完全平方公式平方教案
《完全平方公式》第二课时参考教案

《完全平方公式》第二课时参考教案第一篇:《完全平方公式》第二课时参考教案1.8 完全平方公式(二)●教学目标(一)教学知识点1.通过有趣的分糖情景,使学生进一步巩固(a+b)2=a2+2ab+b2,同时帮助学生进一步理解(a+b)2与a2+b2的关系.2.运用完全平方公式进行一些有关数的简便运算.3.进一步熟悉乘法公式的运用,体会公式中字母的广泛含义,它可以是数,也可以是整式.(二)能力训练要求1.在进一步巩固完全平方公式同时,体会符号运算对解决问题的作用.2.进一步熟练乘法公式,提高最基本的运算技能,并且明白每一步的算理.(三)情感与价值观要求1.鼓励学生算法多样化,提高学生合作交流意识和创新精神.2.从有趣的分糖游戏中,提高学习数学的兴趣.●教学重点1.巩固完全平方公式,区分(a+b)2与a2+b2的关系.2.熟悉乘法公式的运用,体会公式中字母a、b的广泛含义.●教学难点1.区分(a+b)2与a2+b2的关系.2.熟练乘法公式的运用,体会公式中字母a、b的广泛含义.●教学方法活动探究法.●教具准备投影片四张第一张:提出问题,记作(§1.8.2 A)第二张:分糖游戏,记作(§1.8.2 B)第三张:例2,记作(§1.8.2 C)第四张:例3,记作(§1.8.2 D)●教学过程/ 7Ⅰ.创设情景,引入新课[师]上节课我们推导出了完全平方公式,现在我们来看一个问题:出示投影片(§1.8.2 A)一个正方形的边长为a厘米,减少2厘米后,这个正方形的面积减少了多少厘米2?[生]原来正方形的面积为a2平方厘米,边长减少2厘米后的正方形的面积为(a-2)2平方厘米,所以这个正方形的面积减少了a2-(a -2)2平方厘米,因为a2-(a-2)2=a2-(a2-4a+4)=a2-a2+4a-4=4a-4,所以面积减少了(4a-4)平方厘米.[师]很好!这节课我们继续巩固完全平方公式.Ⅱ.讲授新课[师]下面我们来做一个“分糖游戏”.出示投影片(§1.8.2 B)一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,……(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?(3)第三天有(a+b)个孩子一块去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?[生]根据题意,可知第一天有a个男孩去了老人家,老人给每个孩子发a块糖,所以一共发了a2块糖.第二天有b个女孩去了老人家,老人给每个孩子发b块糖,所以一共发了b2块糖.第三天有(a+b)个孩子去了老人家,老人给每个孩子发(a+b)块糖,所以一共发了(a+b)2块糖.[生]前两天他们得到的糖果总数是(a2+b2)块,因为(a+b)2-(a2+b2)=a2+2ab+b2-a2-b2=2ab.由于a>0,b>0,所以2ab>0.2 / 7由此可知这些孩子第三天得到的糖果数比前两天他们得到的糖果总数要多,多2ab块糖果.[师]为什么会多出2ab块糖果呢?同学们可分组讨论多出2ab块糖的原因.(老师可参与到学生的讨论,撞击他们思想的火花)[生]对于a个男孩来说,每个男孩第三天得到的糖果数是(a+b)块,每个男孩比第一天多b块,一共多了ab块;同理可知这b个女孩第三天得到的糖果总数比第二天也多了ab块.因此,这些孩子第三天得到的糖果数与前两天相比,共计多出了2ab块.[师]不错!而这个游戏又充分说明了(a+b)2与a2+b2的关系,即(a+b)2≠a2+b2.下面我们再来看一个例题,你会有更多的发现.出示投影片(§1.8.2 C)[例2]利用完全平方公式计算:(1)1022;(2)1972.如果直接计算1022,1972会很繁.根据题目的提示使我们想到1022可以写成(100+2)2,1972可以写成(200-3)2,这样计算起来会简单的多,我们不妨试一试.[生]解:(1)1022=(100+2)2=1002+2×2×100+22=10000+400+4=10404.(2)1972=(200-3)2=2002-2×3×200+32=40000-1200+9=38809 [师]我们可以发现运用完全平方公式进行一些有关数的运算会很简便,也更进一步体会到符号运算对解决问题的作用.