优化铅酸蓄电池化成工艺参数的研究(1)

优化铅酸蓄电池化成工艺参数的研究(1)
优化铅酸蓄电池化成工艺参数的研究(1)

铅酸蓄电池制造工艺

铅酸蓄电池制造工艺流程 1、极板的制造 包括:铅粉制造、板栅铸造、极板制造、极板化成、装配电池。 ⑴铅粉制造设备铸粒机或切段机、铅粉机及运输储存系统; ⑵板栅铸造设备熔铅炉、铸板机及各种模具; ⑶极板制造设备与膏机、涂片机、表面干燥、固化干燥系统等; ⑷极板化成设备充放电机; ⑸水冷化成及环保设备。 2、装配电池设备 汽车蓄电池、摩托车蓄电池、电动车蓄电池、大中小型阀控密封式蓄电池装配线、电池检测设备(各种电池性能检测)。 ⑴典型铅酸蓄电池工艺过程概述 铅酸蓄电池主要由电池槽、电池盖、正负极板、稀硫酸电解液、隔板及附件构成。 ⑵工艺制造简述如下 铅粉制造:将1#电解铅用专用设备铅粉机通过氧化筛选制成符合要求的铅粉。 板栅铸造:将铅锑合金、铅钙合金或其她合金铅通常用重力铸造的方式铸造成符合要求的不同类型各种板板栅。 极板制造:用铅粉与稀硫酸及添加剂混合后涂抹于板栅表面再进行干燥固化即就是生极板。 极板化成:正、负极板在直流电的作用下与稀硫酸的通过氧化还原反

应生产氧化铅,再通过清洗、干燥即就是可用于电池装配所用正负极板。 装配电池:将不同型号不同片数极板根据不同的需要组装成各种不同类型的蓄电池。 3、板栅铸造简介 板栅就是活性物质的载体,也就是导电的集流体。普通开口蓄电池板栅一般用铅锑合金铸造,免维护蓄电池板栅一般用低锑合金或铅钙合金铸造,而密封阀控铅酸蓄电池板栅一般用铅钙合金铸造。 第一步:根据电池类型确定合金铅型号放入铅炉内加热熔化,达到工艺要求后将铅液铸入金属模具内,冷却后出模经过修整码放。 第二步:修整后的板栅经过一定的时效后即可转入下道工序。板栅主要控制参数:板栅质量;板栅厚度;板栅完整程度;板栅几何尺寸等; 4、铅粉制造简介 铅粉制造有岛津法与巴顿法,其结果均就是将1#电解铅加工成符合蓄电池生产工艺要求的铅粉。铅粉的主要成份就是氧化铅与金属铅,铅粉的质量与所制造的质量有非常密切的关系。在我国多用岛津法生产铅粉, 而在欧美多用巴顿法生产铅粉。 岛津法生产铅粉过程简述如下: 第一步:将化验合格的电解铅经过铸造或其她方法加工成一定尺寸的铅球或铅段; 第二步:将铅球或铅段放入铅粉机内,铅球或铅段经过氧化生成氧化铅; 第三步:将铅粉放入指定的容器或储粉仓,经过2-3天时效,化验合格后

铅酸蓄电池结构详解

铅酸蓄电池结构详解 一、蓄电池的功用 蓄电池种类较多,根据电解液不同,有酸性和碱性之分。由于铅酸蓄电池内阻小,电压稳定,在短时间内能供给较大的起动电流,而且结构简单,价格较低,所以在汽车拖拉机上被广泛采用。 蓄电池为一可逆直流电源,在汽车拖拉机上及发电机并联,它的主要作用是: (1)发动机起动时,蓄电池向起动机和点火装置供电。起动发动机时,蓄电池必须在短时间内(5~10s)给起动机提供强大的起动电流(汽油机为200~600A。柴油机有的高达1000A)。 (2)在发电机不发电或电压较低发动机处于低速时,蓄电池向点火系及其它用电设备供电,同时向交流发电机供给他激励磁电流。(3)当用电设备同时接入较多,发电机超载时,蓄电池协助发电机共同向用电设备供电。 (4)当蓄电池存电不足,而发电机负载又较少时,可将发电机的电能转变为化学能储存起来,即充电。 (5)蓄电池还有稳定电网电压的作用。当发动机运转时,交流发电机向整个系统提供电流。蓄电池起稳定电器系统电压的作用。蓄电池相当于一个较大的电容器,可吸收发电机的瞬时过电压,保护电子元件不被损坏。延长其使用寿命。 二、蓄电池的构造

车用12V蓄电池均由6个单格电池串联而成,每个单格的标称电压为2V,串联成12V的电源,向汽车拖拉机用电设备供电。 蓄电池主要由极板、电解液、格板、电极、壳体等部分组成。 1.极板 极板分为正极板和负极板两种。蓄电池的充电过程是依靠极板上的活性物质和电解液中硫酸的化学反应来实现的。正极板上的活性物质是深棕色的二氧化铅(PbO2),负极板上的活性物质是海绵状、青灰色的纯铅(Pb)。 正、负极板的活性物质分别填充在铅锑合金铸成的栅架上,加入锑的目的是提高栅架的机械强度和浇铸性能。但锑有一定的副作用,锑易从正极板栅架中解析出来而引起蓄电池的自行放电和栅架的膨胀、溃烂,从而影响蓄电池的使用寿命。 负极板的厚度为1.8mm,正极板为2.2mm,为了提高蓄电池的容量,国外大多采用厚度为1.1~1.5mm的薄型极板。另外,为了提高蓄电池的容量,将多片正、负极板并联,组成正、负极板组。在每单格电池中,负极板的数量总比正极板多一片,正极板都处于负极板之间,使其两侧放电均匀,否则因正极板机械强度差,单面工作会使两侧活性物质体积变化不一致,造成极板弯曲。 2.隔板 为了减少蓄电池的内阻和体积,正、负极板应尽量靠近但彼此又不能接触而短路,所以在相邻正负极板间加有绝缘隔板。隔板应具有多孔性,以便电解液渗透,而且应具有良好的耐酸性和抗碱性。

