倒序前信号点序号为8,则倒序后该信号点的序号为 。

《高等数学教学资料》fourier变换的性质复习

《高等数学教学资料》fourier变换的性质复习

03
Fourier变换的应用
信号处理
80%
信号的频谱分析
通过Fourier变换,可以将信号分 解成不同频率的成分,从而更好 地理解信号的特性。
100%
信号去噪
在信号处理中,Fourier变换可以 帮助我们识别和去除噪声,提高 信号的清晰度。
80%
信号压缩
通过识别信号中的冗余成分, Fourier变换可以实现信号压缩, 减少存储和传输所需的资源。
卷积的逆Fourier变换
总结词
卷积的逆Fourier变换是将两个函数在频 域中的乘积转换为时域表示的过程。
VS
详细描述
卷积的逆Fourier变换是将两个函数在频 域中的乘积转换为时域表示的过程。这个 过程可以通过将两个函数的Fourier变换 相乘,然后进行逆Fourier变换来实现。 在时域中,两个函数的乘积可以通过卷积 来表示,因此卷积的逆Fourier变换可以 用来计算两个函数的乘积在时域中的表示 。
02
Fourier变换的卷积性质
卷积定理
总结词
卷积定理是Fourier变换中的一个重要性质,它表明两个函数的卷 积的Fourier变换等于这两个函数Fourier变换的乘积。
详细描述
卷积定理是Fourier分析中的一个基本定理,它表明两个函数的卷 积的Fourier变换等于这两个函数Fourier变换的乘积。这个定理在 信号处理、图像处理、量子力学等领域有广泛的应用。
叠和计算量大。
习题答案与解析
01
进阶习题3解析
02
进阶习题4答案
03
进阶习题4解析
全面分析了Fourier变换在图像处 理中的优缺点和应用时的注意事 项。
Fourier变换在数值分析中主要用 于求解微分方程、积分方程等数 学问题,提高计算效率和精度。

复变函数 傅氏变换 习题解答复变函数 傅氏变换 习题解答

复变函数 傅氏变换 习题解答复变函数 傅氏变换 习题解答


(1)函数 f (t ) = ⎨
⎧1 − t 2 , | t |< 1 满足傅氏积分定理的条件,傅氏积分公式为 | t |> 1 ⎩ 0,
本文件是从网上收集,严禁用于商业用途!
an
| t |< 1 | t |> 1
证 f (t ) 是偶函数
| t |= 1 。
⎧ 0, −∞ < t < −1 ⎪−1, −1 < t < 0 ⎪ (3) f ( t ) = ⎨ 0 < t <1 ⎪ 1, ⎪ ⎩ 0, 1 < t < +∞
+∞ 1 +∞ jωt a ω e d ω = ( ) ∫0 a (ω ) cos ωtdω 2 ∫−∞
a(ω ) 是 ω 的偶函数。 (注也可由 1 题推证 2 题)
3.在题 2 中,设 f ( t ) = ⎨
⎧1, | t |≤ 1 ,试算出 a(ω ) ,并推证 ⎩0, | t |> 1
⎧π ⎪ 2 , | t |< 1 ⎪ +∞ sin ω cos ωt ⎪π d ω = ⎨ , | t |= 1 ∫0 ω ⎪4 ⎪ 0, | t |> 1 ⎪ ⎩
傅氏变换习题解答 习题一
1.试证:若 f (t ) 满足傅氏积分定理的条件,则有
f (t ) = ∫
其中
+∞
0
a (ω ) cos ωtd ω + ∫ b(ω ) sin ωtd ω
0
+∞
a (ω ) = b(ω ) =
证 f (t ) =
π∫ π∫
1
1
+∞
−∞ +∞
f (τ ) cos ωτ dτ , f (τ ) sin ωτ dτ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

