新人教版初中数学九年级下册27.1 图形的相似导学案

合集下载

人教版九年级数学下册导学案27.1.1相似图形

人教版九年级数学下册导学案27.1.1相似图形

第二十七章相像27.1 图形的相像第 1 课时相像图形一、新课导入1.课题导入情形:挨次展现每组图片,供学生赏识 .问题:每组图片中的两张图片有何关系?由此导入新课.2.学习目标(1)联合详细实例认知趣像图形,理解相像图形的观点,会判断两个图形能否相像 .(2)知道成比率线段,会求线段的比,知道相像多边形的对应角相等,对应边的比相等 .3.学习重、难点要点:图形相像及相像多边形的性质 .难点:线段成比率的意义.二、分层学习1.自学指导(1)自学内容:教材P24~P25思虑 .(2)自学时间: 5 分钟 .(3)学习方法:联合实质说说自己对相像图形的理解, 并达成自学参照纲要 .(4)自学参照纲要:①形状同样的图形叫做相像图形. 两个图形相像 ,此中一个图形能够看作由另一个图形放大或减小获得. 举例说明(能够是书上的图片) . ②用一个放大镜察看一个图形 , 经过放大镜看到的图形与原图形相像 .( 填“相像”或“不相像”)③全等的两个图形是相像的.( 填“相像”或“不相像”)④假如两个图形相像 ,那么它们的形状同样,而与它们的大小没关.⑤同一个人在平面镜中的像与哈哈镜中的像相像吗?为何?不相像 . 哈哈镜中的像的形状发生了变化.2.自学:学生参照自学指导进行自学 .3.助学(1)师助生:①了然学情:经过实例了然学生对相像图形的理解状况.②差别指导:对分不清相像图形的学生进行指导.(2)生助生:小组内互相沟通、商讨.4.增强(1)相像图形的观点及实例.(2)练习:①如图 1,放大镜里看到的三角尺和本来的三角尺相像吗?答案:相像 .②如图 2,图形 a~f 中,哪些图形是与图形( 1)或( 2)或( 3)相像的?答案:与图形( 1)相像的有 ac; 与图形( 2)相像的有 d; 与图形( 3)相像的有 g.1.自学指导(1)自学内容:教材P26 方框中的内容 .(2)自学时间: 5 分钟 .(3)自学方法:达成自学参照纲要.(4)自学参照纲要:①关于四条线段 a,b, c, d,假如此中两条线段的长度的比与另两条线段的长度的比相等, 即a c( 或ad=bc) ,那么这四条线段叫做成比率线段,简称b d成比率 .②什么是比率尺?③假如线段 a,b,c,d知足a∶ b=c∶d,a=3,b=4,d=8,则c=6.④一张桌面的长 a=1.25 m,宽 b=0.75 m,那么长与宽的比是多少?(a. 假如 a=125 cm, b=75 cm,那么长与宽的比是多少?(5∶3)b. 假如 a=1250 mm,b=750 mm,那么长与宽的比是多少?(5∶ 3)5∶3)⑤在比率尺是 1∶10000000 的地图上,量得甲乙两地的距离是30 cm,求两地的实质距离 .30×10000000=300000000( cm)=3000(km).即两地的实质距离为3000 km.⑥已知a ba cbc k ,求k的值.c b a∵a+b=kc,a+c=kb,b+c=ka,a+b+a+c+b+c=k(a+b+c),即 2( a+b+c)=k(a+b+c), ∴k=2.2.自学:学生参照自学指导进行自学 .3.助学(1)师助生:①了然学情:认识学生如何理解线段成比率.②差别指导:依据学情进行指导.(2)生助生:小组间互相沟通、商讨.4.增强:线段的比与成比率线段及等比式的办理 .三、评论1.学生学习的自我评论:这节课你有什么收获?有哪些不足?2.教师对学生的评论:(1)表现性评论:从学生回答以下问题,讲堂的注意力等方面进行评论.(2)纸笔评论:讲堂评论检测.3.教师的自我评论(教课反省) .本课时作为“图形的相像”的开端课,先经过大批的实例、图片来激发学生的学习兴趣,发动学生去发现、去参加找寻相像图形,给学生供给展现自我的时间和时机 . 学生经过绘图、着手操作等实践活动增强对相像图形的理解,并能娴熟判断图形的相像 .一、基础稳固( 70 分)1.(10 分) 以下说法正确的选项是( D)A.小明上少儿园时的照片和初中毕业时的照片相像B.从商铺新买来的一副三角板的两块三角板是相像的C.全部的课本都是相像的D.国旗的五角星都是相像的2.(10 分) 已知线段 a,b,c,d 知足 ab=cd,把它改写成比率式,错误的选项是( B)A. ac B.a c C.db D.a dd b b d a c c b3.(10分) 以下图形中不必定是相像图形的是( C)A. 两个等边三角形B. 两个正方形C.两个菱形D.两个圆4.(10分) 已知 a,b,c,d 是成比率线段,此中 a=3 cm, b=2 cm,c=6 cm,则 d=4cm.5.(10 分) 如图,放大镜里看到的的角与本来的角的关系是相等.6.(20 分) 察看以下图形,指出哪些是相像图形,用“线”将相像的图形连接起来 .二、综合应用( 20 分)7.(10分) 以下各组中的四条线段成比率的是(C)A.a= 2 ,b=3,c=2,d=3B.a=4,b=6, c=5,d=10C.a=2,b= 5 ,c=23,d=15D.a=2,b=3,c=4,d=18.(10 分) A 、B 两地的实质距离为2500 m,在一张地图上的距离是 5 cm,那么这张地图的比率尺是1∶50000.三、拓展延长( 10 分)9.(10 分) 已知xy z,求x2 y的值 . 234z解: x 2 y x 2 y 123 1 .zz z24。

九年级数学下册第二十七章相似27.1图形的相似导学案 新人教版

九年级数学下册第二十七章相似27.1图形的相似导学案 新人教版

27.1 图形的相似一、学习目标:1.从生活中形状相同的图形的实例中认识图形的相似;2.理解成比例线段的概念,会确定线段的比.二、学习重难点:重点:理解成比例线段的概念,会确定线段的比.探究案三、合作探究1、如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.【结论】:(1)相似多边形的特征:相似多边形的对应角______,对应边的比_______.反之,如果两个多边形的对应角______,对应边的比_______,那么这两个多边形_______.几何语言:在四边形ABCD和四边形A1B1C1D1中若.则四边形ABCD和四边形A1B1C1 D1相似(2)相似比:相似多边形________的比称为相似比.问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形______,因此________形是一种特殊的相似形.例题解析:例1.观察下面图形,指出(1)~(9)中的图形有没有与给出的图形(a)、(b)、(c)形状相同的?方法总结:判断两个图形的形状是否相同,应仔细观察,当两个图形的形状除了大小没有其他任何差异时,我们才可以说这两个图形形状相同.例2.下列各组中的四条线段成比例的是( ) A .4cm ,2cm ,1cm ,3cm B .1cm ,2cm ,3cm ,5cm C .3cm ,4cm ,5cm ,6cm D .1cm ,2cm ,2cm ,4cm方法总结:判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可.例3.已知线段a 、b 、c 、d 是成比例线段,其中a =2m ,b =4m ,c =5m ,则d =( ) A .1m B .10m C.52m D.85m方法总结:求线段之比时,要先统一线段的长度单位,然后根据比例关系求值.随堂检测1.已知2a -3b =0,b ≠0,则a ∶b =______. 2.若则x =______. 3.若则______.4.在一张比例尺为1∶20000的地图上,量得A 与B 两地的距离是5cm ,则A ,B 两地实际距离为______m .5.如图所示,给出的两个四边形是相似形,具体数据如图所示,求出未知边a 、b 的长度及角α的值.6.如图,一块长3m、宽1.5m的矩形黑板ABCD如图所示,镶在其外围的木质边框宽75cm.边框的内边缘所成的矩形ABCD与边框的外边缘所成的矩形EFGH相似吗?为什么?课堂小结1. 相似多边形的特征:相似多边形的对应角相等,对应边的比相等.反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.2.对于四条线段,如果其中两条线段的比与另两条线段的比相等,如(即),我们就说这四条线段是成比例线段,简称比例线段.注意:(1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;线段的比是一个没有单位的正数;(2)四条线段成比例,记作或;(3)若四条线段满足,则有.我的收获_________________________________________________________________________________ _________________________________________________________________________参考答案合作探究(1)相等相等相等相等相似(2)对应边全等全等例题解析例1解析:通过观察寻找与(a),(b),(c)形状相同的图形,在所给的9个图形中仔细观察,然后作出判断.解:通过观察可以发现:图形(4)、(8)与图形(a)形状相同;图形(6)与图形(b)形状相同;图形(5)与图形(c)形状相同.例2解析:选项A.从小到大排列,由于1×4≠2×3,所以不成比例,不符合题意;选项B.从小到大排列,由于1×5≠2×3,所以不成比例,不符合题意;选项C.从小到大排列,由于3×6≠4×5,所以不成比例,不符合题意;选项D.从小到大排列,由于1×4=2×2,所以成比例,符合题意.故选D.例3解析:∵线段a、b、c、d是成比例线段,∴a∶b=c∶d,而a=2m,b=4m,c=5m,∴d=b·ca=4×52=10(m).故选B.随堂检测1.3∶2.2.3.1.4.1 000.5. 解:因为四边形ABCD与四边形A′B′C′D′相似,所以∠B′=∠B=63°,∠D′=∠D,ADA′D′=ABA′B′=BCB′C′,所以416=a20=4.5b,所以a=5,b=18.在四边形A′B′C′D′中,∠D′=360°-(84°+75°+63°)=138°.∠α=∠D=∠D′=138°.6. 不相似.∵矩形ABCD 中,AB =1.5m ,AD =3m ,镶在其外围的木质边框宽75cm =0.75m , ∴EF =1.5+2×0.75=3m ,EH =3+2×0.75=4.5m , ∴AB EF =1.53=12,AD EH =34.5=23. ∵12≠23, ∴内边缘所成的矩形ABCD 与边框的外边缘所成的矩形EFGH 不相似.(本资料素材和资料部分来自网络,供参考。