切削过程仿真及工艺参数优化

第33卷第3期2007年6月 东华大学学报(自然科学版) J OU RNAL O F DON GHUA UN IV ERSIT Y (NA TU RAL SCIENCE ) Vol 133,No.3J un.2007 文章编号:16710444(2007)03028703 切削过程仿真及工艺参数优化 3 李蓓智,黄 昊,王胜利(东华大学机械工程学院,上海201620) 摘 要:加工工艺及其相关参数优化是协调加工质量、效率和成本等目标的主要途径之一.以切削过程为对象,研究 基于有限元法(FEM )的切削过程建模与分析方法,考察了切削工艺参数对切削力的作用及其优化策略,根据切削力计算、仿真和实验对比结果,指出现有切削效应分析方法及相关仿真软件的应用尚有一些值得进一步深入研究的内容. 关键词:有限元法;切削过程仿真;工艺参数优化;切削力中图分类号: T G 501.1;TP 391.9 文献标志码:A C u t t i n g P r o c e s s S i m u l a t i o n a n d P a r a m e t e r O p t i m i z a t i o n L I B ei 2z hi ,HUA N G H ao ,W A N G S heng 2li (College of Mech anical E ngineering ,Donghu a U niversity ,Sh angh ai 201620,China) Abstract :Machining process and it s parameter is one of t he main ways t hat harmonize t he target s on t he quality ,t he efficiency and t he cost.The modeling and analysis met hod of t he cutting process are st udied based on t he finite element met hod (FEM ).The effect of t he cutting process parameter on t he cutting force is investigated and t he optimization met hod is given.According to t he co nt rast result of t he cutting force simulation and calculatio n based t he experiment ,it can be pointed out t hat t here is still a lot of research on t he cutting effect analysis met hod and t he applicatio n of t he simulation software. K ey w ords :finite element met hod ;cutting process simulation ;p rocess parameter optimization ;cutting force 机械加工是最广泛应用的机械零件制造工艺, 随着科学技术的飞速发展和全球市场的形成,高性能加工问题已成为越来越多企业家和专家学者的关注重点[1].高性能加工是在保证和提高产品制造质量前提下,使效率最高、成本最低的加工优化问题.国内外的相关研究包括:高速、高精度加工机理研究[2,3];刀具材料研究、刀具几何参数及其结构的优化设计[46];加工工艺及其参数优化设计[79];工 艺系统故障诊断与加工过程监控[4,10,11];基于有限元法的加工过程建模与分析方法[1214]等. 在已确定的加工环境下,优化加工工艺及其相关参数是协调加工质量、效率和成本目标的主要途径之一.为此,本文将以车削过程为对象,研究基于有限元法的加工过程建模与分析方法,建立切削加工工艺参数优化策略及其条件,并探讨现有切削过程分析方法尚存在的不足及其解决方法. 3 收稿日期 :20070110 作者简介:李蓓智(1953),女,上海人,教授,博士,研究方向为先进制造工艺与装备、现代集成制造方法与系统.E 2mail :lbzhi @dhu. https://www.360docs.net/doc/2918865811.html,

免维护铅酸蓄电池的结构

免维护铅酸蓄电池的结构
免维护铅酸蓄电池的结构 免维护铅酸蓄电池的结构 人们常说的免维护蓄电池正规名称叫做阀控式密封铅酸蓄电池,它作为电动车的 动力源使用广泛。电动车用的阀控式密封铅酸蓄电池从外表看,有外壳、阀盖、接线 端子。接线端子周边的密封材料分别用红色和黑色(或者蓝色)来表明正极和负极。 12V 的电池内部分为 6 个独立的相互隔绝的单格,每个单格内有用各自的汇流导体连接 的正极板群和负极板群。铅酸蓄电池的极板犹如钢筋水泥的结构,是在合金丝的筛网 状的骨架上涂敷(或者轧制)活性物质形成的:正极板上的物质是二氧化铅(PbO2),负极 板上的物质是绒状铅(Pb)。每一个正、负极板之间都隔着多孔的超细纤维物质(也有使 用二氧化硅胶物质填充的),其中吸附着硫酸(H2SO4)电解液,这个纤维物质(或硅胶物 质)是电化学反应过程中液相传输和气相传输的通道,它和正、负极板群被紧密地装配 在一起,形成一个 2V 的电池单体。由于铅酸蓄电池在充电时极板不可避免的会产生氢 气和氧气,当它们产生的过多并且来不及化和成水的时候就会在单格内形成压力。为 了保证蓄电池正常安全的工作,每个单格都设有自己的溢气阀,当压力过量时让气体 自动逸出。相对于电池槽里装满电解液体的富液电池而言,阀控式密封铅酸蓄电池内 部只蕴含着很少的电解液,属于贫液电池。尽管如此,由于设计时电解液有一定的冗 余,并且在溢气阀压力的保护下只要使用合理,由气体逸出造成的水损失极小,以至 阀控蓄电池的电解液在寿命过程中基本不用补充,因此阀控式密封铅酸蓄电池也被称 为免维护蓄电池。以上是电动自行车常用的阀控式密封铅酸蓄电池的结构示意图。图 中 6 个 2V 的单格串联成 12V 的电池,电动自行车就是由 2 个、3 个或者 4 个这样的电
1 / 10

