完全平方公式与平方差公式(第1课时-完全平方公式)教案
完全平方公式与平方差公式(公开课)

8.3完全平方公式与平方差公式(公开课)完全平方公式(第1课时)教学目标1、知识目标:理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。
2、能力目标:渗透建模、化归、换元、数形结合等思想方法,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力。
3、情感目标:培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。
教学重点与难点完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于计算的一种重要依据,因此,本节教学的重点与难点如下:本节的重点是体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。
本节的难点是从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平一、复习回顾1、单项式的乘法法则2、多项式的乘法法则二、新课讲授1、推导两数和的完全平方公式计算(a+b)2解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b22、理解公式特征①算式:两数和的平方②结果:两个数的平方和加上这两个数积的2倍3、语言叙述(a+b)2=a2+2ab+b2用语言如何叙述4、公式(a-b)2=a2-2ab+b2教学①利用多项式乘法(a-b)2=(a-b)(a-b)②利用换元思想(a-b)2=[a+(-b)]2③利用图形5、公式中的字母含义的理解。
(学生回答)(x+2y)2是哪两个数的和的平方?(x+2y)2=( )2+2( )( )+( )2(2x-5y)2是哪两个数的差的平方?(2x+5y)2=( )2+2( )( )+( )2变式(2x-5y)2可以看成是哪两个数的和的平方?三、应用新知,体验成功1、例1教学:用完全平方公式计算(1)(a+3)2(2)(y- 1)2 (3)(-2x+t)2(4)(-3x-4y)2学生直接运用公式计算,教师板演,讲评时边口述理由,针对第(4)题(-3x-4y)2可以看成是-3x与4y差的平方,也可以看成-3x与-4y和的平方提出以下问题:(1)可否看成两数和的平方,运用两数和的平方公式来计算?(2)可否看成两数差的平方,运用两数差的平方公式来计算?(3)能不能进行符号转化?如(-3x-4y)2=(3x+4y四、练习:运用完全平方公式计算:(学生板演)○1(a+5)2②(3+x)2③(y-2)2④(7-y)2⑤(2x+3y)2⑥(-2x-3y)2五、小结提高,知识升华1、两个公式 (a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b22、两种推导方法:多项式乘法导出;图形面积导出3、公式的灵活运用六、作业布置课本P71-P72习题8.31,11。
完全平方公式与平方差公式教案

完全平方公式与平方差公式教案章节一:完全平方公式的探究与理解1. 导入:通过实际问题引入完全平方公式的概念,例如求(x + 2)²的值。
2. 探究:引导学生通过具体例子,如(x + 2)²= x²+ 4x + 4,发现完全平方公式的规律。
4. 练习:布置一些简单的练习题,让学生运用完全平方公式进行计算。
章节二:平方差公式的探究与理解1. 导入:通过实际问题引入平方差公式的概念,例如求(x 2)²的值。
2. 探究:引导学生通过具体例子,如(x 2)²= x²4x + 4,发现平方差公式的规律。
4. 练习:布置一些简单的练习题,让学生运用平方差公式进行计算。
章节三:完全平方公式与平方差公式的应用1. 导入:通过实际问题引入完全平方公式与平方差公式的应用,例如求(x +1)(x 1) 的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + 1)(x 1) 进行展开和简化。
4. 练习:布置一些实际问题,让学生运用完全平方公式与平方差公式进行解决。
章节四:完全平方公式与平方差公式的巩固与拓展1. 导入:通过实际问题引入完全平方公式与平方差公式的巩固与拓展,例如求(x + 2)(x 2) 的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + 2)(x 2) 进行展开和简化。
4. 练习:布置一些更复杂的实际问题,让学生运用完全平方公式与平方差公式进行解决。
1. 回顾:引导学生回顾本节课学习的完全平方公式与平方差公式。
3. 评价:对学生的学习情况进行评价,鼓励学生积极参与课堂讨论和练习。
4. 布置作业:布置一些相关的练习题,让学生巩固所学知识。