人教版数学九年级下册第二十七章相似导学案

人教版数学九年级下册第二十七章相似导学案

27.1图形的相像学习目标、要点、难点【学习目标】1.理解并掌握两个图形相像的观点;认识成比率线段的观点,会确立线段的比.2.知道相像多边形的主要特点,即:相像多边形的对应角相等,对应边的比相等;会依据相似多边形的特点辨别两个多边形能否相像,并会运用其性质进行有关的计算.【要点难点】1.相像图形的观点与成比率线段的观点;相像多边形的主要特点与辨别.2.成比率线段观点;运用相像多边形的特点进行有关的计算.知识概览图相像多边形的特点:对应角相等,对应边的比相等图形的相像判断两个多边形相像:对应角相等,对应边的比相等比率线段:有四条线段,此中两条线段的比与另两条线段的比相等,称这四条线段是比率线段新课导引【生活链接】以以下图所示,实用同一张底片洗出的不一样尺寸的照片,也有一辆汽车和它的模型,这些都给我们以形状同样的图形的形象.【问题研究】这类形状同样的图形叫做相像图形,两个图形相像,此中一个图形能够看作是由另一个图形放大或减小获得的.那么相像的图形拥有哪些性质呢?教材精髓知识点 1相像图形我们把形状同样的图形叫做相像图形.两个图形相像,此中一个图形能够看作是由另一个图形放大或减小获得的.比如:如图27-1 所示的几组图形都是形状同样、大小不一样的图形,所以这几组图形分别都是相像图形.1当两个图形的形状同样、大小也同样时,这两个图形也是相像图形,它们是特别的相像图形:全等形. 比如:如图 27- 2 所示,△ ABC 与△ A ′B ′C ′的形状同样,而且大小也同样,所以这两个三角形相像,而且这两个三角形全等.拓展 所谓“形状同样”,就是与图形的大小、地点没关,与摆放角度、摆放方向也没关.有些图形之间固然只有很小的差别,但也不可以以为是“形状同样”.知识点 2比率线段对于四条线段 a ,b ,c ,d ,假如此中两条线段的比 ( 即它们长度的比 ) 与另两条线段的比相等,如 a c b d( 即 ab = bc) ,我们就说这四条线段是成比率线段,简称比率线段.(1) 式子ac也能够写成 a : b=c :d ,往常这里的 a 叫做第一比率项, b 叫做第二比率项, cb d叫做第三比率项, d 叫做第四比率项.(2) 有时在 ac 中, = ,比如: 4 6, 的比率中项,此时 b 2 ad . b d b c6 9,这时我们把 b 叫做 a d(3) 在式子ac的两边同时乘以,得= cb ,在与比率有关的计算中,我们常经过上述变bdbdad形转变字母之间的关系.拓展 往常状况下,四条线段 a ,b ,c ,d 的单位应当一致,但有时为了计算方便,a ,b 的单位一致, c ,d 的单位一致也能够.知识点 3相像多边形对应边成比率,对应角相等的两个多边形叫做相像多边形.拓展 在多边形中,只有当“对应边成比率”、 “对应角相等”这两个条件同时成即刻,才能说明两个多边形是相像多边形.知识点 4相像多边形的性质相像多边形的对应角相等,对应边的比相等.比如:若△ ABC 与△ A ′B ′C ′相像,则∠ A =∠ A ′,∠B =∠ B ′,∠ C =∠ C ′,ABACBC.2知识点 5相像比相像多边形对应边的比称为相像比.拓展相像多边形面积的比等于相像比的平方.规律方法小结(1) 相像的两个图形之间大小、方向、地点能够同样,也能够不一样,但它们的形状一定同样.如:两张大小不一样的世界地图或中国地图;两面大小不一样的中国国旗;同一底片、尺寸不一样的两张照片.有些图形之间很相像,但不相像,如:哈哈镜中人的形象与自己不相像;阴历十五夜晚的月亮与十六夜晚的月亮固然很相像,但其实不相像.(2)学习本节知识时要充足运用转变思想,即把求证的线段之间的关系转变为易证、易求的线段间的另一种关系,同时,对于给出两条线段的比而没有指明两条线段的大小关系时,要分类议论.研究沟通当相像比为 1 时,相像的两个图形之间有什么关系 ?点拨相像比为 1 的两个图形是全等形.讲堂检测基本观点题1、以下多边形中,必定相像的是( )A.两个矩形B.两个菱形C.两个正方形D.两个平行四边形2、以下命题中,正确的选项是( )A.相像多边形是全等多边形B.不全等的多边形不是相像多边形C.全等多边形是相像多边形D.不相像的多边形可能是全等多边形3、假如线段 a 是线段 b、线段 c 的比率中项, b=3,c=12,那么线段 a 的长是多少 ?基础知识应用题4、假如两地的实质距离为750m,图上距离为 5 cm, 那么这张图的比率尺是多少?5、已知四边形 ABCD与四边形 A′B′C′D′相像,且 AB:BC:CD:DA=20: 15:9:8,四边形 A′ B′ C′ D′的周长为 26,求四边形 A′B′C′D,的各边长.综合应用题6、等腰梯形 ABCD与等腰梯形 A′B′C′D′,相像,AD=BC,∠A=65°,AB=8 cm,A′ B′= 6 cm,AD= 5 cm,求 A′D′的长及梯形 A′B′C′D′各内角的度数.7、已知同样时辰的物高与影长成比率,假如高为 1.5 m 的竹竿的影长为 2.5 m ,那么影长为30 m 的旗杆的高度为( )A. 20 m B.16 mC. 18 m D.15 m研究与创新题8、已知线段AB=8,C为线段AB的黄金切割点,求A C: BC的值.体验中考在同一时辰,身高为1.6 米的小强在阳光下的影长为0.8 米,一棵大树的影长为4.8 米,则这棵树的高度为( )A .4.8 米B.6.4 米C .9.6 米D.10 米学后反省附:讲堂检测及体验中考答案讲堂检测1、剖析依据相像多边形的定义,两个矩形只知足对应角相等,而对应边不必定成比率;两个菱形只知足对应边成比率,而对应角也不必定相等;两个正方形的对应边成比率,对应角都是90°,必定相像;两个平行四边形的对应边不必定成比率,对应角也不必定相等.应选 C.【解题策略】判断两个多边形能否相像,一定同时具备对应角相等、对应边的比相等,这两个条件缺一不行.2、剖析全等多边形是特别的相像多边形.应选 C.【解题策略】假如两个多边形全等,则必定相像,可是假如两个多边形相像,则不必定全等.3、剖析四条线段 a,b,c,d 是成比率线段,若第二比率项和第三比率项是两条同样的线段,即 a: b= b:c,则把 b 叫做 a 和 c 的比率中项.将 a:b= c: d 变形,可获得 bc= ad,当 a:b=b c 时,有 b2=ac.:解:∵a是 b,c 的比率中项,且 b=, c=,312∴a2=bc= 3× 12=36,∴ a=± 6.∵ a 是线段,∴线段 a 的长是 .6【解题策略】假如线段 a 是线段 b , c 的比率中项,那么 a 2 =bc . ( 此中 a ,b ,c 均为正数 )4、剖析 图的比率尺是一种比率关系,是图上距离与实质距离的比,往常写成1:x 的形式,也就是说,图上的 1 cm 相当于实质的 x cm ,如某图的比率尺为 1:40000,就是说图上的 1 cm 相当于实质的 40000 cm ,即 400 m.解:∵ 750 m =75000 cm ,∴ 5:75000 =1:15000 ,即这张图的比率尺是 1:15000 .【解题策略】 无论是将图形放大仍是减小,比率尺都是图上距离与实质距离的比.、剖析 依据四边形 ABCD 各边的比为 : : : 8 可得四边形 A ′B ′C ′D ′各边的比也为 520 15 9 20: 15:9:8,再依据四边形 A ′B ′C ′D ′的周长为 26,可求出各条边的长.解:∵四边形 ABD 与四边形 A ′ B ′ C ′ D ′相像,且 AB: BC: CD: DA = 20:15:9:8 ,∴ A ′ B ′: B ′C ′: C ′D ′: D ′A ′= 20: 15:9:8.又∵四边形 A ′B ′C ′D ′的周长为 ,26 ∴ A ′ B ′ =26×20=10,B ′C ′=26×15=7.5,20 15 9 15 98 20 8 C ′D ′ × 9 . ,D ′A ′ × 20, =26 20 15 9 8 =4 5 =26 15 9 =420 8即四边形 A ′B ′C ′D ′的各边长分别为 A ′ B ′= 10,B ′C ′= 7.5,C ′D ′= 4.5,D ′A ′= 4.【解题策略】 相像多边形的相像比等于对应边的比.6、剖析 充足利用相像多边形的对应角相等、 对应边成比率的性质和等腰梯形的性质来解题.