免维护铅酸蓄电池10大常见问题解答

免维护铅酸蓄电池10大常见问题解答: 1、什么是免维护铅酸蓄电池? 免维护铅酸蓄电池英文为Valve Regulated Lead Battery(简称VRLA电池),其基本特点是使用期间不用加酸加水维护,电池为密封结构,不会漏酸,不会排酸雾,电池盖子上设有单向排气阀(又叫安全阀),该阀的作用是当电池内部气体压力超过一定值,安全阀自动打开,排出气体,然后自动关闭,常规状态下安全阀是密闭的。 VRLA电池与传统铅酸蓄电池的最大区别是,传统蓄电池非密封,由于挥发、反应等过程,电池会失酸失水,需要定期加酸加水,最常见的传统蓄电池就是汽车蓄电池,生活中叫做电瓶来的。 2、免维护铅酸蓄电池的分类? 分AGM(普通型)与GEL(胶体)两类;AGM采用玻璃纤维棉(Absorbed Glass MAT)做隔膜,电解液吸附在极板与隔膜中,贫液式设计,电池内无流动电解液。GEL(胶体)采用二氧化硅做凝固剂,电解液吸附在极板和胶体内,使用环境适应性更强。 区别(从应用角度讲): AGM:一般寿命5-12年,温度适用-15度到40度之间,价格适中,大电流放电好,浮充使用好; GEL:一般寿命8-15年,温度适用-25度到60度之间,价格高于AGM,大电流一般,浮充使用最好; 3、免维护铅酸蓄电池的电压是多少?蓄电池容量单位是?电池容量是如何表征的? 目前最常见的单个电池电压有2V、4V、6V、12V、24V。电池的容量单位是AH。目前行业内一般以20AH作为分界点,20AH以下电池称为小密电池,20AH以上电池称为中大密电池;小密电池一般以20小时率来表征容量,大密电池一般以10小时率来表征容量,没有特殊表明,电池容量默认为10小时率或者20小时率。 5、免维护铅酸蓄电池放电终止电压是多少? 电池类型终止电压(C10)终止电压(C20)终止电压(1C)终止电压(3C)小密电池 1.75V/Cell 1.6V/Cell 中大密电池 1.8V/Cell 1.6V/Cell Cell表示电池的单格,每Cell电压近似2V;12V电池有6个单格,终止电压为单格终止电压的6倍;6V电池有3个单格,终止电压为单格终止电压的3倍;其他类推; 6、免维护铅酸蓄电池放电深度是指什么?如何计算? 放电深度是指电池实际放出容量与额定容量的比值; 放电深度=实际放出容量/额定容量; 如:12V75AH电池,额定容量为10小时率75AH,如按照5小时率放电使用,容量表征为65AH,则放电深度为86.7%。 7、普朗特蓄电池的放电深度一般为多少? 小密电池或富液20小时率为100%,10小时率为95%,5h约85%,3h为75%,1h约55~60%; 中大密电池10hr是100%,5hr是85%,3小时75%,1小时60%,1c约40%等,其他的介于其中;

铅酸蓄电池的装配过程

第九章铅酸蓄电池的装配过程及质量控制 铅酸蓄电池的装配是指将极板、隔板、槽盖及电解液配合组装形成铅酸蓄电池的过程,装配是铅酸蓄电池制造的最后一道工序,装配后形成成品蓄电池可以实现电能与化学能的相互转换。 第一节铅酸蓄电池零部件及技术要求 一、极板 极板是铅酸蓄电池的主体部件,是由板栅与活性物质(活化的铅膏)构成,按其结构形式极板分为涂膏式极板和管式极板,按其状态可分为普通极板和干荷电极板,按其功效可分为正极板和负极板。极板在铅酸蓄电池中的主要作用是: 1、电化反应的母体 2、电压形成的电极 3、电流形成的转换体 极板的技术要求详见第八章。 二、隔板 隔板是铅酸蓄电池重要的部件,又称“第三极板”,它的质量优劣直接影响到铅酸蓄电池的功能和功效,隔板由微孔橡胶或塑料或玻璃纤维材料制成,其一般以片状或袋状的形式存在于蓄电池中,其主要的作用是: 1、防止正、负极板接触短路并保证正、负极板实现最短的距离。 2、保证电解液中的正、负离子顺利通过参加电极反应。 3、电解液的载体。 4、阻缓正、负极板铅膏物质的脱落及极板受震损伤。 5、阻止一些对电极有害物质通过隔板进行迁移和扩散。 铅酸蓄电池用隔板应具有以下特性: ⑴、在硫酸中的应具有良好耐腐蚀性; ⑵、具有疏松多孔结构且能吸入大量的电解质溶液; ⑶、浸透性好; ⑷、有满足使用的机械强度和弹性; ⑸、具有一定的抗压性; ⑹、具有较小的电阻; ⑺、在一定温度范围内具有一定的耐温性; ⑻、具有一定耐老化性和耐氧化性。 铅酸蓄电池的种类很多,目前常用的有以下几类: 1、微孔橡胶隔板 微孔橡胶隔板是一种用生胶、硅酸以及其它添加剂制成的、具有10μm以下微孔的平板式隔板。它具有使用寿命长、可制厚度较小、电阻较低、没有毛刺和枝节等优点。缺点是被电解液浸渍的速度比较慢,成本较高,且不易制成0.5mm以下的薄板。此隔板多用于工业电池中。 微孔橡胶隔板的技术要求见表9—1 表9—1 微孔橡胶隔板物理化学性能

蓄电池的化成

蓄电池的化成 什么是“化成”? “化成”即“转化而成”之意,极板化成是指利用化学和电化学反应使极板转化成具有电化学特性的正、负极板的过程。化成以前的极板其铅膏物质的主体部分相同,都是由氧化铅、金属铅、硫酸铅、三碱式硫酸铅、四碱式硫酸铅等物质相组成,原则上不存在正、负极板之分。化成之前的极板不存在铅酸蓄电池电化学反应的所需的正极活性物质二氧化铅。负极活性物质为海棉状铅。虽然在极板结构、工艺添加剂方面形成了正、负极板之分,但此时却不具备铅酸蓄电池放电的正、负极板条件。而通过化成这一过程,使得准备形成正极板的极板铅膏物质转化成为以二氧化铅为主体的物相结构而形成正极板,同时使得准备形成负极板的极板铅膏转化成以海绵状铅为主体的物相结构而形成负极板。化成是蓄电池制造很关键的一道工序,其转化过程的好坏都将直接影响到蓄电池的性能。 对于同配方、同工艺、同批次的铅酸蓄电池,因为在化成过程中采用了不同的电流而会导致活性物质颗粒大小与排列形式的变化.通过研究发现,采用大电流化成有利于形成均匀致密的正极活性物质与界面结构,从而使电池在大电流放电的使用条件下,极板软化速度明显放缓,循环寿命大幅度提高,这一特性非常适合电动车电池的使用要求,因此可以成为电动车电池的主要化成形式.采用间歇脉冲充电方式可以有效控制大电流充电时的温升,为大电流化成在工业生产中的应用扫除了障碍。