下面我们再来看一个例题(出示投影片§1.8.2 D)[例3]计算:(1)(x+3)2-x2;(2)(a+b+3)(a+b-3);(3)(x+5)2-(x-2)(x-3).分析:(1)题可用完全平方公式计算,也可以逆用平方差公式计算;(2)题虽然每个因式含有三项,但可以利用加法的结合律整理成能用平方差公式计算的多项式相乘的形式;(3)题要注意运算顺序,减号后面的积算出来一定先放在括号里,然后再去括号,就可以避免符号上面出错.注意要为学生提供充分交流的机/ 7会.解:(1)方法一:(x+3)2-x2 =x2+6x+9-x2——运用完全平方公式 =6x+9 方法二:(x+3)2-x2=[(x+3)+x][(x+3)-x]——逆用平方差公式=(2x+3)×3 =6x+9(2)(a+b+3)(a+b-3)=[(a+b)+3][(a+b)-3]=(a+b)2-32 =a2+2ab+b2-9(3)(x+5)2-(x-2)(x-3)=x2+10x+25-(x2-5x+6)=x2+10x+25-x2+5x-6 =15x+19 [例4]已知x+y=8,xy=12,求x2+y2的值.分析:由完全平方公式(x+y)2=x2+2xy+y2,可知x2+y2=(x+y)2-2xy,故可将x+y=8,xy=12整体代入求值.解:x2+y2=(x+y)2-2xy 把x+y=8,xy=12代入上式,原式=82-2×12=64-24=40 Ⅲ.随堂练习1.(课本P45)利用整式乘法公式计算:(1)962(2)(a-b-3)(a-b+3)解:(1)962=(100-4)2 =10000-800+16=9216(2)(a-b-3)(a-b+3)=[(a-b)-3][(a-b)+3]/ 7=(a-b)2-32=a2-2ab+b2-9 2.试一试,计算:(a+b)3分析:利用转化的思想和逆用同底数幂的乘法得(a+b)3=(a+b)2·(a+b),可以使运算简便.解:(a+b)3=(a+b)2·(a+b)=(a2+2ab+b2)(a+b)=a3+a2b+2ab2+2a2b+ab2+b3 =a3+3a2b+3ab2+b3 3.已知x+1=2,求x2+xx1x2x的值.解:由x+1=2,得(x+1)2=4.x2+2+1x2=4.所以x2+1x2=4-2=2.Ⅳ.课时小结[师]一节课在紧张而又活泼的气氛中度过了,你有何收获和体会,不妨和大家共享.[生]在有趣的分糖情景中,不仅巩固了完全平方公式,而且更进一步理解了(a+b)2与a2+b2的关系.[生]通过实例,我更进一步体会到完全平方公式中的字母a,b的含义是很广泛的,它可以是数,也可以是整式.…… Ⅴ.课后作业1.课本P45,习题1.14.Ⅵ.活动与探究Λ9×999Λ9+199Λ9 化简9991424314243123n个n个n个[过程]当n=1时,9×9+19=102 当n=2时,99×99+199=104 当n=3时,999×999+1999=106 ……于是猜想:原式=102n/ 7[结果]原式=(10n-1)(10n-1)+(2×10n-1)=(10n-1)2+2×10n-1 =102n-2×10n+1+2×10n-1 =102n ●板书设计§1.8.2 完全平方公式(二)一、糖果游戏(1)a2(2)b2(3)(a+b)2(4)(a+b)2的总数较多,多2ab.结果:(a+b)2≠a2+b2二、例题讲解例2.利用完全平方公式计算(1)1022(2)1972 例3.计算:(1)(x+3)2-x2(2)(a+b+3)(a+b-3)(3)(x+5)2-(x-2)(x-3)●备课资料参考练习1.选择题(1)下列等式成立的是()A、(a-b)2=a2-ab+b2 B、(a+3b)2=a2+9b2 C、(a+b)2=a2+2ab+b2 D、(x+9)(x-9)=x2-9(2)(a+3b)-(3a+b)计算结果是()A.8(a-b)2 B.8(a+b)2 C.8b2-8a2 D.8a2-8b2(3)(5x2-4y2)(-5x2+4y2)运算的结果是()A.-25x4-16y4 B.-25x4+40x2y2-16y4 C.25x4-16y2 D.25x4-40x2y2+16y4(4)运算结果为x4y2-2x2y+1的是()/ 72A.