解:∵等腰梯形 ABCD 与等腰梯形 A ′B ′C ′D ′相像,∴∠ A =∠ A ′=65°, AB AD,A BA D即85 ,∴ A ′D ′=15(cm) ,6 A D4∴ B ′ C ′= 15,∠ A ′=∠ B ′= °,4 cm65∴∠ C ′=∠ D ′= 180°- 65°= 115°.【解题策略】 本题是一道综合性题目, 在运用相像多边形性质的同时也运用了等腰梯形的性质.7、剖析 本题考察比率线段的基天性质.因为同一时辰物高与影长成比率,所以2.530,∴旗杆的高度=30 1.5=18(m).应选 C.1.5旗杆的高度2.5【解题策略】解决此类问题时,也能够依据比率式列出方程,经过解方程求出旗杆的高度.8、剖析黄金切割点指的是线段上的某一点,它将线段所分红的两条线段中,较长的一条线段是较短的一条线段和整条线段的比率中项,此中较长的一条线段与整条线段的比值叫做黄金比,黄金比的近似值约为0.618 ,正确值是5 1.2解:当 AC> BC时,AC=5 1AB=4( 5-1) ,2∴BC=AB-AC=8-4( 5- 1)=12-4 5 =4(3-5 ) ,∴AC:BC5-1):4(3- 5)=5 1 .=4(25 1AB当AC< BC时, BC 5 -1),=2=4(∴AC AB-BC- 5),==4(3∴ AC: BC=4(3 - 5 ):4( 5 -1)= 5 1 .2【解题策略】对于给出两条线段的比,而没有指明两条线段的大小关系时,要分类议论.体验中考剖析设这棵树的高度为x 米,则 1.6 :0.8 =x:4.8 ,解得 x=9.6 .应选 C.【解题策略】同样时辰的物高与影长成比率.27.2相像三角形应用举例学习目标、要点、难点【学习目标】1.进一步稳固相像三角形的知识.2.能够运用三角形相像的知识,解决不可以直接丈量物体的长度和高度(如丈量金字塔高度问题、丈量河宽问题、盲区问题)等的一些实质问题.3.经过把实质问题转变成有关相像三角形的数学模型,进一步认识数学建模的思想,培育分析问题、解决问题的能力.【要点难点】1.运用三角形相像的知识计算不可以直接丈量物体的长度和高度.2.灵巧运用三角形相像的知识解决实质问题(如何把实质问题抽象为数学识题).知识概览图相像三角形的应用:灵巧掌握题意,把实质问题转变为数学识题,运用数学建模思想和数形联合思想灵巧地解决问题.新课导引【生活链接】王芳同学跳起来把一个排球打在离她 2 m远的地上,而后球反弹遇到墙上,假如王芳跳起击排球时的高度是 1.8m,排球落地址离墙的水平距离是 6m,假定排球向来沿直线运动,那么排球能遇到墙上离地多高的地方?【问题研究】由题意可获得如右图所示的图形.已知AB=1.8 m,AP=,P =,PQ⊥2 m C 6 mAC,那么如何求DC的长呢 ?由已知可证 Rt△ APB∽Rt△ CPD,由相像三角形的性质可知即1.8 2,所以DC=5.4(m).利用相像三角形的知识还可以解决很多实质问题.DC 6教材精髓知识点应用相像三角形的知识解决实质问题AB AP, DC PC相像三角形的知识在实质生产和生活中有着宽泛的应用,这一应用是成立在数学建模思想和数形联合思想的基础上,把实质问题转变为数学识题,经过求解数学识题达到解决实质问题的目的.拓展求线段的长度时,可依据已知条件并利用相像成立未知线段的比率关系式,从而求出所求线段的长.运用数学建模思想把生活中的实质问题抽象为数学识题,经过求解数学识题达到解决实质问题的目的.讲堂检测基础知识应用题1、如图 27—38 所示,为了估量河的宽度,我们能够在河对岸选定一个目标 P,在近岸取点 Q和 S,使点 P, Q, S共线且直线 PS与河垂直,接着在过点S 且与 PS垂直的直线 a 上选择适合的点T,确立 PT 与过点 Q且垂直 PS的直线 b 的交点 R,假如测得 QS=45 m,ST=90 m, QR=60 m,求河的宽度 PQ.2 、古代一位数学家想出了一种丈量金字塔高度的方法,如图 27-39 所示,为了丈量金字塔的高度OB,先竖起一根已知长度的木棒 O′ B′,比较木棒的影长 A′B′与金字塔的影长 AB,即可近似地算出金字塔的高度 OB且已知 O′B′=1 米, A′ B′= 2 米, AB=274 米,求金字塔的高度 OB.综合应用题3 、如图27-40 所示,△ABC是一块锐角三角形余料,边BC=240 mm,高AD=160mm,要把它加工成正方形部件,使正方形的一边在BC上,其余两个极点分别在AB,AC上,则这个正方形部件的边长是多少 ?4、如图 27— 41 所示,在 Rt△ABC中,∠ B= 90°, BC=4 cm, AB=8 cm,D,E,F 分别为 AB,AC,BC边的中点, P 为 AB边上一点,过 P 作 PQ∥BC交 AC于 Q,以 PQ为一边,在点 A 的另一侧作正方形 PQMN,若 AP=3 cm,求正方形 PQMN与矩形 EDBF的公共部分的面积.研究与创新题5、教课楼旁边有一棵树,课外数学兴趣小组的同学在阳光下测得一根长为 1 m 的竹竿的影长为 0.9 m,在同一时辰他们丈量树高时,发现树的影子不全落在地面上,有一部分影子落在教课楼的墙壁上,如图 27- 42 所示,经过一番争辩,该小组的同学以为持续丈量也能够求出树高,他们测得落在地面上的影长为 2.7 m ,落在墙壁上的影长为 1.2 m ,请你计算树高为多少.体验中考小明在一次军事夏令营活动中,进行打靶训练,在用枪对准目标点 B 时,要使眼睛 O、准星 A、目标 B 在同一条直线上,如图-45所示,在射击时,小明有稍微的颤动,以致准星 A 偏离到 A′,27若 OA=0.2 m,OB=40 m,AA′= 0.0015 m,则小明射击到的点 B′,偏离目标点 B 的长度 BB′为 ( )A.3 m B.0.3 m C.0.03 m D.0.2 m学后反省附:讲堂检测及体验中考答案讲堂检测1、剖析可利用三角形相像的性质来求解.解:∵∠ PQR=∠ PST=90°,∠ P=∠ P,∴ Rt△PQR∽ Rt△PST,∴PQQR ,PS ST即PQ QR ,∴PQ60 ,PQ QS ST PQ 4590PQ ×90=( PQ+45) ×60,解得 PQ =90.故河宽大概为 90 m .【解题策略】利用相像三角形的性质能够丈量不方便抵达的两点间的距离.2、剖析 要求 OB 的长度,能够经过证明△ OAB ∽△ O ′A ′B ′,从而获得比率式从而求解.OB AB , OBAB解:∵太阳光是平行光芒,∴∠ OAB =∠ O ′ A ′B ′.又∵∠ ABO =∠ A ′B ′ O ′= 90°,∴△ OAB ∽△ O ′ A ′B ′,∴ OB :O ′B ′= AB :A ′B ′,∴ OB=ABgO B 274 1=137(米) .A B2故金字塔的高度为137 米.【解题策略】本题要点考察阅读理解能力和知识的迁徙运用能力, 从而计算出不可以直接丈量的物体的高度.3、剖析若四边形 PQMN 为正方形,则 AE ⊥PN ,这样△ APN 的高能够写成 A D -ED = AD -PN ,再由△ APN ∽△ ABC ,即可找到 PN 与已知条件之间的联系.解:设正方形 PQMN 为加工成的正方形部件,边 QM 在 BC 上,极点 P ,N 分别在 AB ,AC 上,△ABC 的高 AD 与正方形 PQMN 的边 PN 订交于 E ,设正方形的边长为 x mm .∵PN ∥ BC ,∴△ APN ∽△ ABC ,∴AE PN , AD BC ∴160 x= x, 解得 x=96(mm),160240∴加工成的正方形部件的边长为96 mm .【解题策略】 本题中相像三角形的知识有了一个实质意义,所以在解题时要擅长把生活中的问题转变为数学识题来解决.4、剖析因为 PQ ∥BC ,所以PQAP,从而可求出的长,而四边形是正方形,所以BC ABPQPQMNPN 的长及 DN 的长都能够求出来.因为正方形 FQMN 与矩形 EDBF 的公共部分是矩形,故只需求出 DN ,MN 的长,就能够求出矩形的面积.解:在 Rt △ ABC 中,∠ B = 90°, AB=8 cm ,BC =4 cm ,D ,E , F 分别为 AB , AC ,BC 边的中点,则 AD =4 cm ,DE ∥ BC ,DE ⊥ AB .