一、化成电解液的控制 1、化成电解液密度的控制: 化成电解液密度对极板化成质量有所影响。如果密度较高,浸酸时,极板表面就会生成结晶较粗且较厚的硫酸铅层,使得化成所需的电能增大,时间增长;如果密度较低,浸酸后,初期电解液的导电率降低,且硫酸在极板深处的扩散速率降低,从而使得极板内部的铅膏转化困难,加剧水解析气,降低电流效率,增加耗能及化成时间。因此,在化成过程中,应对化成电解液密度进行控制。 硫酸的密度,以25℃时的密度为准,若测定的硫酸密度若不在25℃可按下式进行换算。 d25 = d t+ a( t-25) 式中: d25—换算成25℃时的硫酸密度(g/cm3); d t—温度为t℃时的硫酸密度(g/cm3); t —电解液实测温度(℃); a —硫酸密度的温度系数。 a=??? 2、化成电解液数量的控制: 极板化成时,所用的化成电解液量直接影响极板的化成质量。极板浸入电解液后,立即发生中和反应,使硫酸浓度降低,在化成开始后一段时间,化成电解液密度继续降低,到了化成中期,密度逐渐上升,后期达到基本不变。故在化成过程中,化成电解液的密度是一个变量,而其变化的幅度与化成电解液的数量有关。当液量较多时,密度变化就小,有利于极板化成和散热。当液量较少时,其密度变化就

铅酸蓄电池发展简史

铅酸蓄电池发展简史 铅酸蓄电池1859年由法国人普兰特创造,1881年法国人富尔发明以铅化合物涂在铅片上,可以很快形成活性物质。 ①20世纪20年代由美国EXIDE公司推出的管式极板,用多缝隙的 硬橡胶管容纳活性物质,以一支铅合金棒插在中间导电,这就大大提高了要板的耐深度充放电的能力,硬橡胶管现已由无纺布或玻璃纤维管所取代,管式极板多用于动力牵引型蓄电池。 ②50年代由美国DELCO公司首先推出用无锑合金为板栅的免维护 汽车蓄电池,免去了以往汽车蓄电池须定期补水的工作,现在免维护式已经是汽车蓄电池的主要选择。 ③70年代由美国DEVIFF氏创新的阀控式蓄电池。 ④1970年以来出现拉网式板栅(目前国内湖北骆驼及保定风帆等)微孔PE及PVC隔板 单体间的穿壁焊技术(汽车及摩托车电池) 铅钙合金的加铝及加锡 铅酸蓄电池的基本结构与分类 铅酸蓄电池由正极板、负极板、隔板、电槽及电解液组成,此外还有一些零件如气塞、连接条、极柱等等,分述如下: ⑴正极板包括涂膏式、形成式、铅布式、铅箔式等 ⑵负极板包括涂膏式、铅布式、铅箔式。 ⑶隔板包括微孔橡胶式、PVC、微孔PVC(叉车电池)、AGM (阀控铅酸蓄电池).PE代式隔板(汽车免维护电池)

⑷电池槽硬橡胶式及塑料槽(ABS及PP料等)如我们公司阀控电池用ABS;汽车及摩托车免维护电池用PP料 ⑸电解液一律为稀硫酸(1.28,1.23,1.26,1.29,1.315,1.325,1.34);有一部分做成胶体 铅酸蓄电池的主要品种 1、起动用蓄电池:这是铅酸蓄电池品种中最大的一个,专为汽车 的起动、照明、点火提供能源。因要求放电电流大,故均用薄的涂膏式极板组成,最早每只为6V,现今为12V,正在向36V转变2、固定型蓄电池,作为备用电源,广泛用于邮电、电站、医院、 会堂等处。 3、助力车蓄电池(如12V12AH及12V18AH) 4、铁路客车蓄电池 5、内燃机车用蓄电池专供内燃机车起动及照明,长期使用管式 极板,近年来已改为涂膏式阀控蓄电池,型号为NG-462等。 6、摩托车用蓄电池用于摩托车的起动点火与照明 7、牵引蓄电池用于各种蓄电池、叉车、铲车、矿车、矿用电 机车、要求深充放。多采用管式正极板。 铅酸蓄电池的分类 A、按极板型式分 1、形成式正极板为纯铅板用电化方法生成过氧化铅、负极板 曾经用箔式,后改为涂膏式。 2、涂膏式这是用得最广泛的,即以铅合金板栅涂上铅膏。