章节六:完全平方公式与平方差公式的综合应用1. 导入:通过实际问题引入完全平方公式与平方差公式的综合应用,例如求(x + y)²(x y)²的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + y)²(x y)²进行展开和简化。
完全平方公式与平方差公式教案

完全平方公式与平方差公式教案第一章:完全平方公式介绍1.1 理解完全平方公式的概念解释完全平方公式的定义和意义强调完全平方公式的构成和特点1.2 探索完全平方公式的推导过程通过具体例子,引导学生探索完全平方公式的推导过程强调完全平方公式的推导方法和思路1.3 完全平方公式的应用提供一些应用题,让学生运用完全平方公式进行解答第二章:平方差公式的介绍2.1 理解平方差公式的概念解释平方差公式的定义和意义强调平方差公式的构成和特点2.2 探索平方差公式的推导过程通过具体例子,引导学生探索平方差公式的推导过程强调平方差公式的推导方法和思路2.3 平方差公式的应用提供一些应用题,让学生运用平方差公式进行解答第三章:完全平方公式与平方差公式的异同3.1 比较完全平方公式和平方差公式的形式引导学生观察和比较两个公式的形式和结构强调两个公式的相似之处和不同之处3.2 探索完全平方公式和平方差公式的转化关系通过具体例子,引导学生探索两个公式的转化关系强调两个公式的转化方法和思路3.3 完全平方公式和平方差公式的综合应用提供一些综合应用题,让学生运用完全平方公式和平方差公式进行解答第四章:完全平方公式和平方差公式的巩固练习4.1 提供一些练习题,让学生巩固完全平方公式和平方差公式的理解和应用设计一些填空题、选择题和解答题,考察学生对两个公式的理解和掌握程度提供一些综合练习题,让学生运用两个公式解决实际问题4.2 学生自主练习和合作交流鼓励学生自主练习,巩固对两个公式的理解和应用能力组织学生进行合作交流,分享解题思路和方法第五章:完全平方公式和平方差公式的拓展应用5.1 探索完全平方公式和平方差公式的拓展性质引导学生探索两个公式的拓展性质和规律强调两个公式的拓展方法和思路5.2 提供一些拓展应用题,让学生运用完全平方公式和平方差公式进行解答设计一些具有挑战性的题目,让学生运用两个公式解决实际问题鼓励学生自主探索,发现两个公式的更多应用和拓展性质第六章:完全平方公式与平方差公式的实际应用6.1 引入实际应用场景通过生活实例引入完全平方公式和平方差公式的实际应用场景强调数学与实际生活的联系6.2 运用公式解决实际问题提供一些实际问题,让学生运用完全平方公式和平方差公式进行解决第七章:完全平方公式与平方差公式的几何意义7.1 引入几何概念解释完全平方公式和平方差公式的几何意义强调几何概念与代数公式的联系7.2 运用几何图形解释公式通过几何图形,引导学生理解完全平方公式和平方差公式的几何意义强调几何图形在理解公式中的应用方法和技巧7.3 运用公式解决几何问题提供一些几何问题,让学生运用完全平方公式和平方差公式进行解决第八章:完全平方公式与平方差公式的变形应用8.1 介绍公式的变形方法解释完全平方公式和平方差公式的变形方法强调变形方法在解决不同问题时的应用8.2 运用变形公式解决问题提供一些问题,让学生运用变形后的完全平方公式和平方差公式进行解决鼓励学生自主练习,巩固对公式变形方法和应用的理解第九章:完全平方公式与平方差公式的综合练习9.1 提供综合练习题设计一些综合练习题,涵盖完全平方公式和平方差公式的各种应用场景强调综合练习题在巩固知识和提高解题能力的重要性9.2 学生自主练习和合作交流鼓励学生自主练习,提高解题能力组织学生进行合作交流,分享解题经验和解决问题的方法第十章:完全平方公式与平方差公式的拓展研究10.1 探索公式的拓展性质引导学生探索完全平方公式和平方差公式的拓展性质和规律强调拓展研究在提高数学素养和解决问题能力的重要性10.2 开展拓展研究项目组织学生开展完全平方公式和平方差公式的拓展研究项目强调团队合作和研究成果的分享强调拓展研究对于培养学生的创新能力和发展数学思维的重要性重点和难点解析一、完全平方公式介绍难点解析:理解完全平方公式中各项的来源和含义,以及如何识别完全平方公式的特征。
初中数学初一数学下册《完全平方公式与平方差公式》教案、教学设计

(1)(x+3)^2
(2)(y-4)^2
(3)(2a+b)(2a-b)
(4)(3m-n)(3m+n)
2.变式练习题:通过一些变式题目,让学生学会将公式应用于不同场景,提高解决问题的能力。
例题:已知x+y=5,xy=6,求(x-y)^2的值。
3.综合应用题:设计一些综合应用题目,让学生将所学知识应用于解决实际问题,提高学生的综合运用能力。
5.生活实践题:让学生将所学知识联系到生活实际,感受数学在生活中的应用。
例题:某班组织一次郊游活动,共有45人参加。如果每组多安排1人,可以多分5组。请问原来每组有多少人?