又∵ PQ ∥BC ,∴△ APQ ∽△ ABC , ∴ AP PQ ,即3 PQ ,∴ = 3 .AB BC8 4PQ 2由四边形 PQMN 是正方形,得 PN = 3,2∴AN = 9 ,DN =AN -AD = 1,2 2∴正方形 PQMN 与矩形 EDBF 的公共部分的面积为:DN ·MN=DN · PQ= 1 × 3 = 3(cm 2) .2 2 4【解题策略】 本题考察了直角三角形、正方形与相像三角形知识的综合应用,要娴熟掌握每一种几何图形的性质.5、剖析 第一依据题意画出表示图 ( 如图 27-43 所示 ) ,把实质问题抽象成数学识题, 从而利用△ PQR ∽△ DEC ,△ PQR ∽△ ABC 求出树高 AB .解:如图 27-43(1) 所示,延伸 AD , BE 订交于 C ,则 CE 是树的影长的一部分.由题意可得△ PQR ∽△ DEC ,∴PQQR ,DEEC即10.9,∴ CE=1.08(m) ,1.2 CE∴ BC =BE+CE =2.7+1.08 =3.78(m) . 又∵△ PQR ∽△ ABC ,∴PQQR , ABBC即1 0.9 AB 3.78,∴ AB=4.2(m) ,故树高为 4.2 m .体验中考剖析 由三角形相像可得OAAA,∴ BB ′ =OB gAA =400.0015=0.3(m) .应选 B.OB BBOA0.2【解题策略】解决本题的要点是依据 AA ′∥ BB ′,从相像三角形的周长与面积学习目标、要点、难点【学习目标】1.理解并初步掌握相像三角形周长的比等于相像比,面积的比等于相像比的平方.2.能用三角形的性质解决简单的问题.【要点难点】1.相像三角形的性质与运用.2.相像三角形性质的灵巧运用,及对“相像三角形面积的比等于相像比的平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相像比”的理解.知识概览图相像三角形对应高的比、对应中线的比、对应角均分线的比都等于相像比相像三角形的周长与面相像三角形周长的比等于相像比( 相像多边形周长的比等于相像比)积相像三角形面积的比等于相像比的平方( 相像多边形面积的比等于相像比的平方)新课导引【生活链接】假如两个三角形相像,那么它们的周长之间有什么关系 ?它们的面积之间有什么关系 ?两个相像多边形呢 ?【问题研究】前方我们已经学习了相像图形的性质:相像图形的对应角相等,对应边的比相等.那么相像图形的周长与面积又拥有如何的性质呢?教材精髓知识点 1相像三角形对应高的比等于相像比如图-57所示,假如△ ABC∽△ A′B′C′,且AB= k,那么27A B△ABC 与△ A ′B ′C ′的相像比 k , A 作 AD ⊥BC , A ′作 A ′D ′⊥ B ′C ′,垂足分 D ,D ′,在△ ABD 与△ A ′ B ′ D ′中,∠B =∠ B ′,∠ADB =∠ A ′D ′B ′= 90°,所以 Rt △ABD ∽Rt △A ′B ′D ′,所以ADAB=k ,即相像三角形 高的比等于相像比k .A D A B知 点 2 相像三角形 中 的比、 角均分 的比都等于相像比如 27- 58 所示,在△ ABC 和△A ′B ′C ′中,AD ,A ′D ′分 △ ABC 和△ A ′B ′C ′的中 , BE ,B ′E ′分 △ ABC 和△ A ′B ′ C ′的角均分 ,若△ ABC ∽△ A ′B ′ C ′,ADAB=k .A D A B知 点 3 相像三角形周 的比等于相像比假如△ ABC ∽△ A ′B ′C ′,而且△ ABC 与△ A ′ B ′ C ′的相像比 k ,那么ABBC AC= k ,A BB CA CAB= k·A′B′ , BC k·B′C′ ,AC=k·A′C′,所以=△ ABC 的周AB BC CAkA B kB C kA Ck( A B B C C A )k ,即相像三角形周 的比△ABC 的周AB BC CAAB BC CAAB BC CA等于相像比.比如:已知△ ABC ∽△ A ′B ′C ′,它 的周 分 60 cm 和 ,且 AB =,B ′C ′ 72 cm 15 cm=24 cm , 两个三角形的相像比 60 5 ,且 AB BC 5 ,因 AB =,B ′C ′= , 726 A B B C 6 15 cm 24 cm 所以 A ′B ′= c , BC = c ,A ′ C ′=18 20 ,所以 AC = - - = 25(cm) - - = .m m60 15 20 72 18 24 30(cm) 知 点 4 相像多 形周 的比等于相像比假如多 形A 1 A 2 ⋯ A n 与多 形A 1 ′ A 2′⋯ A n ′相像,而且多 形A 1A 2⋯ A n 与多 形A 1′2n′的相像比 k ,A 1A 2A 2A 3 ⋯A nA11 21 22 32 3A ′⋯ A A 1 A 2A 2 A 3A n A 1=k ,∴ AA = kA ′ A ′, A A = kA ′ A ′,⋯,A A 1=kAn ′ A 1 ′,∴A 1A 2 A 2A 3 ⋯ AA 1= k A 1′A 2′ A 2′A 3′ ⋯A ′A 1′ ) ,∴ A 1A 2 A 2A 3 ⋯A n A 1n+ + +n( + + +nA 1 A 2 A 2 A 3 A n A 1⋯=k ,即相像多 形周 的比等于相像比.知 点 5相像三角形面 的比等于相像比的平方若△ ABC ∽△ A ′B ′C ′,△ ABC 与△ A ′B ′C ′的相像比是 k ,AD ,A ′D ′分 是 BC 与 B ′C ′S △ ABC 1BC gADBCAD上的高,2 2S △ABCBC AD= k ·k=k , 即相像三角形面 的比等于相像比的平方.1g2 BC AD知识点 6相像多边形面积的比等于相像比的平方对于两个相像的四边形,能够把它们分红两对相像的三角形,能够得出这两个四边形面积的比等于相像比的平方.对于两个相像的多边形,用近似的方法,能够把它们分红若干对相像的三角形,从而得出相像多边形面积的比等于相像比的平方.规律方法小结 (1) 假如两个三角形相像,那么它们对应高的比、对应角均分线的比、对应中线的比、对应周长的比都等于相像比.(2)相像三角形的面积比等于相像比的平方.(3)类比相像三角形的性质可知,相像多边形的周长比等于相像比,面积比等于相像比的平方.(4)本节内容中求相像三角形对应边的比和面积的比的问题能够相互转变,对于没有指明对应极点的相像三角形仍旧要分类议论.讲堂检测基本观点题1、 (1) 若两个相像三角形的面积比为 1:2,则它们的相像比为;(2)若两个相像三角形的周长比为 3:2,则它们的相像比为;(3)若△ ABC∽△ A′B′C′,且 AB= 5,A′B′= 3,△ A′B′C′的周长为 12,则△ ABC的周长为.基础知识应用题2、如图 27-59 所示,在△ ABC和△ DEF中, AB=2DE,AC=2DF,∠ A=∠ D,△ ABC的周长是24,面积是 48,求△ DEF的周长和面积.3、如图 27-60 所示,在锐角三角形ABC中,AD,CE分别为 BC,AB边上的高,△ ABC和△BDE的面积分别为 18 和 2, DE=2,求 AC边上的高.4、如图27-61所示,在△ ABC与△ CAD中,AD∥ BC,CD交AB于点E,且AE:EB=1:2,EF∥BC交 AC于点 F,且 S△ADE=1,求 S△BCE和 S△AEF.5、如图 27-62 所示, AD是△ ABC的角均分线, BH⊥AD于点 H, CK⊥AD于点 K,求证AB· DK=AC·DH.17综合应用题6、如图 27-63 所示,在梯形 ABCD中,对角线 AC, BD订交于点 O,若△ COD的面积为 a2,△AOB的面积为 b2,此中 a>0,b>0,求梯形 ABCD的面积 S.研究与创新题7、如图-64所示,ABCD的对角线 AC,BD订交于点 O, E 是 AB延伸线上一点, OE交BC27于点 F,AB= a, BC=b,BE=c,求 BF 的长.8、如图 27-65 所示,在△ ABC中,D是 BC边上的中点,且 AD=AC,DE⊥BC,DE与 AB订交于点 E, EC与 AD订交于点 F.(2)若 S△FCD=5,BC= 10,求 DE的长体验中考1、已知△ ABC与△ DEF相像且面积比为4:25,则△ ABC与△ DEF的相像比为.2、如图27-67所示,在△ ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的均分线 CF交 AD于 F,点 E 是 AB的中点,连结EF.(1)求证 EF∥BC;(2)若四边形 BDFE的面积为 6,求△ ABD的面积.