积分变换练习题 第一章 Fourier 变换________系_______专业 班级 姓名______ ____学号_______§1 Fourier 积分 §2 Fourier 变换一、选择题1.设0()()f t t t δ=-,则[()]f t =F [ ] (A )1 (B )2π (C )0j t eω (D )0j t eω-000[()]()i t i t i t t t f t t t e dt e e ωωωδ∞---=-∞⎛⎫=-== ⎪⎝⎭⎰F 二、填空题1.设0a >,,0(),0at at e t f t e t -⎧<=⎨>⎩,则函数()f t 的Fourier 积分表达式为2202cos atdt a ωπω∞+⎰ 000()()00()()2201()[()]()==lim lim 112=lim lim ;()112[()]()=22i t at i t at i t R a i t a i tR R R R a i t a i t R R R i tF f t f t e dt e e dt e e dt e dt e dt e e a a i a i a i a i a F F e d ωωωωωωωωωωωωωωωωωππ∞∞-----∞-∞-+-→∞→∞--+-→∞→∞-∞--∞==+++=+=-+-+-+=⎰⎰⎰⎰⎰⎰F F 22220(cos sin )2cos =a t i t d a a t d a ωωωωωωπω∞-∞∞⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪++ ⎪ ⎪ ⎪ ⎪+⎝⎭⎰⎰ 2.设[()]()f t δω=F ,则()f t =12π1111[()]()=222i ti t e d e ωωωδωδωωπππ∞-=-∞⎛⎫== ⎪⎝⎭⎰F 3.设2()sin f t t =,则[()]f t =F ()[(2)(2)]2ππδωδωδω-++-2221cos2[()]()=sin 211()()[(2)(2)]242i t i t i t i t it it i tt f t f t e dt te dt e dt e dt e e e dt ωωωωωππδωδωδω∞∞∞----∞-∞-∞∞∞----∞-∞⎛⎫-== ⎪ ⎪ ⎪ ⎪=-+=-++- ⎪⎝⎭⎰⎰⎰⎰⎰F4.设()δt 为单位脉冲函数,则2()cos ()3πδ+∞-∞+=⎰t t dt 14221()cos ()cos ()334t t dt ππδ+∞-∞⎛⎫+== ⎪⎝⎭⎰ 三、解答题1.求下列定积分: (可用《高等数学》的方法做)1(1)sin azebzdz ⎰ 1(2)cos azebzdz ⎰1()111()0000222222101(cos sin )((cos sin )1)()cos sin 1sin cos (cos sin )(co a ib z a ib az az ibz a ib za a a a a azaxe e e bz i bz dz e e dz e dz a iba ibe b i b a ib ae b be b ae b be b b i a b a b a b I e bz i bz dz e +++-+====+++-+--+-==++++=+=⎰⎰⎰⎰在原积分中,由于被积函数解析,则1111s sin ),cos Re ;sin Im ax ibx azaz bx i bx dx e e dx e bzdz I e bzdz I+===⎰⎰⎰⎰从而 2.求矩形脉冲函数,0()0,A t f t τ≤≤⎧=⎨⎩其他的Fourier 变换。

(1)[()]()=Ai i ti tA e f t f t edt Aedt i τωωωω∞----∞-==⎰⎰F3.求下列函数的Fourier 积分: ,||1(1)()0,||1t t f t t ≤⎧=⎨>⎩,解法一:1112221()()=1112sin (cos )112sin ()()(cos )2212sin (cos )(cos sin )22sin sin cos sin i ti t i ti i i ti t F f t edt te dti ti i ie e e if t F e d e d it i t d t tωωωωωωωωωωωωωωωωωωωωωωωππωωωωωωωπωωωωωωωπ∞---∞----∞∞-∞-∞∞-∞=++-==-=-==-=-+-=⎰⎰⎰⎰⎰;2d ωω∞⎰解法二:由于f(t)为奇函数,故由课本P12页的(1.12)式可知,100001110000010022()()sin sin sin sin 2121cos sin cos cos sin 21sin 21sin cos sin cos f t f d td d td d td d td td τωττωωτωττωωππτωτωωτωτωττωωπωπωωτωωωωωπωωπωω∞∞∞∞∞∞⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤--=⋅=-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤--⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰02sin 2sin cos sin td td ωωωωωωωπω∞∞-=⎰⎰110,1,1,10,(2)()1,01,0,1.()()()=()(cos sin )2()sin 2cos 2(cos 1)2sin 112(cos ()()=22i ti tt t f t t t f t F f t edt f t t i t dt i f t tdti ti i tdt i f t F e dt ωωωωωωωωωωωωωππ∞∞∞--∞-∞∞-∞-∞<<-⎧⎪--<<⎪=⎨<<⎪⎪<<+∞⎩=-=--=-===⎰⎰⎰⎰⎰解法一:为奇函数,从而1)(cos 1)(cos sin )2(1cos )sin i t e dtit i t tdt dtωωωωωωωπωπω∞-∞∞∞-∞--+-==⎰⎰⎰解法二:同上题,根据余弦逆变换公式可得:10000100022()()sin sin sin sin 2cos 21cos sin sin f t f d tdt d tdttdt tdt τωττωωττωππωτωωωπωπω∞∞∞∞∞⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤--==⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰4.求函数sin ,||()0,||t t f t t ππ≤⎧=⎨>⎩的Fourier 积分,并计算下列积分:2sin ,||sin sin 210,||t t t d t ππωπωωωπ+∞⎧≤⎪=⎨-⎪>⎩⎰解:同上题,0000000022()()sin sin sin sin sin 11sin(1)sin(1)[cos(1)cos(1)]sin sin 111sin(1)sin(1)11f t f d tdt d tdtd tdt tdt ππππτωττωτωττωππωτωτωτωττωωππωωωπωππωω∞∞∞∞∞⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤+-=-+--=--⎢⎥⎢⎥+-⎢⎥⎣⎦⎣⎦+-⎡⎤=--⎢+-⎣⎰⎰⎰⎰⎰⎰⎰220002sin sin 2sin sin sin 11t ttdt dt dt ωπωωπωωπωπω∞∞∞=-=⎥--⎦⎰⎰⎰(0)(0)0.2f f t πππ±++±-=±=当时,从而2sin ,||sin sin 210,||t t t d t ππωπωωωπ+∞⎧≤⎪=⎨-⎪>⎩⎰5.设a 为实数,求积分j 21a e d ωωω+∞-∞+⎰的值。

