代数式基础测试题含答案
代数式单元测试题(Word版 含解析)

一、初一数学代数式解答题压轴题精选(难)1.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.2.如图(1)2020年9月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为________;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为________(2)如图2,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为96?如果存在,请求出这四个数中的最小的数字;如果不存在,请说明理由(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2.若|a1﹣a2|=6,请求出正方形框中位于最中心的数字m的值.【答案】(1)3x+3;3y+21(2)解:设所框出的四个数最小的一个为a,则另外三个分别是:(a+1)、(a+7)、(a+8),则a+(a+1)+(a+7)+(a+8)=96,解得,a=20,由图2知,所框出的四个数存在,故存在被框住的4个数的和为96,其中最小的数为20(3)解:根据题意得,a1=m+(m﹣1)+(m+1)+(m﹣7)+(m﹣6)+(m﹣8)=6m ﹣21,a2=(m+7)+(m+6)+(m+8)=3m+21,∵|a1﹣a2|=6,∴|(6m﹣21)﹣(3m+21)|=6,即|3m﹣42|=6,解得,m=12(因12位于最后一竖列,不可能为9数的中间一数,舍去)或m=16,∴m=16.【解析】【解答】(1)解:如果任意圈出一横行左右相邻的三个数,设最小的数为x,则三数的和为:x+(x+1)+(x+2)=x+x+1+x+2=3x+3;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,则三数和为:y+(y+7)+(y+14)=y+y+7+y+14=3y+21.故答案为:3x+3;3y+21【分析】(1)由三个数的大小关系,表示另两个数,再求和并化简即可;(2)设最小数为a,并用a的代数式表示所框出的四个数的和,再根据四个数和为96可列方程,解方程,若方程有符合条件的解,则存在,反之不存在;(3)且m表示出a1和a2,再由|a1−a2|=6列方程求解.3.A和B两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差别:A公司,年薪20000元,每年加工龄工资200元;B公司,半年薪10000元,每半年加工龄工资50元.(1)第二年的年待遇:A公司为________元,B公司为________元;(2)若要在两公司工作n年,从经济收入的角度考虑,选择哪家公司有利(不考虑利率等因素的影响)?请通过列式计算说明理由.【答案】(1)20200;20250(2)解:A公司:20000+200(n-1)=200n+19800B公司:10000+50(2n-2)+10000+50(2n-1)=200n+19850,∴从应聘者的角度考虑的话,选择B家公司有利.【解析】【解析】(1)解:A公司招聘的工作人员第二年的工资收入是:20000+200=20200元;B公司招聘的工作人员第二年的工资收入是:1000+50×2+1000+50×3=20250元;【分析】(1)根据第二年的年待遇等于年薪+工龄工资,即可算出;(2)分别表示出第n年在A,B两家公司工作的年收入,再比较大小即可。
代数式经典测试题及答案

代数式经典测试题及答案一、选择题1.若(x +1)(x +n )=x 2+mx ﹣2,则m 的值为( )A .﹣1B .1C .﹣2D .2【答案】A【解析】【分析】先将(x+1)(x+n)展开得出一个关于x 的多项式,再将它与x 2+mx-2作比较,即可分别求得m ,n 的值.【详解】解:∵(x+1)(x+n)=x 2+(1+n)x+n ,∴x 2+(1+n)x+n=x 2+mx-2, ∴12n m n +=⎧⎨=-⎩, ∴m=-1,n=-2.故选A .【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.2.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.3.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.4.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500 【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.5.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅=【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.6.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】 由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.7.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .8.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -=D .(﹣2a )3=﹣8a 3 【答案】D【解析】 【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案. 