学后反省附:讲堂检测及体验中考答案讲堂检测、剖析(1)∵两个相像三角形的面积比等于相像比的平方,∴k2=1,且 k>,∴k= 2 .120(2)2∵相像三角形的周长比等于相像比,且周长比为3:2 ,∴相像三角形的相像比为3:2.(3) ∵相像比5:3,∴△ ABC的周长5. 又∵△ A′ B′ C′的周长为12,∴△ABC的周长=5,∴△ ABC的周△A BC的周长3123长为 20.答案: (1) 2 :2 (2)3:2 (3)20【解题策略】解决此类题时,可直策应用相像三角形的周长比、面积比与相像比的关系来求解.2、剖析先说明△ ABC∽△ DEF,再运用相像三角形的性质——相像三角形的周长比等于相像比、面积比等于相像比的平方进行求解.解:在△ ABC和△ DEF中,∵AB=2DE,AC=2DF,∴DE DF 1.AB AC2又∵∠ D=∠ A,∴△ DEF∽△ ABC,且相像比为1.2∴△ DEF 的周长1. 即△ DEF 的周长1,△ ABC的周长2242∴△ DEF的周长为 12.∴ S2,即S△DEF121,△ DEFS△ABC2482∴S△DEF=12.即△ DEF的周长为 12,面积为 12.【解题策略】解决此类问题时,可利用相像三角形周长的比等于相像比、相像三角形面积的比等于相像比的平方来求解.3、剖析若求AC边上的高,就要把AC边上的高作出来,因为△ABC的面积为 18,所以只需求出 AC边的长,就能够求出AC边上的高.∵AD⊥BC,CE⊥ AB,∴∠ ADB=∠ CEB= 90°,又∵∠ ABD=∠ CBE,∴ Rt △ADB∽Rt △CEB.∴ BD AB,即 BD BE,且∠ ABC=∠ DBE,BE CBAB CB∴△ EBD∽△ CBA,∴S△BED2DE 2 ,S△BCA AC18又∵ DE= 2,∴ AC=6.∵S△ABC=1AC·BF= 18,∴ BF=6.2【解题策略】解决本题的要点是依据已知条件说明△EBD∽△ CBA.4、剖析由 AD∥ BC,可得△ ADE∽△ BCE,求 S△BCE比较简单,而求 S△AEF不易利用相像三角形的面积关系来求解.由DA∥EF可知△AEF与△EAD是两个高相等的三角形,所以这两个三角形的面积比就等于底边长的比,求出 EF: AD就能够求出△ AEF的面积.解:∵ AD∥BC,∴△ ADE∽△ BCE,2 2∴S△ADE:S△BCE=AE:BE.又∵ AE: BE= 1: 2,∴ S△ADE: S△BCE=1:4 ,∵S△ADE=1,∴ S△BCE=4.又∵ EF∥ BC,∴△ AEF∽△ ABC,∴EF: BC=AE:AB=1:3 .又∵△ ADE∽△ BCE,∴ AD:BC= AE:BE=1: 2,∴BC=2AD,∴ EF:AD=2:3.又∵ AD∥ EF,∴△ ADE与△ AEF等高.∴S△AEF:S△ADE=EF:AD=2:3.∵S△ADE=1,∴ S△AEF=2 .3【解题策略】利用相像三角形的性质进行有关面积的计算时,有时会用到等底等高的三角形面积相等、同底 ( 或等底 ) 三角形的面积之比等于对应高之比、同高(或等高)三角形的面积之比等于对应底边长之比等等.5、剖析由已知易证△ BHD∽△ CKD,△ ABH∽△ ACK,从而易得证明:∵ BH⊥ AD,CK⊥AD,∴ BH∥CK,AB BH DHAC CK DK, 即 AB·DK=AC·DH.∴△ BHD ∽△ CKD ,∴DHBH.①DK CK∵AD 均分∠ BAC ,∴∠ 1=∠ 2.又∵∠ BHA=∠ CKA=90°,∴ R t △ ABH ∽Rt △ACK, ∴ AB BH.②ACCK由①②可知ABDH,∴ AB ·DK =AC ·DH .AC DK【解题策略】在本题中,利用BH把AB和DH联系起来,往常把这里的BH叫做中间比, 它CKACDK CK起到桥梁的作用.、剖析 梯形的面积等于4 个三角形的面积之和,而△ AOB 和△ COD 的面积都已用 a ,b 表示6出来,所以要点是求出△ AOD 和△ BOC 的面积.由图可知△ AOD 和△ BOC 的面积相等,而△ AOD 和△ COD 在 AC 边上的高是同一条高, 所以△ AOD 和△ COD 的面积比就等于 AO :OC ,这样就能够求出△ AOD 的面积.解:∵ AB ∥CD ,∴△ COD ∽△ AOB ,∴∴CO 2 S△ COD2a,AO 2S△ AOB2bCOa 2a2.AOb b又∵ S △ABC = S △ ABD ,∴ S △ ABC -S △ AOB =S △ABD -S △ AOB ,即 S △BOC = S △ AOD .又∵S△ AOD=AOb ,S△ CODCO a∴ S △ AOD = b·S △COD = b· a 2=ab .aa∴ S △ COB =S △ AOD =ab .∴梯形 ABCD 的面积 S = a 2+ab+ab+b 2= ( a+b) 2.【解题策略】 底在同一条直线上, 高同样的两个三角形面积的比等于底边长的比, 而相像三角形面积的比等于对应边的比的平方,要注意差别这两个性质.7、剖析 明显所求线段 BF 与已知线段 BE 在同一个三角形中,假如能找到一个与△ BEF 相像且有能直接找到,假如过 O 作 OC ∥BC 交 AB 于 G ,就能获得△ EBF ∽△ EGO ,本题可解.解:过点 O 作 OG ∥ BC 交 AB 于 G ,则△ EBF ∽△ EGO .∵ ABCD 的对角线订交于点 O ,∴ OA =OC ,AG = GB .又∵△ EBF ∽△ EGO ,∴BFEB.GO EG∵ AG =GB = 1AB ,∴ OG = 1BC .22又∵ AB = a , BC =b ,BE = c ,∴ OG = 1 b ,GB = 1 a ,GE=1a+c .2221∴ BFcBF bgc bc,∴ 2.1 1 =1a 2cccbaa222【解题策略】 解决此类题的要点是结构相像图形,而结构相像图形的一般方法是作平行线. 、剖析 由 E ⊥BC , D 是 BC 的中点,可得∠ B =∠ ,由 AD =AC ,可得∠ =∠ ACD ,从而相8 D 1 2似可证.过 A 作 AM ⊥BC 垂足为 M ,求 DE 的长能够在 ED ∥M 的基础上利用比率线段求得., A证明: (1) ∵DE ⊥ BC ,D 是 BC 的中点,∴EB = EC ,∴∠ B =∠ 1.又∵ AD =AC ,∴∠ 2=∠ ACB ,∴△ ABC ∽△ FCD .解: (2) 过点 A 作 AM ⊥ BC ,垂足为 M ,∵△ ABC ∽△ FCD ,BC =2CD ,2∴S△ABC=BC=4.S △ FCD CD又∵ S △FCD = 5,∴ S △ABC =20.∵ S △ ABC = 1BC ·AM ,且 BC =10,2∴ 20= 1×10· AM ,∴ AM =4.2又∵ DE ∥ AM ,∴DEBD.AMBM∵ BM =BD+DM ,BD = 1 BC =5,DM = 1 DC = 5,22 2∴ BM =5+ 5 =15,22∴ DE 5.∴ DE= 8 .415 32体验中考1、剖析相像三角形的面积之比等于相像比的平方.故填 2:5.2、证明: (1) ∵CF 均分∠ ACB ,∴∠ 1=∠ 2.又∵ DC =AC ,∴ CF 是△ ACD 的中线,∴点 F 是 AD 的中点.又∵点 E 是 AB 的中点,∴EF ∥BD ,即 EF ∥BC解: (2) 由 (1) 知, EF ∥BD ,∴△ AEF ∽△ ABD ,2∴S△AEFAE.S △ ABDAB又∵ AE = 1AB ,S △ AEF =S △ABD - S 四边形 BDFE =S △ ABD -6,2∴ S △ABD 61 2,S △ ABD2∴ S △ ABD =8,∴△ ABD 的面积为 8.27、 3 位似图形学习目标:1、能利用图形的位似将一个图形放大或减小.2、存心识地培育学生学习数学的踊跃感情,激发学生对图形学习的好奇心,形成多角度,多方法想问题的学习习惯 .学习过程:一、课前准备1.知识链接(1)什么叫位似图形?有哪几种位似的种类?(2)位似图形的性质是什么?2.预习检测(1)经过预习你能总结出利用位似把一个图形进行放缩的方法吗?(2)利用位似放缩图形用到了位似的哪些性质?二、学习过程研究 1请同学们察看以下图,要作出一个新图形,使新图形与原图形对应线段的比为 2∶ 1,同学们在小组间相互沟通,看一看有几种方法?总结上述作法我们可概括出:(一)“利用位似将图形放大或减小的作图步骤. ”。