(x2y2-1)2 B.(x2y+1)2 C.(x2y-1)2 D.(-x2y-1)2 2.填空题(1)(4a-b2)2=.(2)(-1m-1)22=.(3)(m+n+1)(1-m-n)=.(4)(7a+A)2=49a2-14ab2+B,则A= ,B=.(5)(a+2b)2-=(a-2b)2.3.用乘法公式计算:(1)9992;(2)20022-4004×2003+20032.4.已知,a+b=8,ab=24.求12(a2+b2)的值.5.已知x+1=4,求证x2+ 1xx2.6.已知:x2-2x+y2+6y+10=0,求x+y的值.答案:1.(1)C(2)C(3)B(4)C 2.(1)16a2-8ab2+b4(2)1m24+m+1(3)1-m2-2mn-n2(4)-b2 b4(5)8ab 3.(1)998001(2)1 4.8 5.14 6.-2 7 / 7 第二篇:完全平方公式教案学习周报专业辅导学生学习完全平方公式在代数、几何中的两点运用完全平方公式是中学阶段运用较为广泛的一个公式.除了在一般计算过程中直接运用完全平方公式外,在一些代数、几何问题中,还会利用其进行解题,这也是各年中考中的一个必考知识点.另外,在公式的一些使用过程中,还结合了整体思考的数学思想,同时还对学生的逆向思维提出一定要求.主要体现在以下两个方面.一、利用完全平方公式结合整体转化思想求代数式的值.有一类例1 已知a2+b2=1,a-b=分析:要求(a+b)4,直接求12,求(a+b)4的值.a,的值有一定的困难,因而可利用整体思想,设法求出(a+b)2,结合题目条件a2+b2=1,只需求出ab值.解:把a-b=a-2ab+b2212=两边同时平方,得34又因为a2+b2=1,所以2ab=a+2ab+b4222=1+491634 即(a+b)=74所以(a+b)=.22例3 已知x-3x+1=0,求(1)x+1x2;(2)x+1x41x4.分析:观察所求代数式的特征,x+21x2可由x+1x平方后整理得到.因而解题的关2键在于利用题目条件x-3x+1=0求出代数式x+的值.此处,再次利用了整体思考的数学思想.解:把x-3x+1=0两边同时除以x,得x-3+1x=0,即x+1x=3.2把x+21x=3两边同时平方,得1x+1x2x+2⋅x⋅=9,即 x+21x2=7学习周报专业辅导学生学习再把x2+421x2=7两边同时平方,得1x2x+2⋅x⋅+1x21x4=49,即x+441x144=47.=47.所以(1)x2+(2)x+=7;x二、利用完全平方式判断三角形形状例4 已知三角形的三边a,b,c满足a2+b2+c2-ab-ac-bc=0,请你判断这个三角形是什么三角形.分析:判断形状的三角形一般都是特殊三角形,而进行判断的关键是分析角或边的关系.本题所给的条件和边有关,因而可把目标定为证明边相等,即证明等腰或等边三角形.结合条件的形式,联想到完全平方式的非负性,从而可利用完全平方公式进行证明.解:由a2+b2+c2-ab-ac-bc=0两边同时乘以2,整理可得(a2-2ab+b22)+(a2-2ac+c22)+(b2-2bc+c2)=0所以(a-b)+(a-c)+(b-c)=02因为(a-b)≥0,(a-c)≥0,(b-c)≥0 222所以(a-b)=0,(a-c)=0,(b-c)=0 222所以a=b,a=c,b=c 即a=b=c.所以这个三角形是等边三角形.例5 已知a,b,c是∆ABC的三边长,且a+2b+c-2b(a+c)=0,判断∆ABC222的形状.分析:与例4相类似,也是利用完全平方公式将条件进行变形,从而得出三角形三边的关系.解:由a+2b+c-2b(a+c)=0变形,得 222(a2-2ab+b22)+(b2-2bc+c2)=02所以(a-b)+(b-c)=0因为(a-b)≥0,(b-c)≥0 学习周报专业辅导学生学习所以(a-b)=0,(b-c)=0 22所以a=b,b=c 即a=b=c 所以∆ABC是等边三角形第三篇:完全平方公式教案人教新课标八年级上15.2完全平方公式表格式教案一、复习旧知探究,计算下列各式,你能发现什么规律?(1)(p+1)2 =(p+1)(p+1)=_________;(2)(m+2)2=(m+2)(m+2)=_________;(3)(p-1)2 =(p-1)(p-1)=_________;(4)(m-2)2=(m-2)(m-2)=_________.答案:(1)p2+2p+1;(2)m2+4m+4;(3)p2-2p+1;(4)m2-4m+4.二、探究新知1.计算:(a+b)2 和(a-b)2 ;并说明发现的规律。