【详解】 A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.9.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是( )A .B .C .D .无法确定 【答案】A【解析】【分析】 利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.【详解】 =(AB-a )·a+(CD-b )(AD-a )=(AB-a )·a+(AD-a )(AB-b )=(AB-a )(AD-b )+(CD-b )(AD-a )=(AB-a )(AD-b )+(AB-b )(AD-a )∴-=(AB-a )(AD-b )+(AB-b )(AD-a )-(AB-a )·a-(AD-a )(AB-b )=(AB-a )(AD-a-b)∵AD <a+b , ∴-<0, 故选A.【点睛】此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.10.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.11.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab【答案】B【解析】【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2; ∴(a ﹣b )2=a 2﹣2ab+b 2,故选B .【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.12.多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )A .2,3B .2,2C .3,3D .3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.13.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.14.下列运算正确的是( )A .2352x x x +=B .()-=23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.15.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .16.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .17.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意.故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.18.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.19.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.20.通过计算大正方形的面积,可以验证的公式是( )A.B.C.D.【答案】C【解析】【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.。
人教版数学七年级上《代数式》测试题(答案)

人教版数学七年级上《代数式》测试题(答案)代数式一、选择题(每题3分,共30分)1.下列各式子中,符合代数式书写要求的是()。
C)x + 3千米(D)ab•32.下列各式不是同类项的是()。
C)ab与3ab3.下列各式正确的是()。
D)23x(3x2)4.单项式2ab的次数是()。
B) -25.一个三位数,a表示百位数,b表示十位数,c表示个位数,那么这个三位数可表示为()。
D) 100a + 10b + c6.在排成每行七天的日历表中取下一个3×3方块(如图)。
若所有日期数之和为189,则n的值为:B)117.若k为自然数,xy与xk3y3是同类项,则满足条件的k值有()。
C) 3个8.长方形的一边长等于3a + 2b,另一边比它小a b,那么这个长方形的周长是()。
A) 10a + 6b9.代数式a3a7a7与32a3a a的和是()。
B) 偶数10.如果A是三次多项式,B是三次多项式,那么A+B一定是()。
C) 三次多项式二、填空题。
(每题3分,共24分)11.实数a(a≠0)的相反数的倒数是-1/a。
12.a,b两个数在数轴上表示如右图,则表示这两个数的两点之间的距离是|a-b|。
13.单项式πr的系数是-π,次数是1.14.多项式a-2a2+1的最高次项是-2a2,最高次项的系数是-2.15.一年期的存款的年利率为p%,利息个人所得税的税率为20%。
某人存入的本金为a元,则到期支出时实得本利和为(1+p%×0.8)a。
16.2a4b3与a b的2倍是3a-6b-6.17.已知多项式ax+bx+cx+9,当x=-1时,多项式的值为17.则该多项式当x=1时的值是3a+3b+2c+9.18.已知甲、乙两种糖果的单价分别为x元/千克和12元/千克。
为了使甲乙两种糖果分别销售与把它们混合成什锦糖后再销售收入保持不变,则由20千克甲种糖果和y千克乙种糖果混合而成的什锦糖的单价应为(20x+y*12)/(20+y)元/千克。
七年级上册数学第三章《代数式》单元测试(含答案)