在作业布置过程中,教师要关注以下几点:
1.作业难度要适中,既要保证学生对基础知识的掌握,又要适当提高学生的思维能力。
2.作业量要适当,避免给学生造成过重的负担,确保学生有足够的时间进行自主学习和休息。
讨论过程中,教师要关注以下几点:
1.激发学生的讨论热情,鼓励学生积极发表自己的观点。
2.引导学生互相交流解题方法,分享学习心得。
3.注意观察学生的讨论情况,适时给予指导和帮助。
(四)课堂练习,500字
在课堂练习阶段,教师设计不同难度的练习题,让学生进行巩固练习。练习题要涵盖完全平方公式和平方差公式的各种应用场景,包括基本题、变式题和综合应用题。
接着,教师可以引导学生回顾已学的平方运算知识,如(a+b)^2 = a^2 + 2ab + b^2,让学生尝试推导出完全平方公式:(a+b)^2 = a^2 + 2ab + b^2 = (a-b)^2 + 4ab。在此基础上,引出本节课将要学习的完全平方公式和平方差公式。
8、3完全平方公式与平方差公式第一课时

朱桥中心初中七年级数学下册教学设计课题:完全平方公式授课人:王海涛班级:七(2)班教学目标:知识技能1.理解完全平方公式的意义,准确掌握两个公式的结构特征.2.熟练运用公式进行计算.3.通过推导公式训练学生发现问题、探索规律的能力.4.培养学生用数形结合的方法解决问题的数学思想.过程与方法:通过推导公式训练学生发现问题、探索规律的能力.熟练运用公式进行计算.情感态度1.通过小组合作研究,培养学生合作交流意识和探索精神.2.培养学生用数学的意识,激发学生的学习兴趣.教学重点:(1) 体会完全平方公式的发现和推导过程;(2)掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.教学难点:准确判别要计算的代数式是哪两个数的和(或差)的平方,综合运用完全平方公式进行计算.教学过程:一、导入新课:提出问题,学生自学1.问题:根据乘方的定义,我们知道:a2=a·a,那么(a+b)2 应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?(1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;(2)(p-1)2=(p-1)(p-1)=________;(m-2)2=_______;二.探索新知:1.问题:一块边长为a米的正方形实验田,因需要将其边长增加b 米,形成四块实验田,以种植不同的新品种。
(如图)a b(1)四块面积分别为:、、、 ;b(2)两种形式表示实验田的总面积:①整体看:边长为的大正方形,S= ;a a ②部分看:四块面积的和,S= 。
a b总结:通过以上探索你发现了什么?〖点拨方法〗数形结合,正方形的面积可以分开算,也可以合起来算. 〖设计说明〗从现实生活中的数学情景出发,培养学生对数学的热爱和运用数学的能力.2.问题:如果将该正方形田地的边长缩减b 米,则其边长又为多少?面积呢?要求:让学生分组动手拼图:用手头的彩色纸,在原有的正方形广场上,拼出现在的广场,探究其面积的不同表示方法及其内在联系,体会完全平方公式的几何背景。
《完全平方公式(第一课时)》的教学设计

《完全平方公式(第一课时)》的教学设计一、教材分析本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用,其地位和作用主要体现在以下几个方面:1、整式是初中代数的一块重要内容,整式的运算又是整式中的一大主干。
一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,公式的推导是使用推理方法实行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。