【教案】 完全平方公式

完全平方公式【知识与技能】1.完全平方公式的推导及其应用.2.完全平方公式的几何解释.【过程与方法】经历探索完全平方公式的过程,进一步发展符号感和推理能力.【情感态度】在灵活应用公式的过程中激发学生学习数学的兴趣,培养探究精神.【教学重点】完全平方公式的应用.【教学难点】完全平方公式的结构特征及几何解释.一、情境导入,初步认识问题一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们,来一个孩子,就给一块糖;来两个孩子,就给每个孩子两块糖,……(1)第1天有a个男孩子去了老人家,老人一共给了这些孩子多少块糖?(2)第2天有b个女孩子去了老人家,老人一共给了这些孩子多少块糖?(3)第3天这(a+b)个孩子一起去看老人,老人一共给了孩子们多少块糖?(4)这些孩子第3天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?【教学说明】(4)的结果需要化简,应用乘法法则可求出(a+b)2.引导学生结合教材认识从几何角度解释(a+b)2的结果.教师讲课前,先让学生完成“名师导学”.【归纳总结】公式的表达式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.公式的特征:公式的左边是一个二项式的平方,右边是一个二次三项式;左边是两数和的形式时,右边就是这两数的平方和加上这两数积的2倍(和对应加);左边是两数差的形式时,右边就是这两数的平方和减去这两数积的2倍(差对应减);两公式结构相同,仅一个符号不同.二、思考探究,获取新知例1计算下列各题.【分析】(1)、(2)可直接应用公式.计算时,如遇小数,应将其化成分数,这样可方便计算.(3)、(4)应注意符号,或可直接应用公式(a-b)2=a2-2ab+b2.例2计算:(1)1032;(2)2992.【分析】通过观察可发现103=100+3,299=300-1,这样可应用完全平方公式.【教学说明】引导学生在实际练习中重点体验完全平方公式的结构特征,正确套用公式,同时注意把完全平方公式展开后每一项的符号不能出错.例3运用乘法公式计算.(1)(a-b+c)(a+b-c);(2)(2x-y+1)(y-1+2x);(3)(x-y+z)2.【分析】1.为了应用公式计算,先必须对式中各项添上括号,其法则是:如果括号前是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都改变符号.2.(1)中可以将两因式变成a与b-c的和与差;(2)中两因式可以变成2x与y-1的和与差,运用平方差公式计算;(3)的底数可变形为两式的和或差.【教学说明】(1)只有符号不同的两个三项式相乘,通过添括号都可以将算式变形为完全平方式或平方差;(2)两因式中绝对值相同的各项若符号全部相同或完全相反,则为完全平方式;若一部分符号相同,则为平方差.三、运用新知,深化理解计算:[(x-2y)(x+2y)]2-[(x-2y)2-(x+2y)2]2.【教学说明】上述计算是在平方差公式、完全平方公式的基本应用上的延伸,可要求学生尝试动手练习,教师再予以指导.【归纳总结】①对于比较复杂的整式乘法,先不要急于运算,应首先分析其特点,尽可能用公式进行运算,而且运算过程中尽可能地合并同类项.②必要的时候灵活运用运算公式,采用其逆运算,可以使运算过程简便.四、师生互动,课堂小结由学生谈谈本节课所学知识的认识,集体评点.1.布置作业:从教材习题中选取部分题.2.完成创优作业本课时的“课时作业”部分.本课时教学重点是引导学生观察分析完全平方公式的结构特征,教师可组织学生独立观察,再在小组内交流,最后由教师归纳评点,以便学生认识与完全平方公式相关的所有变式.22我们奇妙的世界(精读课文)1.会认本课的 7 个生字,会写 11个字理解生字组成的词语。
完全平方公式教案【优秀3篇】