七上第三章《代数式》单元测试班级:___________姓名:___________得分:___________ 一、选择题1.有下列各式:x−y3,−15a2b2,1y,1π,√x.其中单项式有()A. 1个B. 2个C. 3个D. 4个2.已知a,b为自然数,则多项式12x a−y b+2a+b的次数应当是()A. aB. bC. a+bD. a,b中较大的数3.某校七年级1班有学生a人,其中女生人数比男生人数的45多−(−2)人,则女生的人数为().A. 4a+159B. 4a−159C. 5a−159D. 5a+1594.若代数式x2+ax+9y−(bx2−x+9y+3)的值恒为定值,则−a+b的值为()A. 0B. −1C. −2D. 25.已知代数式x+2y+1的值是3,则代数式−2x−4y+2的值是()A. −2B. −4C. −6D. 不能确定6.历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示,例如多项式f(x)=ax3+bx+1,当x=1时,f(1)=6,那么f(−1)等于()A. 0B. −3C. −4D. −57.若(a+b)2017=−1,a−b=1,则a2017+b2017的值是()A. −1B. 0C. 1D. 28.边长为a的正方形,将边长减少b以后得到一个较小的正方形,所得较小正方形的面积比原来正方形的面积减少了().A. b2B. –b2+2abC. 2abD. a2–b29.有这样一道题,“当x=1213,y=−0.78时,求多项式7x3−6x3y+3x2y+3x3+6x3y−3x2y−10x3的值”.同学甲计算时用x=−1213,y=0.78代入,同学乙计算时用x=1213,y=0.78代入,结果两人的计算结果都正确,则原因是()A. 这个代数式的值只跟x,y的绝对值大小有关与符号无关B. 代数式化简结果只含有x,y的偶次项的原因C. 代数式化简结果x,y中其中一项系数为零,还有一项刚好与符号无关D. 代数式化简结果为零,与x,y的大小均无关系10.如图,若|a+1|=|b+1|,|1−c|=|1−d|,则a+b+c+d的值为()A. 0B. 2C. −2D. −1二、填空题11.一艘轮船沿江逆流航行的速度是28km/ℎ,江水的流速是2km/ℎ,则该轮船沿江顺流航行的速度是________.12.已知a2−2b−1=0,则多项式4b−2a2+5的值等于 ___ .13.一组按照规律排列的式子:x,x34,x59,x716,x925,⋯,其中第8个式子是_________.14.一个多项式与m2+m−2的和是m2−2m.这个多项式是______.15.一个两位数的个位数字为a,十位数字为b,这个两位数可表示为__.16.如图所示的运算程序中,若开始输入的x值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,……,则第2018次输出的结果为________。
代数式练习题及答案

代数式练习题及答案【篇一:数学七年级上《代数式》复习测试题(答案)】(每题3分,共30分)1.下列各式子中,符合代数式书写要求的是()12ab22(c)x?3千米(d)ab?3(a)1ab (b)?2.下列各式不是同类项的是()(a)ab 与3ab (b)x与2x(c)22121ab与?3ab2 (d)ab与4ba 263.下列各式正确的是()(a)3a?b?3ab (b)23x?4?27x(c)?2(x?4)??2x?4 (d)2?3x??(3x?2) 4.单项式?2ab的次数是()(a)1 (b)-2 (c)2 (d)3 5.一个两三位数,a表示百位数,b表示十位数,c表示个位数,那么这个两位数可表示为()(a)a?b?c (b)abc(c)10abc(d)100a?10b?c6.在排成每行七天的日历表中取下一个3?3方块(如图)。
若所有日期数之和为189,则n的值为:(a)21 (b)11 (c)15 (d)9 7.若k为自然数,22k?pp1xy与?xk?3y3是同类项,则满足条件的k值有() 52(a)1个(b)2个 (c)3个(d)无数个8.长方形的一边长等于3a?2b,另一边比它小a?b,那么这个长方形的周长是()(a)10a?6b (b)7a+3b (c)10a+10b (d)12a+8b 9.代数式a?3a?7a?7与3?2a?3a?a的和是()(a)奇数(b)偶数 (c)5的倍数 (d)无法确定 10.如果a是三次多项式,b是三次多项式,那么a+b一定是()(a)六次多项式(b)次数不高于3的整式(c)三次多项式(d)次数不低于3的整式二.填空题。
(每题3分,共24分) 11.实数a?a?0?的相反数的倒数是 12.a,b两个数在数轴上表示如右图,则表示这两个数的两点之间的距离是。
13.单项式??r的系数是。
2322314.多项式a?21a?1的最高次项是 215.一年期的存款的年利率为p%,利息个人所得税的税率为20%。
代数式基础测试题及答案

【详解】
解:A、当a=3,b=2时,y= = =1,符合题意;
B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;
C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;
D、当a=4,b=2时,y= = = ,不符合题意.
故选:A.
【点睛】
A.400B.401C.402D.403
【答案】D
【解析】
【分析】
由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方形,第3个图形有9+5×2=19个边长为1的小正方形,…由此得出第n个图形有9+5×(n-1)=5n+4个边长为1的小正方形,由此求得答案即可.
【详解】
解:第1个图形边长为1的小正方形有9个,
A.2a2-2aB.2a2-2a-2C.2a2-aD.2a2+a
【答案】C
【解析】
【分析】
由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n=2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.