阀控式免维护铅酸蓄电池的充电条件的建议

阀控式免维护铅酸蓄电池的充电条件的建议 以下阀控式免维护铅酸蓄电池简称电池 一、电池怕什么 1、高温:高温使用会加速正极板腐蚀,加速电池失水,环境温度30℃以上温度每升高10℃电池寿命减半;大多数电池环境温度达到40℃时就要停止充电,达到50℃停止放电。 2、过充:轻微过充会加快电池失水,失水过多会导致电解液比重增高,导致电池正极栅板的腐蚀加快,使电池的活性物质减少从而使电池的容量降低,也会导致电池更容易热失控。 电池在环境温度25℃单体电压达到2.3V正极开始产生氧气,氧气被负极吸收化合成水,反应如下: O2 + 2Pb →2PbO PbO + H2SO4→ H2O +PbSO4 但不可能所有的氧气都能化合成水,并且过充时正极释放的氧气会越来越快、越多,氧气与氢化合成水的合成率会越来越低,最终导致加快失水; 以下是某资料的说法: PS:均充就属于过充,所以要严格控制均充的频次和时间,能不均充尽量不要均充。 3、长时间欠充:电池负极栅板的主要活性物质是海棉状铅电池充电时负极栅板发生如下化学反应:PbSO4 + 2e = Pb + SO4 , 正极上发生氧化反应:PbSO4 + 2H2O = PbO2 + 4H+ + SO4 + 2e 放电过程发生的化学反应是这一反应的逆反应,当电池的荷电不足时在电池的正负极栅板上就有PbSO4 存在,PbSO4 长期存在会失去活性不能再参与化学反应,这一现象称为活性物质的硫酸化,硫酸化使电池的活性物质减少,降低电池的有效容量也影响电池的气体吸收能力,久之就会使电池失效。因此,为防止硫酸化的形成,电池必须经常保持在充足电的状态。 4、大电流放电和过放电:电池放电电流不宜过大一般不超过3C,更要避免短路放电。放电时要保护电池端电压不要低于相应放电速率下的终止电压,以防蓄电池过度放电导致蓄电池性能下降和寿命缩短,放电后应该及时充电不允许蓄电池在放电状态下长期搁置(阳光的管式胶体除外)。 二、浮充和均充 1、浮充:在电源系统中电池总是在线备用工作的,这样电池基本处于长期的浮充状态中,浮充电压的选取对电池的长期可靠运行起着至关重要的作用,正如前面所述偏高的浮充电压会造成电池缓慢失水并发展产生热失控而使电池失效,偏低的浮充电压会造成电池长期处于充不饱电的状态使电池发生硫酸化而导致电池失效。正确的浮充电压一般应选在2.23 -2.25V/单体. 并应随同电池工作温度进行相应调整,由于电池生产厂家的不同这一参数会有一些差异应严格按照厂家提供的参数选取。 浮充是为了补充电池自放电而设定的充电过程,其选择原则是使正板栅合金阳极氧化电位处于腐蚀电流最小的电位区,在铅的阳极氧化电位和氧化电流密度关系中不同的正板栅合金其阳极氧化腐蚀电流最小的电位区不同,所以,浮充电压值也不同。 电池由于板栅合金成分不同浮充电压选定值也不同Pb-Sb 合金系列电池浮充电压为

免维护蓄电池的正确使用与维护

免维护蓄电池的正确使用与维护 免维护蓄电池的正确使用与维护 1、在蓄电池极柱和盖的周围常会有黄白色的糊状物,这是因为硫酸腐蚀了根柱、线卡、固定架等造成的。这些物质的电阻很大,要及时清除。 2、普通铅酸蓄电池要注意定期添加蒸馏水。干荷蓄电池在使用之前最好适当充电。至于可加水的免维护蓄电池并不是不能维护适当查看必要时补充蒸馏水有助于延长使用寿命。 3、时常查看极柱和接线头连接得是否可靠。为防止接线柱氧化可以涂抹凡士林等保护剂。 4、不可用直接打火(短路试验)的方法检查蓄电池的电量这样会对蓄电池造成损害。 5、检查蓄电池在支架上的固定螺栓是否拧紧,安装不牢靠会因行车震动而引起壳体损坏。另外不要将金属物放在蓄电池上以防短路。 6、当需要用两块蓄电池串联使用时蓄电池的容量最好相等。否则会影响蓄电池的使用寿命。 7、蓄电池盖上的气孔应通畅。蓄电池在充电时会产生大量气泡若通气孔被堵塞使气体不能逸出当压力增大到一定的程度后就会造成蓄电池壳体炸裂。 一般免维护电池从出厂到使用可以存放10个月,其电压与电容保持不变,质量差的在出厂后的3个月左右电压和电容就会下降。在购买时选离生产日期有3个月的,当场就可以检查电池的电压和电容是否达到说明书上的要求,若电压和电容都有下降的情况则说明它里面的材质不好,那么电池的质量肯定也不行,有可能是加水电池经过经销商充电后伪装而的。 免维护蓄电池保养方法: 一、保养要求: 1、检查蓄电池在车上是否固定好,外壳表面是否有磕碰伤; 2、蓄电池电缆是否连接可靠,排气孔是否有灰尘; 3、通过蓄电池上的电眼检查充电情况和质量状态,绿色表示合格,黑色表示亏电,白色表示电池损坏需要更换。 二、补充充电: 1、如果长时间不使用车辆或充电系统有故障,当蓄电池负载电压低于10V,空载电压低于12.4V必须补充充电; 2、采风恒电限流充电方法,多只蓄电池充电必须采用串联连接; 3、充电第一阶段,以蓄电池容量的1/10电流充电,其充电电流为6A。充电至平均每只电池电压达到16A后转为第二阶段充电; 4、充电第二阶段,以蓄电池容量x0.045的电流充电,如6-QW-60蓄电池,充电电流为60x0.045=2.7A。充电至平均每只电池电压达到16V后再继续充3-5个小时; 5、充电时电解液湿度超过40度时,应采取停止充电,减少电流或物理降温,当湿度达到45度时必须停止充电; 6、充电间保证良好通风,不许有明火和易燃物; 7、充足电标准,电眼为绿色。 三、快速充电: 1、快速充电仅限于汽车不能启动的应急措施,时间容许的条件下尽量采用普通充电机; 2、快速充电电流为蓄电池容量的3/10; 3、快速充电时间不超过2小时。 四、充电系统故障诊断:

铅酸蓄电池设计计算

VRLA电池酸量确定 VRLA电池相对于以前的开口富液式电池,其最大的优势是在电池寿命期间不需要添加电解液或水维护,电池可以任意位置放置使用等等。这就要求电解液被完全固定在AGM隔板和活性物质中不能流动,并且为了实现其寿命期间不需要加酸加水维护,就必须要实现电池寿命期间内的氧循环,即不能有电解液的损失。而形成氧循环的关键一点要求就是要严格限定电池的内的酸液总量,并且必须保证AGM隔板留有10%左右的孔不被电解液所淹没,从而为氧气的循环复合提供通道。但是又必须要求电池中电解液的总量能够维持活性物质放电反应的需要。 要想使电池中电解液总量完全够用,又能够为氧气的循环复合提供通道,就需要根据电池的实际用途,正确确定和控制电池的加酸量,下面将从三个大的方面来探讨VRLA电池加酸量确定的问题。 1、最低加酸量 VRLA电池需要的酸体积,取决于电池放电态与荷电态所要求的电解液密度以及电池放电过程输出的总电量和放电率。通常在VRLA设计时,荷电态的电解液密度要求1.28-1.30g/cm3,当其放出100%额定容量时又希望电解液密度为1.07-1.09g/cm3.这就要求电池中电解液总量至少必须满足能够维持电池在一定条件下放出其额定容量所必须消耗的电解液