(分别讨论a 为正实数和负实数的情形) 222201()12Res[(),]2lim ;102Res[(),]2lim .11ia iaz iaza z i ia ia iaz iaz a z i a R z z i z e e d i R z e i i e z ia e e e d d i R z e i i e z i ωωσσωωπππωωσπππωσ+∞--∞→--=-+∞+∞--∞-∞→>==+===++<====+++⎰⎰⎰当时,在上半平面只有一个奇点,从而当时,解法二:参考课本146页Fourier 变换表中的21,即222[]Re()0c tce c c ω-=<+, 取c=-1,从而-22[]1te ω=+,则积分 j 122j 211[]211221taa t a t aa ae e ed e d eωωωπωωωπω--+∞--∞==+∞--∞===++⇒=+⎰⎰积分变换练习题 第一章 Fourier 变换________系_______专业 班级 姓名______ ____学号_______§3 Fourier 变换的性质 §4 卷积与相关函数一、选择题1.设[()]()f t F ω=F ,则[(2)()]t f t -=F [ ] (A )()2()F F ωω'- (B )()2()F F ωω'-- (C )()2()iF F ωω'- (D )()2()iF F ωω'-- (利用Fourier 变换的线性性质和象函数的导数公式)2.设[()]()f t F ω=F ,则[(1)]f t -=F [ ] (A )()j F eωω- (B )()j F eωω-- (C )()j F eωω (D )()j F eωω-1(1)()[(1)](1)()()()()t s i t i s i i s i f t f t e dt f s e ds e f s e ds e F ωωωωωω-=+∞-∞----∞+∞+∞-----∞⎛⎫-=-=- ⎪⎪⎪==-⎝⎭⎰⎰⎰ 二、填空题1.设23[()]1f t ω=+F ,则()f t =-32te-2--22--[]1333[]()212ttte e ef t ωω⎛⎫= ⎪+ ⎪ ⎪=⇒= ⎪+⎝⎭由1三5解法二中的分析可知:,从而2.设()()tf t e u t -=⋅,则[()]f t =F 。

()()Fourier ['()][()]()()()()()()()()()[][()()][()][()]()[][t tt t tt t tt t u t d f t i f t g t e u t e d dg t e d e t g t e t dt dg t g t e t g t e t dt dg t i g dt δττωδττδττδδδδω-∞---∞----∞--===⋅==-+=-+=-+=-+=⎰⎰⎰已知单位阶跃函数,及变换的微分性质:令,则,即,又由(1)(1)0()]()[()]1[()]=()1111111t i tt i t i tt t e t e dt e t g t t e dt i i i e i i ωωωδδδωωωωω+∞---+∞-+-∞-∞-+=⎛⎫⎪⎪ ⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪==+++ ⎪ ⎪=⋅= ⎪++⎝⎭⎰⎰,从而三、解答题1.若()[()]F f t ω=F ,且0a <,证明:1[()]()f at F a aω=-F 11[()]()=()()()s s at i i s i taa ds f at f at edt f s ef s e ds F a a a aωωωω∞-∞∞=-⋅-⋅--∞+∞-∞==-=-⎰⎰⎰2.若()[()]F f t ω=F ,证明:()[()]dF jtf t d ωω=-F 11[()]()111[()]()()()22211()()()()()22i ti ti ti ti t dF itf t d d d d F F e d F e F e d d d d F ite d it F e d it f t ωωωωωωωωωωωωωωπωππωωωωωππ-∞∞∞--∞-∞-∞∞∞-∞-∞=-==-=-=-=-⎰⎰⎰⎰即证:3.已知某函数的Fourier 变换为sin ()F ωωω=,求该函数()f t 。

相关文档
最新文档