【详解】
解:∵2+22=23-2;
2+22+23=24-2;
2+22+23+24=25-2;
…
∴2+22+23+…+2n=2n+1-2,
代数式基础测试题及答案

代数式基础测试题及答案二 ab 故选 B . 【点睛】本题考查完全平方公式的应用,一、选择题1 .已知a+b+c=1 ,222abC2c 3 ,则 ab 的值为( ).A .1【答案】 B 【解析】 【分析】 B .-1 C .2D . -222ab 后利用完全平方公式将两个式子联立即可求解. 【详解】 22 -a b 将 a+b+c=1 变形为 a+b=1- C ,将 2c 3 变形为22ab2C22C 1,然•- a 2 b 2 ■/ a+b+c=1 展开得a 2b 22c 3C 2 2C 1= 1b 22aba 2b 22.下列各计算中,正确的是 A . a 2a 3a B. a a 2 C . a 8a 2a 4D . 3 2 6(a ) a答案】 D 解析】 【分析】 本题主要考查的就是同底数幂的计算法则 【详解】 解:A 、不是同类项,无法进行合并计算; B 、同底数幕乘法,底数不变,指数相加,原式C 同底数幕的除法,底数不变,指数相减,原式=a 5;6=a6 =a .D 、幕的乘方法则,底数不变,指数相乘,原式 【点睛】 本题主要考查的就是同底数幂的计算法则 .在运用同底数幂的计算的时候首先必须将各幂的 底数化成相同,然后再利用公式来进行计算得出答案 .同底数幂相乘,底数不变,指数相根据等式特点构造完全平方式是解题的关键.加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘 运算的时候很多同学容易用错,例如:am n a m a n等等.••• 2+22 +23+…+2=2n+1-2,250+ 251+252+- +29+2100=(2+22+23+ — +护0) - (2+22+23+ — +49) =( 2101-2) -(250-2)=2101-250,••• 250=a,. 2101=( 250) 2?2=2a 2,.原式 =2a 2-a .故选: C . 【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现 的规律解决问题.解决本题的难点在于得出规律:2+22+23+- +2=2n+1-2.4.下列计算正确的是( )答案】解析】 【分析】 根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判 断即可得解 . 【详解】.在进行逆2+ 22= 23- 2; 2 + 22+ 23= 24- 2; 2+22+ 23+ 24= 25-2;已知按一定规律 250、251、252、、299、2100,若250= a ,用含a 的式子表示这组数的和是3.观察等式: 排列的一组数: ()A . 2a 2- 2a【答案】 C 【解析】 【分析】 由等式: 2+22=23-2; 2+22+23=24-2; 2+22+23+24=25-2,得出规律: 么 250+251+252+…+29+2100= (2+22+23+— +200) - (2+22+23+ — +2^) 【详解】解:••• 2+22=23-2 ; 2+22+23=24-2; 2+22+23+24=25-2;B .2a 2-2a -2C .2a 2-aD .2a 2+a2+22+23+- +2=2n+1-2,那,将规律代入计算即可.A . x 2x 3 x 5B.x 2gx3x6C . x 6x 3 x3D . x 3 2x9【答案】 【解析】 【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幕的除法运算法则化简 求出即可.D 、故选:D . 【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幕的除法运算法则等知 识,正确掌握运算法则是解题关键.6.下列图形都是由面积为 1的正方形按一定的规律组成的,其中,第 1个图形中面积为1 的正方形有9个,第2个图形中面积为1的正方形有14个,••…,按此规律,则第几个图 形中面积为1的正方形的个数为 2019个()【答案】D 【解析】 【分析】由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方A. B. C. D.X 2与X 3不能合并,故该选项错误;2 3 5 X gx X6 3 X X32,故该选项错误;X 3,计算正确,故该选项符合题意; X 6,故该选项错误.故选C. 【点睛】此题主要考查了合并同类项, 解决此题的关键.同底数的乘除法以及幕的乘方的运算,熟练掌握运算法则是5.下列运算错误的是( 36mA . m 2B .10 9a a aC. X 3X 5X 8r 4 3 7D . a a a【详解】(m 2)3=m 6,正确;a 10+9=a ,正确; x 3?x 5=x 8,正确;a 4+a 3=a 4+a 3,错误; A 、 B 、 C 、D . 403当 5n+4=2019 时, 所以第 403 个图形中边长为 1 的小正方形的个数为 2019 个. 故选: D .【点睛】 此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.分析】••• 2 +22+…+ 250 = 251— 2,-250 + 251 + 252 + ..•+ 299 + 2100 =a +(2+22+…+ 250)a=a + (251— 2)a=a + (2 a — 2)a =2a 2— a , 故选 C.