总量,因此VRLA电池的最低用酸量可根据电池反液压方程式推导如下: PbO2 + Pb + 2H2SO4 = 2PbSO4 + 2H2O 根据电池充放电反应的方程式,结合充放电态物质各自的电化学当量值可知,电池每放出1AH的电量,要消耗纯的H2SO4 3.66g,生成水0.67g. 设放电开始时电池中电解液密度为ρ1(15℃),对应的质量百分比浓度为m%,放电终了时电解液密度为ρ2,对应的质量百分比浓度为n%。当电解液浓度由ρ1降到ρ2时,反应开始时加入的密度为ρ1的酸的体积为V ml。则根据电池反应式中每放出1AH电量所消耗的硫酸量为3.66g,生成的水的质量为0.67g,经过方程式两边等值计算,整理得出VRLA电池中每放出1AH电量的最低用酸体积V的表达式为: V = (3.66-2.99n)/[(m-n)ρ1] 如果设定电池荷电态的电解液密度为1.28g/cm3,放电态的电解液密度为1.08 g/cm3,则将各自对应的质量百分比数值带入最低用酸体积V的表达式中可以得出放电容量为C的电池的最低用酸体积为: V = (3.66-2.99×11.5%)/[(36.8-11.5)% ×1.28] C = 10.24C

V6V12V免维护蓄电池参数表

蓄电池NP(FM)系列 特点: 免维护无须补液内阻小,大电流放电性能好适应温度广(-35- 45℃) 自放电小 使用寿命长(8-10年)荷电出厂,使用方便 安全防爆 独特配方,深放电恢复性能 好 无游离电解液,侧倒90 度仍能使用 型号 额定电 压(V) 标称容量 (Ah) 参考尺寸(mm)±2 端子 形式 长宽高 总 高

蓄电池GFM系列 特点: 免维护无须补液内阻小,大电流放电性能好 适应温度广(-35- 45℃) 自放电小 使用寿命长荷电出厂,使用方便 安全防爆独特配方,深放电恢复性能好

无游离电解液,侧倒90度仍能使用 型号额定电 压(V) 标称容量 25℃(Ah) 外型尺寸(mm)±2 端子 形式 长宽高 总 高 GFM50-2 2 50 161 50 166 166 F GFM100-2 2 100 171 71 205 228 G GFM150-2 2 150 172 102 205 228 G GFM200-2 2 200 173 111 330 365 G GFM250-2 2250 173 111 330 365 F GFM300-2 2 300 171 151 330 365 F GFM400-2 2 400 211 176 330 365 F GFM450-2 2450 223 187 351 378 F GFM500-2 2 500 241 172 331 365 F GFM600-2 2 600 301 175 331 365 F GFM700-2 2700 301 175 331 365 F GFM750-2 2750 301 175 331 365 F GFM800-2 2 800 410 175 330 365 F

阀控式密封和免维护铅酸蓄电池的寿命影响

阀控式密封和免维护铅酸蓄电池的寿命影响 摘要:本文讨论了阀控式密封和免维护铅酸蓄电池作为太阳能灯具、光伏电站和光伏户用系统的储能电源,在全天候运行时的耐候性问题,即自然环境下温度对蓄电池寿命、容量的影响,以及光伏系统储能铅酸蓄电池研究、开发。 关键词:VRLA蓄电池胶体铅酸蓄电池免维护铅酸蓄电池环境温度蓄电池寿命蓄电池容量蓄电池研发方向 近年来,太阳电池的光伏发电技术得到了世界各国的高度重视。从欧美的太阳能光伏“屋顶计划”到我国的西部光伏发电项目。太阳能光伏发电已经显示了其强劲的发展势头。随着光伏发电技术的发展和低成本光伏组件的产业化,太阳能灯具、光伏电站和光伏户用电源,均要求蓄电池供应商能够提供全天候运行的蓄电池,而目前光伏系统多采用阀控式密封铅酸蓄电池(以下简称铅酸蓄电池缩写为VRLAB)胶体铅酸蓄电池和免维护铅酸蓄电池(不是VRLA蓄电池)作为储能电源。耐候性是指蓄电池适应自然环境的特性。本文主要讨论自然环境下温度对蓄电池寿命、容量的影响及解决方法,以及储能铅酸蓄电池研究发展方向。上述三种产品在河北奥冠电源公司已批量生产,山东皇明太阳能公司做储能蓄电池已配套应用,现场试验效果很好。 一、温度对铅酸蓄电池寿命的影响 VRLA铅酸蓄电池受温度影响较大,按阿里纽斯原理,在大于40℃,温度升高10度,寿命降低一倍,寿命终止的主要原因是:(一)硫酸电解液干涸;(二)热失控;(三)内部短路等。(一)硫酸电解液干涸: 硫酸电解液作为参加化学反应的电解质,在铅酸蓄电池中是容量的主要控制因素之一。酸液干涸将造成电池容量降低,甚至失效。造成电池干涸失效这一因素是铅酸电池所特有的。酸液干涸的原因:(1)气体再化合的效率偏低,析氢析氧、水蒸发;(2)从电池壳体内部向外渗水;(3)控制阀设计不当;(4)充电设备与电池电压不匹配,电池电压过高、发热、失水、干涸而失效。 VRLA铅酸蓄电池受到上述(1)(2)(3)(4)四种因素的影响,其中(2)(3)(4)三种因素引起的失水速度随环境温度的上升而加快,从而加速了铅酸蓄电池以干涸方式失效。酸液干涸是影响VRLA铅酸蓄电池寿命的致命因素,VRLA蓄电池不适于在35℃以上高温条件下使用。 (二)热失控: 蓄电池在充放电过程中一般都产生热量。充电时正极产生的氧到达负极,与负极的绒面铅反应时会产生大量的热,如不及时导走就会使蓄电池温度升高。蓄电池若在高温环境下工作,其内部积累的热量就难以散发出去,就可能导致蓄电池产生过热、水损失加剧,内阻增大,更加发热,产生恶性循环,逐步发展为热失控,最终导致蓄电池失效。 VRLA铅酸蓄电池由于采用了贫液式紧装配设计,隔板中保持着10%的孔隙酸液不能进入,因而电池内部的导热性极差,热容量极小。VRLA铅酸蓄电池之所以在高温环境下非凡分类生热失控,是由于安全阀排出的气体量太少,难以带走电池内部积累的热量。热失控的巨热将使蓄电池壳体发生严重变形、胀裂、蓄电池彻底失效。 (三)内部短路:由于隔膜物质的降解老化穿孔,活性物质的脱落膨胀使两极连接,或充电过程中生成枝晶穿透隔膜等引起内部短路。深放电之后的蓄电池,其吸附式隔板易出现铅绒或弥散型沉淀,或形成枝晶,导致正负极板微短路。 由于VRLA铅酸蓄电池的负极冗余设计,充电的初、中期充电效率比正极板充电效率高,所以在正极板析氧之前,负极已生成足够的绒面铅,用于使氧进行再化合。在制作蓄电池过程中,以负极活性物质的量作为控制因素,可以减缓电池性能的恶化。