完全平方公式教案【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!完全平方公式教案【优秀3篇】作为一名教师,时常要开展教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
1.6.1完全平方公式.(教案)

一、教学内容
本节课选自教科书1.6.1节,主要教学内容为完全平方公式。内容包括:
(1)完全平方公式的推导:a²+b²+2ab=(a+b)²,a²-b²=(a+b)(a-b);
(2)完全平方公式的应用:解决平方差问题,简化计算过程;
(3)完全平方公式的拓展:多项式的完全平方公式及其应用。
突破方法:通过对比、归纳、总结,让学生掌握多项式完全平方公式的特点,如x²±2xy+y²=(x±y)²,以及拓展到更多类似公式。
(注:由于字数限制,此处未能达到2000字,但已尽量详细列出教学难点与重点。在实际教案中,可根据需要进一步拓展相关内容。)
四、教学流程
(Hale Waihona Puke )导入新课(用时5分钟)同学们,今天我们将要学习的是《完全平方公式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算两个数的平方和或平方差的情况?”(如:计算正方形和长方形的面积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索完全平方公式的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式的推导和应用这两个重点。对于难点部分,如多项式的完全平方公式,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与完全平方公式相关的实际问题,如计算平面直角坐标系中两点间的距离。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过实际测量和计算来验证完全平方公式在解决实际问题中的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
完全平方公式教案精品

完全平方公式教案精品《完全平方公式》教案篇一一、教材分析本节课是继乘法公式的内容的一种升华,起着承上启下的作用。
在内容上是由多项式乘多项式而得到的,同时又为下一节课打下了基础,环环相扣,层层递进。
通过这节课的学习,可以培养学生探索与归纳能力,体会到从简单到复杂,从特殊到一般和转化等重要的思想方法。
二、学情分析多数学生的抽象思维能力、逻辑思维能力、数学化能力有限,理解完全平方公式的几何解释、推导过程、结构特点有一定困难。
所以中应尽可能多地让学生动手操作,突出完全平方公式的探索过程,自主探索出完全平方公式的基本形式,并用语言表述其结构特征,进一步发展学生的合情推理能力、合作交流能力和数学化能力。
三、目标知识与技能利用添括号法则灵活应用乘法公式。
过程与方法利用去括号法则得到添括号法则,培养学生的逆向思维能力。
情感态度与价值观鼓励学生算法多样化,培养学生多方位思考问题的习惯,提高学生的合作交流意识和创新精神。
四、教学重点难点教学重点理解添括号法则,进一步熟悉乘法公式的合理利用。
教学难点在多项式与多项式的乘法中适当添括号达到应用公式的目的。
五、教学方法思考分析、归纳总结、练习、应用拓展等环节。
六、教学过程设计师生活动设计意图一.提出问题,创设情境请同学们完成下列运算并回忆去括号法则.(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)去括号法则:去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符合;如果括号前是负号,去掉括号后,括号里的各项都改变符合.也就是说,遇“加”不变,遇“减”都变.二、探究新知把上述四个等式的左右两边反过来,又会得到什么结果呢?(1) 4+5+2=4+(5+2)(2)4-5-2=4-(5+2)(3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)左边没括号,右边有括号,也就是添了括号,•同学们可不可以总结出添括号法则来呢?(学生分组讨论,最后总结)添括号法则是:添括号时,如果括号前面是正号,括到括号里的。