人教版九年级数学下册27.1图形的相似优秀教学案例

人教版九年级数学下册27.1图形的相似优秀教学案例
三、教学策略
(一)情景创设
1.利用生活实例,创设有趣、富有挑战性的教学情境,激发学生的学习兴趣;
2.通过多媒体手段,展示相似图形的变化过程,增强学生的直观感受;
3.设计具有情境性的练习题,让学生在解决问题中体会数学与生活的紧密联系。
在教学过程中,我将注重情景创设,让学生在真实的情境中感受相似图形的意义。例如,通过展示建筑设计图纸、交通工具的图纸等实例,让学生认识到相似图形在实际生活中的应用,从而激发学生的学习兴趣。同时,利用多媒体教学手段,形象直观地展示相似图形的变化过程,帮助学生建立直观的认识,为后续的学习打下基础。
(二)过程与方法
1.通过观察、分析生活中的实例,引导学生发现相似图形的特征,培养学生从实际问题中抽象出数学模型的能力;
2.利用多媒体教学手段,形象直观地展示相似图形的变化过程,提高学生的空间想象能力和抽象思维能力;
3.设计具有梯度的练习题,让学生在实践中巩固相似图形的知识,提高解决问题的能力。
在教学过程中,我将采用情境教学法、启发式教学法和合作学习法等多种教学方法,引导学生主动参与课堂讨论,培养学生独立思考和团队协作的能力。同时,运用多媒体教学手段,为学生提供丰富的视觉、听觉信息,激发学生的学习兴趣,提高学生的学习效果。
5.多元化的评价方式:在教学过程中,注重学生的反思与评价。通过学生之间的互相评价、自我评价等,培养学生的自我监控和评价能力。同时,采用多元化的评价方式,关注学生的综合素质,进行全面评价。这种评价方式能够充分调动学生的积极性和主动性,促进学生的全面发展。
3.问题驱动的教学方法:通过设计具有启发性的问题,引导学生独立思考,发现相似图形的特征。同时,通过问题驱动,让学生在探究中掌握相似图形的性质和判定方法。这种教学方法能够培养学生的自主学习能力,提高学生的问题解决能力。

人教版九年级数学下册27.1 :图形的相似导学案设计

人教版九年级数学下册27.1 :图形的相似导学案设计

27.1 图形的相似一、情境导入同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?二、自主探究1、小组讨论、交流.得到相似图形的概念.什么是相似图形?相似图形定义:这种形状相同的图形叫.2、思考:下图是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?观察思考,小组讨论回答.3、什么是线段是成比例?两条线段的比,就是两条线段长度..的比.成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,如_________(即_______),我们就说这四条线段成比例.【注意】(1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;线段的比是一个没有单位的正数;(2)四条线段a,b,c,d成比例,记作dcba=或::a b c d=;(3)若四条线段满足dcba=,则有ad bc=.4.什么是相似多边形?两个边数相同的多边形,如果它们的角______,边_______,那么这两个多边形叫做_______.例如在四边形ABCD和四边形A1B1C1D1中若111;;A AB BC C∠=∠∠=∠∠=∠;∠D=∠D1,111111CAACCBBCBAAB===_______,则四边形ABCD和四边形A1B1C1D1_______.5.相似比:相似多边形________的比称为相似比.问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形______,因此________形是一种特殊的相似形.6.例如图,四边形ABCD和EFGH相似,求角βα和的大小和EH的长度x.三、尝试解题1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?2.如图,图形a~f中,哪些是与图形(1)或(2)相似的?3.下列图形一定是相似图形的是( )A.任意两个菱形B.任意两个正三角形C.两个等腰三角形D.两个矩形4. 在比例尺为1:10 000 000的地图上,量得甲、乙两地的距离是3cm,求两地的实际距离.四、巩固训练1.下列说法正确的是()A.所有的平行四边形都相似B.所有的矩形都相似C.所有的菱形都相似D.所有的正方形都相似2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求a、b、c、d的值.4.两地的实际距离为2 000m,在地图上量得这两地的距离是2cm,这幅地图的比例尺是多少?5.如图,△ABC与△DEF相似,求x,y的值.五、归纳小结六、当堂检测1.ABC∆与DEF∆相似,且相似比是23,则DEF∆与ABC∆与的相似比是().A.23B.32C.25D.492.下列所给的条件中,能确定相似的有()(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形.A.3个 B.4个 C.5个 D.6个3.如图,D E∥BC.(1)求BCAD,ACAE,BCDE的值;(2)证明△ADE与△ABC相似.。