形,第3个图形有9+5X 2=19个边长为1的小正方形,…由此得出第n 个图形有9+5X (n-1) =5n+4 个边长为 1 的小正方形,由此求得答案即可.【详解】解:第 1 个图形边长为 1 的小正方形有 9个, 第 2 个图形边长为 第 3 个图形边长为的小正方形有 的小正方形有9+5=14 个, 9+5X 2=19第 n 个图形边长为的小正方形有9+5X( n-1) =5n+4 个,解得 n=403 7.观察等式: 2 22一定规律排列的一组数: 23 2 ; 2250、 251、2223252、242 ;、 299、2 22 23210024 25若 250a ,用含 2已知按a 的式子表示这组数的和是(2A . 2a 22a 【答案】 C 【解析】B . 2a 22aC . 2a 2D . 2a 2250 、 251 、 252 、 、 299、 2100的和为 ==a + (2 +22+…+ 250)a ,进而根据所给等式的规律,可以发现 由此即可求得答案 . 【详解】250+ 251+ 252+ …+ 299+ 2100 =a+ 2a+ 22a +…+ 250a=a +(2+22+…+ 250)a , ••• 2 22232,2222324 2, 2222324252,根据题意,一组数 250 + 251 + 252 + • • + 299 + 21002+22+ …+ 250= 251— 2,【点睛】本题考查了规律题 一一数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发 生变化,是按什么规律变化的是解题的关键.8.如图,两个连接在一起的菱形的边长都是ABCDAEFGAB-的顺序沿菱形的边循环爬行,当电子甲虫爬行 置是(1cm ,一只电子甲虫从点 A 开始按2014cm 时停下,则它停的位C.点A D .点CA .点 【答案】 【解析】分析:利用菱形的性质,电子甲虫从出发到第 合),而 2014十 8=251 是F 点.详解:一只电子甲虫从点 A 开始按ABCDAEFGAB •的顺序沿菱形的边循环爬行,从出发到第1次回到点A 共爬行了 8cm (称第1回,即电子甲虫要爬行 251个回合,再爬行6cm ,所以它停的位置1次回到点A 共爬行了 8cm , 而 2014-8=251……,所以当电子甲虫爬行 2014cm 时停下,它停的位置是 F 点. 故选A .点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照 什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真 观察、仔细思考,善用联想来解决这类问题.9.计算3x 2- X 2的结果是( )A . 2 B. 2x 2C. 2xD. 4x 2【答案】【解析】 【详解】 【分析】根据合并同类项的法则进行计算即可得. 3x 2- X=(3-1) =2x 2,故选B . x 2本题考查合并同类项,解题的关键是熟练掌握合并同类项法则10.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的 8个长为a ,宽为b 的小长方形,用这 8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( ))B .点E F【答案】 【解析】 【分析】55b ,即a -b ,图1长方形的面积为8ab ,图2正方形的面积为3(a 2b )2,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】 解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为(a 2b )2•••阴影部分的面积为:(a 2b )28ab (a 2b )25•/ 3a 5b ,即 a -b3•••阴影部分的面积为:(a 2b )2( -)23故选:B . 【点睛】本题考查的知识点是完全平方公式,根据图12.下列计算,正确的是()【答案】D【解析】A.a 2和a,和不能合并,故本选项错误;A . (a B.C.D . a 2b 2根据图1可得出3a得出a , b 的关系是解此题的关键.11.计算(― A . 22019【答案】【解析】 B .2 )2009+ (— 2)22009C — 22010的结果是(D. — 22010=(—2) 二—22009故选B .(— 2009+ (— 2) X (— 1 ) =220092 ) 2009+ (— 2) 2010= (— 2) (—2) = (— 2)2009+2009(—2)2009+1X [1+(— 2)2A . a a aB . a 2a 3a 6^93C. a aD . a 3 2a 6b)2a 5 a 6,故本选项错误; a 6 a 3和不能合并,故本选项错误;D 23B. a aQ c9c3 3 2D. a 3a 6,故本选项正确;故选D.例如,购买A 类会员年卡,一年内健身 20次,消费1500 100 20 3500元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为()A .购买 C.购买 【答案】 A 类会员年卡 C 类会员年卡C B .购买B 类会员年卡D .不购买会员年卡【解析】【分设一年内在该健身俱乐部健身x 次,分别用含x 的代数式表示出购买各类卡所需消费,然后将x=50和x=60分别代入各个代数式中比较大小即可得出结论. 