铅酸蓄电池制造工艺流程及主要设备(精)

铅酸蓄电池制造工艺流程及主要设备 1、极板的制造 包括:铅粉制造、板栅铸造、极板制造、极板化成等。 ⑴铅粉制造设备铸粒机或切段机、铅粉机及运输储存系统; ⑵板栅铸造设备熔铅炉、铸板机及各种模具; ⑶极板制造设备和膏机、涂片机、表面干燥、固化干燥系统等; ⑷极板化成设备充放电机; ⑸水冷化成及环保设备。 2、装配电池设备 汽车蓄电池、摩托车蓄电池、电动车蓄电池、大中小型阀控密封式蓄电池装配线、电池检测设备(各种电池性能检测)。 ⑴典型铅酸蓄电池工艺过程概述 铅酸蓄电池主要由电池槽、电池盖、正负极板、稀硫酸电解液、隔板及附件构成。⑵工艺制造简述如下 铅粉制造:将1#电解铅用专用设备铅粉机通过氧化筛选制成符合要求的铅粉。板栅铸造:将铅锑合金、铅钙合金或其他合金铅通常用重力铸造的方式铸造成符合要求的不同类型各种板板栅。 极板制造:用铅粉和稀硫酸及添加剂混合后涂抹于板栅表面再进行干燥固化即是生极板。极板化成:正、负极板在直流电的作用下与稀硫酸的通过氧化还原反应生产氧化铅,再通过清洗、干燥即是可用于电池装配所用正负极板。 装配电池:将不同型号不同片数极板根据不同的需要组装成各种不同类型的蓄电池。 3、板栅铸造简介 板栅是活性物质的载体,也是导电的集流体。普通开口蓄电池板栅一般用铅锑合金铸造,免维护蓄电池板栅一般用低锑合金或铅钙合金铸造,而密封阀控铅酸蓄电池板栅一般用铅钙合金铸造。 第一步:根据电池类型确定合金铅型号放入铅炉内加热熔化,达到工艺要求后将铅液铸入金属模具内,冷却后出模经过修整码放。 第二步:修整后的板栅经过一定的时效后即可转入下道工序。板栅主要控制参数:板栅质量;板栅厚度;板栅完整程度;板栅几何尺寸等; 4、铅粉制造简介 铅粉制造有岛津法和巴顿法,其结果均是将1#电解铅加工成符合蓄电池生产工艺要求的铅粉。铅粉的主要成份是氧化铅和金属铅,铅粉的质量与所制造的质量有非常密切的关系。在我国多用岛津法生产铅粉,而在欧美多用巴顿法生产铅粉。岛津法生产铅粉过程简述如下:

注塑工艺标准参数优化

'' 培训课程 2 工艺参数的优化

受训者手册 德马格注塑机工艺参数优化的步骤指导 页面周期分析 3 注塑工艺参数优化 6 步骤 1: 找出转压点7 步骤 1结果8 步骤 2: 找出保压时间(浇口冷凝时间) 9 步骤 2 结果10 步骤 3: 优化注射速度11 步骤 3 结果12 步骤 4: 采用正确的螺杆转速13 步骤 4 结果14 步骤 5: 优化多级螺杆转速和背压曲线15 步骤 5 结果16 步骤 6: 优化松退17 步骤 6 结果18 步骤 7: 优化保压曲线19 步骤 7 结果20 TABULATED RESULTS 21 步骤 8: 优化锁模力22 步骤 8 结果22 步骤 9: 设定注射压力23 步骤 9 结果23 典型工艺参数公差设定24

成型周期分析 采用下面表格估计注塑过程中的每一阶段对周期的影响. 然后去机床看正在运行的模具, 写下实际的时间并计算出百分比. 哪一阶段在整个周期中占最多的时间? 那里可以是最有效的缩短成型周期?