《完全平方公式》教案

《完全平方公式》教案第一章:引言1.1 教学目标让学生了解完全平方公式的概念和意义。
引导学生通过实际例子发现完全平方公式的规律。
1.2 教学内容完全平方公式的定义和表达式。
完全平方公式的推导和证明。
1.3 教学方法使用图表和动画辅助学生理解和记忆完全平方公式。
1.4 教学评估设计一些练习题,让学生应用完全平方公式进行计算。
观察学生在练习中的表现,及时给予指导和帮助。
第二章:完全平方公式的推导和证明2.1 教学目标让学生理解完全平方公式的推导过程。
引导学生通过证明理解完全平方公式的正确性。
2.2 教学内容完全平方公式的推导方法。
完全平方公式的证明过程。
2.3 教学方法使用图表和动画演示完全平方公式的推导过程。
引导学生通过逻辑推理和数学证明理解完全平方公式的正确性。
2.4 教学评估设计一些证明题,让学生运用完全平方公式进行证明。
观察学生在证明过程中的思路和推理是否清晰。
第三章:完全平方公式的应用3.1 教学目标让学生能够运用完全平方公式解决实际问题。
引导学生通过完全平方公式简化计算过程。
3.2 教学内容完全平方公式在实际问题中的应用。
完全平方公式在简化计算过程中的作用。
3.3 教学方法通过实际例子引导学生运用完全平方公式解决问题。
使用图表和动画演示完全平方公式在计算过程中的应用。
3.4 教学评估设计一些应用题,让学生运用完全平方公式进行计算和解决问题。
观察学生在解题过程中的思路和计算是否准确。
第四章:完全平方公式的扩展4.1 教学目标让学生了解完全平方公式的扩展形式。
引导学生通过完全平方公式的扩展形式解决更复杂的问题。
4.2 教学内容完全平方公式的扩展形式。
完全平方公式的扩展形式在解决问题中的应用。
4.3 教学方法通过实际例子引导学生了解完全平方公式的扩展形式。
使用图表和动画演示完全平方公式的扩展形式在解决问题中的应用。
4.4 教学评估设计一些扩展题,让学生运用完全平方公式的扩展形式进行计算和解决问题。
《完全平方公式》教案

《完全平方公式》教案
一、教学目标
1. 知识与技能:掌握完全平方公式的推导过程和结构特点,能够运用完全平方公式进行整式的乘法运算。
2. 过程与方法:通过观察、分析、归纳等方法,提高学生的数学思维能力和运算能力。
3. 情感态度价值观:培养学生的数学兴趣,增强学生的自信心。
二、教学重难点
1. 教学重点:完全平方公式的推导过程和结构特点。
2. 教学难点:运用完全平方公式进行整式的乘法运算。
三、教学方法
讲授法、演示法、练习法
四、教学过程
1. 导入:复习平方差公式,通过计算(a+b)(a-b)=a^2-b^2,引出今天的课题《完全平方公式》。
2. 知识讲解:讲解完全平方公式的推导过程和结构特点。
(1) 推导过程:(a+b)^2=a^2+2ab+b^2
(2) 结构特点:左边是两个相同的二项式相乘,右边是一个三项式,其中两项是左边两项的平方和,第三项是左边两项的积的2 倍。
3. 练习环节:学生进行练习,教师进行个别指导。
4. 课堂总结:老师对本节课的内容进行总结,强调重点和难点。
5. 布置作业:让学生在课后完成一些练习题,以巩固所学的知识。
五、教学反思
通过本次教学,学生对完全平方公式的推导过程和结构特点有了更深入的理解,能够运用完全平方公式进行整式的乘法运算。
在教学过程中,学生的积极性和参与度较高,通过练习和指导,让他们更加主动地去思考和表达自己的观点。
不足之处是,由于时间限制,有些学生在练习过程中还需要更多的指导和练习,需要在今后的教学中加以改进。
完全平方公式与平方差公式教案

完全平方公式与平方差公式教案章节一:完全平方公式的探究与理解1. 导入:通过实际问题引入完全平方公式的概念,例如求(x + 2)²的值。
2. 探究:引导学生通过具体例子,如(x + 2)²= x²+ 4x + 4,发现完全平方公式的规律。
4. 练习:布置一些简单的练习题,让学生运用完全平方公式进行计算。
章节二:平方差公式的探究与理解1. 导入:通过实际问题引入平方差公式的概念,例如求(x 2)²的值。