人教版初三数学下册《27.1 图形的相似》学案.1 图形相似》导学案

人教版初三数学下册《27.1 图形的相似》学案.1 图形相似》导学案

《27.1 图形的相似》导学案学号___________ 姓名___________【学习目标】1.通过具体实例认识图形的相似.2.理解相似多边形的概念.3. 掌握相似多边形的性质以及相似多边形的初步判定方法.【教学过程】一、实例导入,引入概念问题1:图中的两图形有什么关系?问题2:观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?归纳:我们把___________的图形叫做相似图形.两个图形相似,其中一个图形可以看作由另一个图形____或______得到. 问题3:你能再举出一些相似图形的例子吗?问题4:全等与相似之间有什么联系呢?二、探究新知,体验过程问题:要在一块长为10m、宽为5m的长方形空地内修建长方形的草坪,不过需要在草坪的四周留出宽度相等的小路(设路宽度为a米)。

里面草坪所对应的长方形与外面整块地所对应的长方形,它们形状相同吗?也就是说它们是相似图形吗?._____''____,''____,''===C B BC C A AC B AAB环节1:任意两个正方形相似吗?请从边和角两方面开展研究.角:边:环节2:任意两个长方形都相似吗?长和宽需要满足的什么样的条件才相似.角:边:环节3:任意两个菱形相似吗?如果相似,边和角需要满足什么条件?环节4:任意两个三角形相似吗?如果相似,边和角需要满足什么条件?边:AB=_____, AC=_____, BC=______.A ’B ’=____,A ’C ’=____, B ’C ’=_____.角:∠A=___,∠B=____,∠C=____.∠A ’=__,∠B ’=____,∠C ’=____.发现:对应角______;对应边的比________.环节5:经过前面的探究,那么对于一般的相似多边形,是否该结论都成立呢? (以任意五边形为例)归纳:相似多边形的定义:两个多边形,如果它们的对应角___,对应边的比____.那么这两个多边形叫做相似多边形. 相似多边形的对应边的比称为_______;相似多边形的性质:如果两个多边形相似,则对应角______,对应边的比_______.符号语言(以右图两个相似四边形为例描述):∵___________________________________________∴_____________________________________________________________________________________相似多边形的判定方法:如果两个多边形对应角_____,对应边的比____,那么这两个多边形______.符号语言(以右图两个相似四边形为例描述):∵______________________________________________________________________________________∴___________________________________________三、应用新知,小组交流α和的大小,EH的长度x.例如图,四边形ABCD和EFGH相似,求角β四、拓展训练,提升思维5. 要在一块长为10m、宽为5m的长方形空地内修建长方形的草坪,不过需要在草坪的四周留出宽度相等的小路(设路宽度为a米)。

九年级数学下册27.1.1图形的相似导学案

27.1.1图形的相似导学案主备人:董庚审核人:学生姓名:班级:学习目标:1.联系生活实际初步认识相似图形,在观察、操作、比较、交流中,探索并发现相似图形的规律;2.经历探索、发现、创造、交流等丰富多彩的数学游戏活动,实现发展自己的数学能力和审美观,会从数学的角度认识世界,解释生活;以“生活中的数学”为载体,体会相似图形的神奇,养成“学数学、用数学”的意识。

学习重点:自主探索出相似图形的基本特征;利用坐标的变化放大(或缩小)图形。

学习难点:正确地运用相似图形的特征解决生活中实际问题。

学习过程:1、情境引入:在安踏专卖店卖的同款运动鞋中39码和42码有怎样的异同点?同一相底洗出5寸和7寸的相片有何异同?2、自主探究:请同学们自己认真阅读课文P34-35.然后概括出相似形的1)定义:2)形状特征:2、与同学想想P35的思考:并与同学合作交流。

3、课堂检测题。

一、判断题1、任意两个正方形的形状都相同2、任意两个矩形的形状都相同3、任意两个等边三角形的形状一定相同4、形状相同的两个三角形一定全等5、把一个图形放大或缩小后得到的图形与原来图形的形状一定相同二、选择题6、下列说法中,正确的是()A、正方形与矩形的形状一定相同B、两个直角三角形的形状一定相同C、形状相同的两个图形的面积一定相等D、两个等腰直角三角形的形状一定相同7、下列说法中,错误的是()A、放大镜下看到的图象与原图象的形状相同B、哈哈镜中人像与真人的形状是相同的C、显微镜下看到的图象与原图象的形状相同D、放大一万倍的物体与它本身的形状是相同的8、已知:(1)两个圆;(2)两个等边三角形;(3)两个正方形;(4)两个菱形;(5)两个直角三角形。

在上述的两个图形中,形状一定相同的图形有几组?()A、一组B、二组C、三组D、四组9、(1)☺☹;(2)✶✷;(3)→↑;(4) 。

在上述各种符号中,形状相同的符号有几组? ( )A 、一组B 、二组C 、三组D 、四组10、已知下列各图形中,相似图形共有几组? ( )A 、一组B 、二组C 、三组D 、四组11、经历平移、旋转、轴对称变化前后的两个图形 ( )A 、形状大小都一样B 、形状一样,大小不一样C 、形状不一样,大小一样D 、形状大小都不一样12、下列各种小动物中,动物的形状相同的共有几组 ( )A 、一组B 、二组C 、三组D 、四组13、如图中,相似图形共有几组? ( )A 、5组B 、6组C 、7组D 、8组学生自学疑惑教师教后体会。

人教版九年级数学下册27图形的相似导学案

知人者智,自知者明。

《老子》原创不容易,【关注】,不迷路!第二十七章相似27.1图形的相似学习目标:1.了解相似图形和相似比的概念.2.理解相似多边形的定义.3.能根据多边形相似进行相关的计算,会根据条件判断两个多边形是否相似.(重点、难点)一、知识链接全等形指的是两个能完全重合的图形,请画出两个可以完全重合的五边形,说说它们的对应边的比为多少?对应角有什么关系?一、要点探究探究点1:相似的概念观察与思考下面的“神烦狗”有什么相同和不同的地方?【要点归纳】形状相同的图形叫做相似图形.相似图形的大小不一定相同.思考1下面这2组分别是图形放大或缩小的情况,请问它们相似吗?1.图形的放大:2.图形的缩小:【要点归纳】两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.思考2你见过哈哈镜吗?哈哈镜与平面镜中的形象哪一个与你本人相似?【针对训练】放大镜下的图形和原来的图形相似吗?探究点2:比例线段 【概念提出】对于四条线段a 、b 、c 、d ,如果其中两条线段的比(即它们的长度的比)与另两条线段的比相等,如dcb a (即ad=bc ),我们就说这四条线段成比例.【典例精析】下列四组长度中的四条线段能成比例的是()A.1cm,2cm,3cm,4cmB.2cm,4cm,6cm,8cmC.5cm,30cm,10cm,15cmD.5cm,10cm,15cm,20cm探究点3:相似多边形与相似比观察与思考多边形ABCDEF是显示在电脑屏幕上的,而多边形A1B1C1D1E1F1是投射到银幕上的.问题1这两个多边形相似吗?问题2在这两个多边形中,是否有对应相等的内角?问题3在这两个多边形中,夹相等内角的两边是否成比例?思考1任意两个等边三角形相似吗?任意两个正方形呢?任意两个正n边形呢?分析已知等边三角形的每个角都为60°,三边都相等.所以满足边数相等,对应角相等,以及对应边的比相等.推理同理,任意两个正方形都相似.归纳任意两个边数相等的正多边形都.思考2任意的两个菱形(或矩形)是否相似?为什么?【典例精析】ABCD和EF,则甲、乙两地的实际距离是()A.3000mB.3500mC.5000mD.7500m3.如图所示的两个四边形是否相似?说明理由.4.观察下面的图形(a)~(e),其中哪些是与图形(1)或(2)相似的?5.填空:(1)如图①是两个相似的四边形,则x=,y=,α=; (2)如图②是两个相似的矩形,x=.6.如图,把矩形ABCD 对折,折痕为EF ,若矩形ABCD 与矩形EABF 相似,AB=1. (1)求BC 的长;(2)求矩形ABFE 与矩形ABCD 的相似比.参考答案 作探究 一、要点探究 探究点1:相似的概念【针对训练】解:相似,放大镜下的图形,只是大小变了,形状没有变. 探究点2:比例线段 【典例精析】C探究点3:相似多边形与相似比 归纳相似 【典例精析】ABCD 和EFG.【针对训练】解:相似多边形的对应边的比相等,由此可得55.72=a ,55.73=b ,55.76=c ,,解得a=3,b=4.5,c=4,d=6.所以未知边a ,b ,c ,d 的长度分别为3,4.5,4,6. 当堂检测 1.ABDF2.D3.解:不相似.因为四条对应边的比例不相等.4.解:(1)与(a )、(2)与(d )相似.5.(1)2.51.590°(2)2.56.解:∵E 是D 的中点,∴BC AD AE 2121==. 又∵矩形ABCD 与矩形EABF 相似,AB=1, ∴AB BC AE AB =,∴AB2=AE ·BC ,∴BC BC ⋅=2112.解得2=BC ∴矩形ABEF 与矩形ABCD 的相似比为2221==BC AB .【素材积累】从诞生的那一刻起,我们就像一支离弦的箭,嗖嗖地直向着生命的终点射去。