模具 1 估计 % 实际实 评价 际% 合模 射台前进和后退 注射时间 保压时间 冷却时间 开模 顶出 整个成型周期 100% seconds 100%

模具 2 评价 估计 % 实际实 际% 合模 射台前进和后退 注射时间 保压时间 冷却时间 开模 顶出 整个成型周期 100% seconds 100%

工艺参数优化 目标: ?一步步改进工艺过程稳定性. ?评估各个参数的更改对工艺过程稳定性的影响 ?to demonstrate the cumulative improvemnt in the process and product consistency 方法: At each stage, after the process has been given sufficient time to stabilise, a run of sixteen consecutive mouldings is to be made. These mouldings will be assessed for consistency by weight (a dimension, a physical property or some other attribute could equally well be used, weight is simply the most widely applicable). 稳定性通过计算重量的标准偏差来衡量. 同时打印出机床IBED上的过程统计数据. 1. 找出转压点 2. 找出浇口冷却时间 3. 优化注射速度 4. 采用正确的螺杆转速 5. 优化多级预塑曲线 6. 优化松推 7. 优化多级保压曲线 8. 优化锁模力 9. 设定注射压力限定

免维护铅酸蓄电池参数

免维护铅酸蓄电池的的基本知识 人们常说的免维护蓄电池正规名称叫做阀控式密封铅酸蓄电池。阀控式密封铅酸蓄电池从外表看,有外壳、阀盖、接线端子。接线端子周边的密封材料分别用红色和黑色(或者蓝色)来表明正极和负极。 12V的电池内部分为6个独立的相互隔绝的单格,每个单格内有用各自的汇流导体连接的正极板群和负极板群。铅酸蓄电池的极板犹如钢筋水泥的结构,是在合金丝的筛网状的骨架上涂敷(或者轧制)活性物质形成的:正极板上的物质是二氧化铅(PbO2),负极板上的物质是绒状铅(Pb)。每一个正、负极板之间都隔着多孔的超细纤维物质(也有使用二氧化硅胶物质填充的),其中吸附着硫酸(H2SO4)电解液,这个纤维物质(或硅胶物质)是电化学反应过程中液相传输和气相传输的通道,它和正、负极板群被紧密地装配在一起,形成一个2V的电池单体。由于铅酸蓄电池在充电时极板不可避免的会产生氢气和氧气,当它们产生的过多并且来不及化和成水的时候就会在单格内形成压力。为了保证蓄电池正常安全的工作,每个单格都设有自己的溢气阀,当压力过量时让气体自动逸出。相对于电池槽里装满电解液体的富液电池而言,阀控式密封铅酸蓄电池内部只蕴含着很少的电解液,属于贫液电池。尽管如此,由于设计时电解液有一定的冗余,并且在溢气阀压力的保护下只要使用合理,由气体逸出造成的水损失极小,以至阀控蓄电池的电解液在寿命过程中基本不用补充,因此阀控式密封铅酸蓄电池也被称为免维护蓄电池。 蓄电池的电压多少伏算正常?

人们常说:这个蓄电池电压是12V的。这里所说的12V是指蓄电池的最基本参数——标称电势(单位V)。一个铅酸蓄电池单格标称电势为2V,由6个单格串连起来的蓄电池标称电势就是12V。电动车使用的电源一般都是用2到5个12V的蓄电池串连组成24V、36V、48V、60V电池组,这里都是指蓄电池组的标称电势,它是由蓄电池所采用活性物质的特性决定的理论值。实际上,不同的状况下蓄电池的电压和标称电势存在差异。比如:一个标称电势为12V的正常的铅酸蓄电池在充电过程的末期,充电极化达到最大值,电压可以达到14.4V或更高一点;在放电将终了时,放电极化达到最大值,电压可以低到9V左右。而充电或者放电停止并且静置数小时后,极化电压(浓度极化)完全消失,这个12V的蓄电池的电势可以在13.8V (充满后)至11V(放完后)之间,此时的差异是蓄电池内部的活性物质状态的改变造成的。 电池容量(Ah)的含义是什么? 蓄电池的额定容量C,单位安时(Ah),它是放电电流安(A)和放电时间小时(h)的乘积。由于对同一个电池采用不同的放电参数所得出的Ah 是不同的,为了便于对电池容量进行描述、测量和比较,必须事先设定统一的条件。实践中,电池容量被定义为:用设定的电流把电池放电至设定的电压所给出的电量。也可以说电池容量是:用设定的电流把电池放电至设定的电压所经历的时间和这个电流的乘积。为了设定统一的条件,首先根据电池构造特征和用途的差异,设定了若干个放电时率,最常见的有20小时、10小时时率、电动车专用电池为2小时率,写做C20、C10和C2,其中C代表电池容量,后面跟随的数字表示该类电池以某种强度的电流放

铅酸蓄电池内化成工艺研究

铅酸蓄电池内化成工艺研究 摘要:电池化成和槽化成相比,有着许多优点,其工艺流程简化了极板水洗、干燥和电池补充电以及槽式化成的装片、焊接、取片等工序。节省了大量工时和能源,不用购置化成槽设备和防酸雾设备,电池成本能得到一定的降低。并且,极板不易为杂质所污染,能降低电池自放电,电池质量也可得到更好的控制,因此,电池化成值得推广,而制定合理的电池化成工艺,是电池化成的关键。 关键词:电池化成化成制度反充失水量添加剂 一、实验方法 根据有关资料报道及相关的模拟试验,确定电池化成加酸密度为l.25g/cm3、(25℃),并添加1%Na2SO4和一定量的2#添加剂(2#添加剂为公司机密在此不便公开),加酸量按公司现行的加酸量执行,最大充电电流为0.15C~0.3C。本次试验主要讨不同化成制度对电池化成的影响。 二、试验分析及讨论 1、化成电量 化成电量是影响电池化成的主要因素之一,化成电量过低,活性物质未能充分转换,二氧化铅含量低,导致电池初期性能能不好。而化成电量高,除能量损耗增加外,化成过程的温升不易控制,气体对极板冲击也较大,会影响电池寿命。因此,应选择合适的化成电量。 以RA12-100为例,见表1 从表1可以看出,化成电量为5.0C时、二氧化铅含量偏低,化成电量为5.5C时,二氧化铅含量比较合适;化成电量为6.0C时虽二氧化铅含量较高,但充电时间稍长且充电过程电池温升也较大。化成电量与活性物质富裕量有关,如RA12-100电池正极活性物质为9.8/Ah,活性物质富裕量越大,化成电量宜相应提高。另外,化成电量与化成电流密度有关,化成电流密度越大,化成效率越低,则化成电量需提高;化成电流密度越小,化成效率越高,则化成电量可适当降低。

相关文档
最新文档