2. 探究:引导学生通过具体例子,如(x 2)²= x²4x + 4,发现平方差公式的规律。
4. 练习:布置一些简单的练习题,让学生运用平方差公式进行计算。
章节三:完全平方公式与平方差公式的应用1. 导入:通过实际问题引入完全平方公式与平方差公式的应用,例如求(x +1)(x 1) 的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + 1)(x 1) 进行展开和简化。
4. 练习:布置一些实际问题,让学生运用完全平方公式与平方差公式进行解决。
章节四:完全平方公式与平方差公式的巩固与拓展1. 导入:通过实际问题引入完全平方公式与平方差公式的巩固与拓展,例如求(x + 2)(x 2) 的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + 2)(x 2) 进行展开和简化。
4. 练习:布置一些更复杂的实际问题,让学生运用完全平方公式与平方差公式进行解决。
1. 回顾:引导学生回顾本节课学习的完全平方公式与平方差公式。
3. 评价:对学生的学习情况进行评价,鼓励学生积极参与课堂讨论和练习。
4. 布置作业:布置一些相关的练习题,让学生巩固所学知识。
章节六:完全平方公式与平方差公式的综合应用1. 导入:通过实际问题引入完全平方公式与平方差公式的综合应用,例如求(x + y)²(x y)²的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + y)²(x y)²进行展开和简化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完全平方公式(第一课时)
教学内容:完全平方公式
教学目标:完全平方公式的推导及其应用
教学重点:完全平方公式的推导过程,公式特点
教学难点:理解完全平方公式的特点并能灵活应用公式进行计算
教学过程:
一复习引入:
1 计算下面各题:(复习多项式与多项式相乘)
(1)(2x+1)(x+3) (2) (m+2n)(m-3n) (3) (x+2)(x+3) (4)(x-4)(x+1) (5) (y+4)(y-2) (6) (y-5)(y-3)
2 师:我们曾学过求正方形的面积,那么它的面积公式是如何表示的,请一个同学说出来。
生:s = a2
师:很好,请问a2 表示什么意思?
生:a2表示a · a,即两个a相乘
师:说得对,用数学表达式可以写作:a2 = a ·a (教师板书),这节课我们就要用到这种方法来解决一个新的问题
二导入新课:
先计算下列各式,看谁能先发现计算结果有什么的规律性
(1) (p+1)2 = (p+1)(p+1)= (2) (m+2)2 =
(3) (p-1)2 = (p-1)(p-1) = (4) (m-2)2 =
通过计算,得:(1) 的结果是:p2+2p+1 ;(2) 的结果是:m2+4m+4 ;
(3) 的结果是:p2-2p+1 ;(4) 的结果是:m2-4m+4 。
教师启发学生先观察(1)式,
师:它是求(p+1)的平方,第一项和第三是这两个加数的什么?
生:是这两个加数的平方,
师:在看第二项,在我们计算的结果中除了字母p和数字1 外,还多了一个系数2,你还知道是如何得到的吗?
生:是根据多项式与多项式相乘,展开后其中有两项是一样的,通过合并同类项得到系数2;师:说的对,请再分析一下第二项与这两个加数是不是还有什么样的关系?
生:从刚才的计算过程中可以看出,实际上第二项就是这两个加数的2倍;
师:说得好!(教师板书):2 p = 2 ×p ×1,因为这个1可以省略,所以写作2 p,但我们心里要明白是这两个加数的2倍,不然的话我们就容易出现计算上的错误,比如说(2) 和(4)中间项就是2 ×m ×2 = 4m得到的;
师:还有一个问题就是展开后的符号是如何确定的,你知道吗?
生:对于这样的式子来说,如果说是加号就加上这两个数的2倍,是减号的话即减去这两个数的2倍了,其余符号都为加号。
师:好的,现在我们再来计算一下这两题看看是不是有这样的情况:
(1)(a+b)2 (2) (a-b)2
经过计算后学生发现(1) 的结果是:a2+2ab+b2 ;(2) 的结果是:a2-2ab+b2 ,这与刚才分析的是一致的。
师:能否说出有什么规律性?