九年级数学下册第二十七章相似图形的相似导学案新人教

1x77°α117°82°77°18121827.1图形的相似一、自主学习1.预习课本24页至26页.的图形叫做相似图形. 2.观察以下两组图片中的两个图形相似吗?3.说明(1)相似图形的_______一定要相同,______________无关。

(2)两个图形相似,其中一个图形可以看作由另一个图形______或______得到。

4.哈哈镜及平面镜中的形象与你本人相似吗?二、合作探究(自学课本26页至27页的内容)1.成比例线段的概念:对于四条线段a,b,c,d ,如果其中______的比与 的比 ,就称这四条线段是 ,简称 .练习:若a=3,b=6,c=12,则a 、b 、b 、c 线段是成比例的吗?2.相似多边形:__________________________________.3.相似多边形的性质:相似多边形 相等边 。

说一说如何识别两个多边形相似?三、展示交流1.如图所示的相似四边形中,求未知边x 的长度和角度α的大小.学习目标1.通过观察图形,学生进行分析、归纳、体会、理解并掌握两个图形相似的概念.2.了解成比例线段的概念,会求线段的比. 学习重点 相似图形的概念与成比例线段的概念.学习难点成比例线段概念、求线段的比,注意线段长度的单位要统一.2.如图,△ABC与△DEF相似,求未知边x,,y的长度。

3.在比例尺为1:10 000 000的地图上,量的甲、乙两地的距离是30cm ,求两的实际距离.四、【随堂检测】1.下列说法正确的是()A.所有的平行四边形都相似 B.所有的矩形都相似 C.所有的菱形都相似 D.所有的正方形都相似2.下列各组线段中(单位是cm),能成比例的是()A、 1,3,4,6B、 30,12,0.8,0.2C、 0.1,0.2,0.3,0.4D、 12,16,45,603.△ABC与△DEF相似,如果AC=3,DF=1.8,则△DEF 与△ABC与的相似比是_________.4.观察下列图形,指出哪些是相似图形:5、在比例尺是1:10000的地图上,量得甲、乙两地之间的距离是.5.已知线段3,4,6与x是成比例线段,则_______x。

人教版九年级数学下27.1图形的相似(第1课时)优秀教学案例

2.问题导向的教学策略:教师在课堂上提出一系列具有启发性的问题,引导学生思考和探索相似图形的性质。这种问题导向的教学策略能够培养学生的独立思考能力,提高他们的逻辑思维能力。
3.小组合作的学习方式:教师将学生分成若干小组,鼓励他们相互讨论、交流,共同探究相似图形的性质。这种小组合作的学习方式能够培养学生的合作精神,提高他们的沟通能力和团队协作能力。
4.教师组织小组汇报、展示等活动,让学生在分享成果的同时,提高自己的表达能力和合作能力。
(四)反思与评价
1.教师引导学生回顾本节课的学习内容,总结相似图形的性质及其应用。
2.教师设计反思性题目,让学生思考自己在学习过程中的优点和不足,明确今后的学习方向。
3.教师组织学生进行自我评价、同伴评价,让学生了解自己的学习状况,提高自我监控能力。
(二)过程与方法
1.采用自主学习、合作交流的教学模式,引导学生主动探究相似图形的性质。
2.利用多媒体课件、实物模型等教学资源,为学生提供丰富的感性材料,增强他们的空间想象力。
3.设计一系列具有层次性的数学题目,让学生在解决实际问题的过程中,逐步掌握相似图形的性质。
4.注重培养学生的问题提出、问题解决、归纳总结的能力,提高他们的逻辑思维能力。
4.教师及时给予反馈,引导学生反思自己的思考过程,及时调整学习策略。
(三)小组合作
1.教师将学生分成若干小组,鼓励他们相互讨论、交流,共同探究相似图形的性质。
2.教师设计具有挑战性的数学题目,让学生在合作交流中,提高自己的数学素养。
3.教师关注每个小组的学习进度,及时给予指导,帮助学生克服学习中的困难。
三、教学策略
(一)情景创设
1.利用多媒体课件展示生活中的实际例子,如建筑物的立面图、电路图等,让学生感受到相似图形在实际应用中的重要性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十七章相似
271 图形的相似
学习目标:
1.从生活中形状相同的图形的实例中认识图形的相似理解相似图形概念.了解成比例线段的概念,会确定线段的比.
2知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.3会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.
学习重、难点:
1重点:相似图形的主要特征与识别.
2难点:运用相似多边形的特征进行相关的计算.
学习过程:
一、依标独学
1 、同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?
2 、小组讨论、交流.得到相似图形的概念.
相似图形
3 、如图,是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?
二、围标群学
实验探究:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB 和D ,那么这两条线段的比是多少?
成比例线段:对于四条线段,,,a b c d ,如果其中两条线段的比与另两条线段的比相等,如
a c
b d =(即ad b
c =),我们就说这四条线段是成比例线段,简称比例线段.
【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;线段的比是一个没有单位的正数;
(2)四条线段,,,a b c d 成比例,记作a c b d
=或::a b c d =; (3)若四条线段满足a c b d
=,则有ad bc =. 小应用: 一张桌面的长 1.25a m =,宽0.75b m =,那么长与宽的比是多少?
(1)如果125a cm =,75b cm =,那么长与宽的比是多少?
(2)如果1250a mm =,750b mm =,那么长与宽的比是多少?
三、探索
1、如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.
问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.
2.【结论】:
(1)相似多边形的特征:相似多边形的对应角______,对应边的比_______. 反之,如果两个多边形的对应角______,对应边的比_______,那么这两个多边形_______.几何语言:在四边形ABD 和四边形A 1B 11D 1中
若1111;;D D A A B B C C ?行
=行=行=?;. 1111111
1D =AB BC C DA A B B C C D D A == 则四边形ABD 和四边形A 1B 11 D 1相似
(2)相似比:相似多边形________的比称为相似比.
问题:相似比为1时,相似的两个图形有什么关系?
结论:相似比为1时,相似的两个图形______,因此________形是一种特殊
的相似形.
四、自我检测
1.在比例尺为1:10 000 000的地图上,量得甲、乙两地的距离是30 c ,求两地的实际距离.
2.如图所示的两个直角三角形相似吗?为什么?
3.如图所示的两个五边形相似,求未知边a 、b 、c 、d 的长度.
五、归纳小结。

相关文档
最新文档