2、乘法公式是后继学习的必备基础,不但能提升学生运算速度、准确率,更是以后学习分解因式、分式运算的重要基础,同时也具有培养学生逐渐严密的逻辑推理水平的功能。
3、公式的发现与验证给学生体验规律发现的基本方法和基本过程提供了很好的模式。
二、教法与学习目标分析针对初一学生的年龄特征,本节课采用自主探索,启发引导,合作交流展开教学,引导学生主动地实行观察、猜测、验证和交流。
教学过程边启发,边探索,边归纳,突出以学生为主体的探索性学习活动。
“完全平方公式”的教学目的应是“熟练掌握”。
一方面要准确理解公式,让学生自己得出公式,是准确理解公式的措施之一;同时还要扫除准确理解的障碍,即消除一些容易混淆之处。
另一方面,通过把公式使用到各种情况中去来达到熟练使用。
对于易混淆之处,应提升新旧知识的可分辨性。
通过变式对一些以前学过的,对现在公式容易产生混淆的内容(如积的乘方公式、平方差公式)实行分辨,从比较中加深对正面法则的理解。
三、教学目标1、识记目标:理解完全平方公式的意义,准确掌握公式的结构特征;2、水平目标:经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新水平,发展逻辑推理水平和有条理的表达水平,培养学生用数形结合的方法解决问题的数学思想;3、情感目标:培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。
渗透数学公式的结构美、和谐美。
四、教学重点、难点本节重点是体会公式的发现和推导过程,掌握公式的结构特征和字母表示的广泛含义,准确使用公式实行计算。
七年级数学下册《完全平方公式与平方差公式》教案、教学设计

(二)教学设想
1.创设情境,导入新课
-通过生活中的实例,如土地面积的测量、房屋面积的估算等,引出完全平方公式与平方差公式的概念。
-通过实际问题的解决,激发学生的学习兴趣,为新课的学习做好铺垫。
2.自主探究,合作交流
-引导学生回顾整式乘法和因式分解的知识,为新课的学习搭建知识框架。
-设计有针对性的课后作业,巩固学生对完全平方公式与平方差公式的掌握。
-采用多元化的评价方式,关注学生的个体差异,鼓励学生发挥潜能。
7.教学反思
-教学结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略。
-注重教学方法的创新,提高课堂教学的趣味性和实效性。
四、教学内容与过程
(一)导入新课,500字
1.总结完全平方公式和平方差公式的推导过程。
2.举例说明这两个公式在实际问题中的应用。
3.分析这两个公式在解题过程中的优势和局限性。
讨论结束后,各小组汇报讨论成果,其他小组进行补充和评价。我在这个过程中,适时给予指导和引导,帮助学生深入理解公式。
(四)课堂练习,500字
在课堂练习阶段,我会设计不同难度的题目,让学生运用完全平方公式和平方差公式进行解题。练习题包括以下类型:
在本章节的学习中,学生需要在已有知识的基础上,进一步探究完全平方公式与平方差公式的规律,并将其应用于解决实际问题。此时,学生可能面临以下挑战:
1.对完全平方公式与平方差公用公式解题时,可能会出现符号错误、计算失误等问题,需要教师耐心指导,帮助学生提高运算准确性和解题技巧。
-选择两道课后习题,运用完全平方公式与平方差公式进行因式分解,并解释每一步的推导过程。
8.3完全平方公式与平方差公式(第1课时)

课题:8.3完全平方公式与平方差公式(第1课时)班级 姓名 家长签名【学习目标】1、经历探索完全平方式公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。
2、会推导乘法公式:(a 〒b )2=a 2〒2ab+b 23、了解公式的几何背景,会用公式计算。