【详解】解:设一年内在该健身俱乐部健身x 次,由题意可知:50WXW 60则购买A 类会员年卡,需要消费(1500 + 100x )元; 购买B 类会员年卡,需要消费(3000 + 60x )元; 购买C 类会员年卡,需要消费(4000 + 40X )元; 不购买会员卡年卡,需要消费 180x 元; 当x=50时,购买A 类会员年卡,需要消费1500 + 100X 50=6500元;购买B 类会员年卡,需要消费3000 + 60X 50=6000元;购买C 类会员年卡,需要消费 4000 + 40X 50=6000不购买会员卡年卡,需要消费180X 50=9000元;6000< 6500< 9000当x=60时,购买A 类会员年卡,需要消费1500 + 100X 60=7500元;购买B 类会员年卡,需要消费3000 + 60X 60=6600元;购买C 类会员年卡,需要消费 4000 + 40X 60=6400不购买会员卡年卡,需要消费 180X 60=10800元;6400< 6600 < 7500< 10800故选C. 【点睛】13. 一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:【解析】 【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算. 【详解】 矩形的面积为: (a+4) 2-( a+1)2=(a 2+8a+16) - (a 2+2a+1)=a 2+8a+16-a 2-2a-1 =6a+15. 故选D .16.按如图所示的运算程序,能使输出 y 的值为1的是()此题考查的是用代数式表示实际意义,掌握实际问题中各个量之间的关系是解决此题的关 键.14. A .下列运算正确的是( 2 3(2X )8x 62B . 2x X 1 2x 2x C. (X y)2X 2D .X 2y XC 2,22y X 4y【答案】 【解析】A .B . C. D . 故选A .(-2x 2)3=- 8x 6,正确;—2x(x + 1)=- 2x 2- 2x ,故 B 错误; (x + y)2= X 2+ 2xy+y 2,故 C 错误;(-x + 2y)(- X -2y) = X 2-4y 2,故 D 错误;15.如图,从边长为(a + 4)cm 的正方形纸片中剪去一个边长为((a 0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),a 1 ) cm 的正方形则矩形的面积为()•-a* IYo 9A . (2a 5a)cm【答案】D2 B . (3 a 15) cm 2 C. (6 a 9) cm 2D . (6 a 15) cmA . a = 3, b = 2 【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】D . a = 4, b = 21解:A 、当 a = 3, b = 2 时,y =—^ =a 2 B 、 C 、 a =- 3,b =- 1 a= 1, b = 3 时,—=1,符合题意;3 2时,y = b 2- 3 = 1 - 3=- 2,不符合题意; y =b 2- 3= 9 - 3 = 6,不符合题意;D 、a = 4,b = 2 时, 1-,不符合题意. 2故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意, 题型.属于中考常考17.已知x=2y+3,则代数式9-8y+4x 的值是() A . 3【答案】B B . 21 C. 5 D . -15【解析】 【分析】直接将已知变形进而代入原式求出答案 【详解】 解:•/x=2y+3 ••• x -2y=3••• 9 8y 4x 9 4(2y x)=9-4 (-3)=21故选:B 【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键1 C. a = 1, b = 3 B . a =- 3, b =-2,【详解】 解:•••丄xx y xy【答案】 【解析】 【分析】根据合并同类项、同底数幕的乘除法公式、幕的乘方公式逐项判断,即可求解 【详解】A 、4 4a a2a 4,故错误; B 、 2 c 3a ?aa 5,故错误;C 、,4\3(a ) 12a ,正确; D 、 6 2 a a a 4,故错误;故答案为: C.【点睛】本题考查了整式的运算,解题的关键是熟练掌握合并同类项的运算法则、同底数幕的乘除 法公式、幕的乘方公式.118.已知一x1A.-2【答案】D 【解析】B . 21C.-2D .2先将已知条件变形为2xy ,再将其整体代入所求式子求值即可得解.••• x y 2xy2xy ...2xy x y 3xy故选:D 【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为 y 2xy 的形式是解题的关键.2xy 3xy创2. xy19. A . 下列计算正确的是()4 a 4 8 a 2aB . a 2?a 3 a 6I 4\3 12C. (a ) aD . a 6a 2a 32x 22xy = 4x 3y ,故是错误的; 3x 2y 和 5xy 2 不是同类项,不可直接相加减,x ^ 1^x 2= X ,故是错误的; (-3a — 2)( — 3a + 2) = 9a 2 — 4,计算正确,故是正确的 20.下列计算正确的是( A . 2x 2?2xy = 4x 3y 4 C. x ^1 歩—2=【答案】 【解析】 B . D . 3x 2y —5xy 2 =— 2x 2y (— 3a —2)(— 3a+2)= 9a 2—4 A 选项: B 选项: C 选项:D 选项: 故选 D. 故是错误的;。
代数式经典测试题附答案

A.7
B.12
C.13
D.25
【答案】C
【解析】
【分析】
设正方形 A 的边长为 a,正方形 B 的边长为 b,根据图形列式整理得 a2+b2−2ab=1,2ab
=12,求出 a2+b2 即可.