生:两个数的和的平方,会等于它们的平方和加上它们的积的2倍;两个数的差的平方,会等于它们的平方和减去它们的积的2倍,
师:不错,这就是我们这节课要讲的内容,归纳一下可以简单扼要的说“两数和(或差)的平方,等于它们的平方和,加(或减)它们积的2倍,刚才上面计算的两个公式叫做(乘 法的)完全平方公式
三 讲授新课:
例3运用完全平方公式计算:
(1) (4m +n)2
2
)21)(2(-y 解: (1) 原式 = (4m)2 + 2 · (4m) · n + n 2
=16m 2+ 8m n + n 2
4
1)21(212)2(222+
-=+⨯
⨯-=y y y y 原式
例4 运用完全平方公式计算:
(1) 1022 (2) 992
分析(1) 要用到完全平方公式就要想办法分解为两个加数的和,最优的分解方法应该是102=100+2,转化为整百数与一个数的和,用其它分解方法来计算会繁一点,由此得如下解法
解:(1) 原式 = (100+2)2 = 1002+2×100×2+22
= 10000+400+4
= 10404
分析(2) 这题可根据上题的思路,转化为整百数与一个数的差会简单一些
(2) 原式 = (100-1)2 = 1002-2×100×1+12
=10000-200+1
=9801
四 巩固练习:
课本第155页练习 1、2(练习完后教师要有针对性的进行讲评)然后提出下面的问题,让学生思考,培养学生对式子的转化和观察图形的能力。
思考一:(a + b)2 与 (-a -b)2 相等吗?(a -b)2 与 (b - a)2 相等吗?
通过分析发现:(-a - b)2 与( a -b)2有相似之处,它的- a 可以看成是公式中的a ,只要将其代入(a - b)2 = a 2-2ab +b 2 ,即 (-a - b)2 = (-a )2-2·(-a )·b +b 2 = a 2+2ab +b 2,就可以发现它与(a + b)2的结果是一样的(如果说是能应用添括号的方法就可以直接转化为同一个式子了), 而(a - b)2 与(b - a)2只是被减数和减数的位置交换了,与它们的平方没有关系(应用添括号的方法可以直接转化为同一个式子),通过计算可以发现结果是一样的。
思考二:你能根据下图中的面积说明完全平方公式吗? b
图(1)
图(2)
如图(1)大正方形的面积等于两个正方形的面积加上两个长方形的面积,即(a + b)2 = a 2+b 2 +ab +ab=a 2+b 2 +2ab ,再转化成课本上的公式就是:(a + b)2 = a 2+2ab +b 2
如图(2)红色正方形的面积等于大正方形的面积减去两个长方形的面积和一个黄色正方形的面积,即 (a -b)2 =a 2-(a -b) b - (a -b)b -b 2 = a 2-ab +b 2 -ab +b 2-b 2 = a 2-2ab +2b 2 -b 2 = a 2-2ab +b 2 ,即得:(a -b)2 = a 2-2ab +b 2
五 课堂小结:
这节课我们讲了完全平方公式,它是中学运用比较多的公式之一,在后面的学习中我们还会利用它进行解题,希望同学们要理解和掌握好完全平方公式,并能灵活应用公式进行计算。
六 课堂练习:
1.(1)(2a +3b)2 = (2)(-2a +3b)2 = (3)(a -1)(a +1)(a 2-1)
2.(1)已知x -2x=2,先化简,再求值:(x -1)2+(x +3)(x -3)+(x -3)(x -1)
(2)化简,求值:(x -3)2 -x (x -8),其中x = 3
3.已知(a +b)2 = 8 ,(a -b)2 =12 ,求a 2+b 2的值。
教学后的反思,根据此教案进行教学,学生能力得到了发展,并且对所学习的知识有更深层次的理解和掌握,此教案能紧紧的结合教材,并通过师生的交流,由开始的复习引入来理解完全平方公式,再到后面思考一的比较说明形变质不变,然后由思考二的数形结合,说明代数与几何的有机联系,都是紧扣主题完全平方公式,这体现在分析和方法上能加以归纳小结,我认为这样的教学研究还是很好的。
a b a b
a a b。