【自主学习】(预习课本第68--69页)一、知识回顾:请同学们应用已有的知识完成下面的几道题:(1)2)32(-x =91249664)32)(32(22+-=+--=--x x x x x x x(2)2)32(+x = ;(3)2)(b a += ;(4)2)(b a -= ;二、探究新知:活动1:观察上面4道题中等式左边的形式和最终计算出的结果,发现其中的规律:1、左边都是 形式,右边都是 次 项式,2、左边第一项和右边第一项有什么关系?3、左边第二项与右边最后一项是什么关系?4、右边中间一项与左边两项的关系是什么?归纳:完全平方公式:(a+b )2= (a-b )2= 语言叙述: 活动2:其实我们还可以从几何的角度去解析完全平方公式,你能通过下面的拼图游戏说明完全平方公式吗?问题1你能根据图1谈一谈 (a + b )2=a 2 + 2ab+b 2吗?我们可以用两种不同的方法计算总面积。
方法一:方法二:问题2你能根据图2,谈一谈(a -b )2=a 2-2ab+b 2吗?我们试着用两种方法计算(Ⅲ)的面积。
方法一:方法二:活动3:利用完全平方公式计算:如:2222)(2)2(2)x y x x y y +=+⋅+(= 2244x xy y ++(a +b )2 = a 2 + 2 a b+ b 2①2(5)a + ②2(32)a b - ③2)213(y x +④2)32(+x ⑤2)32(--x ⑥2)32(-x⑦2)32(+-x ⑧2 999由④~⑦你发现了吗?如果两个数是相同的符号,则结果中的每一项的符号 的,如果两个数具有不同的符号,•则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计
8.3 完全平方公式与平方差公式
(第1课时) 完全平方公式
一、教学背景
(一)教材分析
乘法公式是在学习了单项式乘法、多项式乘法之后学习的,是特殊形式多项式乘法结果的一中归纳和总结,并且将这种结果应用于形式相同的多项式乘法,达到简化计算的目的.乘法公式是初中运用推理方法进行代数式恒等变形的开端,也是学习因式分解和分式运算的重要基础.
(二)学情分析
学生在8.2节学习了多项式的乘法,为推导和掌握完全平方公式奠定了基础.
学生在经历多项式的乘法基础上,初步为学习完全平方公式提供了思维方式.七年级下学生的认知发展已具备了转化、数形结合的能力,富有积极思考、主动探索、合作交流情感基础,为推导完全平方公式提供了保证.
二、教学目标:
1 经历探索完全平方公式的过程,进一步发展符合感和推理能力.
2 会推导完全平方公式,并能运用公式进行简单的计算.
3 进一步体会转化、数形结合等思想。
三、重点、难点:
重点:体会 的发现和推导过程,并能用之计算. 难点:掌握公式字母表达式的意义及对完全平方公式的运用.
四、教学方法分析及学习方法指导
教学方法:
在教学中要引导学生发现公式,并探究公式的推导过程,应着重让学生掌握公式的结构特征和字母表示数的广泛意义,引导学生借助面积图形对完全平方公式做直观说明,加深学生对公式理解。
所以教学中要运用联系、对比、特点方式加以引导学生学习.
学法指导:
学习中,让学生主动发现公式,并探究公式的推导过程,应着重让学生认识、掌握公式的结构特征和字母表示数的广泛意义,在公式的运用上,把公式中的字母同具体题目中的数或式子,逐项比较、对照,步骤写得完整,便于学生理解如何正确地使用完全平方公式进行计算.正确地使用公式的关键是确定是否符合使用公式的条件.重要的是确定两数,然后再看是否两数的和(或差),最后按照公式写出两数和(或差)的平方的结果.
()2
222a b a ab b ±=±+
五、教学过程:
(一)情景导入:
去年,一位农民将一块边长为a 米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大,今年,他想把原来的试验田,边长增加b 米,形成四块试验田,种植不同的新品种.