【详解】
解:设正方形 A 的边长为 a,正方形 B 的边长为 b,
由图甲得:a2−b2−2(a−b)b=1,即 a2+b2−2ab=1, 由图乙得:(a+b)2−a2−b2=12,即 2ab=12, 所以 a2+b2=13,即正方形 A,B 的面积之和为 13, 故选:C. 【点睛】 本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.
7.下列运算正确的是 ( )
A. a2 a3 a6
B. a6 a3 a2
C. 2a2 2a2
D. a2 3 a6
【答案】D 【解析】 【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最 后进一步判断即可. 【详解】
A: a2 a3 a5 ,计算错误;
11.若 x+y=3+2 2 ,x﹣y=3﹣2 2 ,则 x2 y2 的值为( )
A.4 2
【答案】B 【解析】
B.1
【分析】
根据二次根式的性质解答.
【详解】
解:∵x+y=3+2 2 ,x﹣y=3﹣2 2 ,
C.6
D.3﹣2 2
∴ x2 y2 (x y)(x y) (3 2 2)(3 2 2) =1.
4.下列图形都是由面积为 1 的正方形按一定的规律组成的,其中,第 1 个图形中面积为 1 的正方形有 9 个,第 2 个图形中面积为 1 的正方形有 14 个,……,按此规律,则第几个图 形中面积为 1 的正方形的个数为 2019 个( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. (2a2 5a)cm2
B. (3a 15)cm2
C. (6a 9)cm2
D. (6a 15)cm2
【答案】D 【解析】
【分析】
利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.
【详解】
矩形的面积为:
(a+4)2-(a+1)2 =(a2+8a+16)-(a2+2a+1) =a2+8a+16-a2-2a-1 =6a+15. 故选 D.
B、 ab2 2 a2b4 ,故选项错误;
C、选项正确;
D、 a b2 a2 2ab b2 ,故选项错误.
故选 C.
16.若 x y 3,xy 2 , 则 5x 2 3xy 5y 的值为( )
A.12
B.11
C.10
【答案】B
【解析】
【分析】
项将多项式去括号化简,再将 x y 3,xy 2 代入计算.
后利用完全平方公式将两个式子联立即可求解.
【详解】
∵ a2 b2 c2 2c 3
∴ a2 b2 2 c2 2c 1= 1 c2
∵a+b+c=1
∴ a b 1c
∴ a b2 1 c2
∴ a b2 a2 b2 2
展开得 a2 b2 2ab a2 b2 2 ∴ ab 1
【详解】
解:设第 n 个图形共有 an(n 为正整数)个五角星,
∵a1=4=3×1+1,a2=7=3×2+1,a3=10=3×3+1,a4=13=3×4+1,…,
∴an=3n+1(n 为正整数), ∴a7=3×7+1=22.
故选:C.
【点睛】
本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“an= 3n+1(n 为正整数)”是解题的关键.
18.若 55+55+55+55+55=25n,则 n 的值为( )
A.10
B.6
C.5
D.3
【答案】D
【解析】
【分析】
直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.
第 3 个图案中的三角形个数为:2+2+2+2=8=2×(3+1);
……
∴第 n 个图案中有三角形个数为:2(n+1)
∴第 7 个图案中的三角形个数为:2×(7+1)=16,
故选 C.
【点睛】
本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出
正确结果是解题的关键.
9.如图,由 4 个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积 是 9,小正方形面积是 1,直角三角形较长直角边为 a,较短直角边为 b,则 ab 的值是 ()
故选 B. 【点睛】 本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.