请用不同的形式表示实验田的总面积, 并进行比较. b
直接方法:()2a b + 间接方法:22a ab ab b +++
探索你发现什么:()2a b +=222a ab b ++ a a b
设计意图:联系实际生活,渗透数形结合思想,让学生形象直观感受两数和的完全平方公式的构成.
(二)知识回顾:
多项式与多项式相乘的乘法法则是什么?
(三)探究新知:
,? ()()a b a b +22计算: -
设计意图:复习时明确多项式与多项式相乘的乘法法则很有必要,这是新旧知识的链接.使学生了解“两数和”与“两数差”的完全平方公式从本质上看是统一的,经历从一般到特殊的认识过程.
归纳:完全平方公式的文字叙述:
()2a b +=222a ab b ++ ()2222a b a ab b -=-+
完全平方公式的数学表达式:
两个数的和(或差)的平方,等于这两个数的平方和,加(或减)这两个数乘积的2倍.
公式特征:
1 积为二次三项式;
2 积中两项为两数的平方和;
3 另一项是两数积的2倍,且与乘式中间的符号相同.
4 公式中的字母a ,b 可以表示数,单项式和多项式.
思考:
1 小颖写出了如下的算式: ()[()]a b a b -=+-22
她是怎么想的? 你能继续做下去吗?
()[()]a b a b -=+-22
=()()2222a a b b +-+-
=222a ab b -+
2 你能根据图1和图2中的面积说明完全平方公式吗?
和的完全平方公式:()222a b a ab ab b +=+++的几何意义
差的完全平方公式:()2
22a b a ab ab b -=--+的几何意义
设计意图:渗透数形结合思想,让学生形象直观的感受两数和、差的完全平方公式的构成.
(四)合作学习:
例1 利用乘法公式计算:
()()+-2212x y 23a 2b () () ()(
)() ()+=++22212x y 2x 22x y y 解: b b b b b
(a + b) 2=2a + 2 a b +2b
224x 4xy y =++
()()()()()222
(2)3232322a b a a b b -=-+ b b b b b
(a + b)2= 2a -2 a b + 2b
图 1 图2
22
9 12 4a ab b =-+
设计意图:通过合作学习,进一步理解掌握完全平方公式,并让学生认清解题应规范,使学生注重良好学习习惯的培养.
(五)自主学习:
1下面计算是否正确?如有错误请改正.
()-=-+22132x 912x 2x () ()+=++2222a b a ab b ()
? () -=--223a 1a 2a 1() 2 利用乘法公式计算:
21()(3)x +1 () ) (3a b 22- () 2
()y x +232 () 3( -)x y +242 3 如图,是一张正方形的纸片,如果把它沿着各边都剪去3cm 宽的一条,那么所得小正方形的面积比原正方形的面积减少84cm2,求原正方形的边长.
设计意图:通过小结,让学生体验成功的喜悦和探索的乐趣,增强自信心. (六)课堂小结:
这节课你有哪些收获?我们一 起来分享一下吧!
设计意图:通过小结,让学生谈收获及注意的问题,让学生认识自我,增强自信心.
(七)课后作业:
必做:课本71页习题8.3:第1、7、8题
选做:1 222200820092009-⨯⨯+2008
2 若229x kx ++是完全平方式,则k=____
板书设计:
预设反思:
本节课从“一个边长为am的正方形菜地的边长扩大边长bm,求变化后正方形菜地的面积”引入新课,课件合理使用突破了难点,又使学生的心理产生了求知欲和学习兴趣.
随着新课的进行、问题的提出,学生在教师的引导下充分经历观察、比较、交流、反思、发现问题过程,积极参与教学中;通过从一般到特殊、数形结合等思维活动、不断激起学生的“兴奋点”,让学生体会到探索的艰辛,也体会到成功喜悦,发挥教师是学生学习的“促进者”的作用。
但要给学生掌握完全平方公式提供时间和空间。