2.下列运算错误的是( )
A. m2 3 m6
B. a10 a9 a
C. x3 x5 x8
D. a4 a3 a7
【答案】D 【解析】 【分析】 直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简 求出即可. 【详解】 A、(m2)3=m6,正确; B、a10÷a9=a,正确; C、x3•x5=x8,正确; D、a4+a3=a4+a3,错误; 故选:D. 【点睛】
A.(a+b)(a﹣b)=a2﹣b2
B.(a+b)2=a2+2ab+b2
C.(a﹣b)2=a2﹣2ab+b2
D.a(a﹣b)=a2﹣ab
【答案】A
【解析】
【分析】
分别计算出两个图形中阴影部分的面积即可.
【详解】
图 1 阴影部分面积:a2﹣b2,
图 2 阴影部分面积:(a+b)(a﹣b),
由此验证了等式(a+b)(a﹣b)=a2﹣b2,
15.下列运算正确的是
A. 2a3 a 6
B. ab2 2 ab4
C. a ba b a2 b2
D. a b2 a2 b2
【答案】C 【解析】 根据整式的除法,幂的乘方与积的乘方运算法则和平方差公式,完全平方公式逐一计算作 出判断:
A、 2a3 a 2a2 ,故选项错误;
【详解】
选项 A,2m2+m2=3m2,故此选项错误;
选项 B,(mn2)2=m2n4,故此选项错误;
选项 C,2m•4m2=8m3,故此选项错误;
选项 D,m5÷m3=m2,正确.
故选 D.
【点睛】
本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解
题关键.
6.观察下列图形:( )
排从左到右由大到小,奇数排从左到右由小到大,所以 58 应该在 11 排的从左到右第 3 个
数.
故选 A. 考点:坐标确定位置.
5.下列运算正确的是( )
A.2m2+m2=3m4
B.(mn2)2=mn4 C.2m•4m2=8m2
D.m5÷m3=m2
【答案】D
【解析】
【分析】
直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.
C.(11,9)
D.(9,11)
【答案】A
【解析】
试题分析:根据排列规律可知从 1 开始,第 N 排排 N 个数,呈蛇形顺序接力,第 1 排 1 个
数;第 2 排 2 个数;第 3 排 3 个数;第 4 排 4 个数
根据此规律即可得出结论.
解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以 58 在第 11 排;偶数
个图形中五角星的个数为( )
A. 3n 1
B. 3n
C. 3n 1
D. 3n 2
【答案】C
【解析】
【分析】
根据前 4 个图形中五角星的个数得到规律,即可列式得到答案.
【详解】
观察图形可知:
第 1 个图形中一共是 4 个五角星,即 4 311,
第 2 个图形中一共是 7 个五角星,即 7 32 1,
A.12
B.14C.16源自D.18【答案】C
【解析】
【分析】
观察第 1 个、第 2 个、第 3 个图案中的三角形个数,从而可得到第 n 个图案中三角形的个
数为 2(n+1),由此即可得.
【详解】
∵第 1 个图案中的三角形个数为:2+2=4=2×(1+1);
第 2 个图案中的三角形个数为:2+2+2=6=2×(2+1);
第 3 个图形中一共是 10 个五角星,即10 331,
第 4 个图形中一共是 13 个五角星,即13 3 4 1,
,按此规律排列下去,
第 n 个图形中一共有五角星的个数为 3n 1,
故选:C.
【点睛】
此题考查图形类规律的探究,观察图形得到五角星的个数的变化规律并运用解题是关键.
14.已知单项式 3a b2 m1 与 7anb 互为同类项,则 m n 为 ( )
2
【答案】C
【解析】 【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可. 【详解】
A. 若 A、B 表示两个不同的整式,如果 B 中含有字母,那么称 A 是分式.故此选项错误. B
B. a4 2 a4 a8 a4 a4 ,故故此选项错误.
xy C. 若将分式 x y 中,x、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确.
代数式基础测试题含答案
一、选择题 1.已知 a+b+c=1, a2 b2 c2 2c 3 ,则 ab 的值为( ).
A.1
B.-1
C.2
D.-2
【答案】B
【解析】
【分析】
将 a+b+c=1 变形为 a+b=1- c,将 a2 b2 c2 2c 3 变形为 a2 b2 2 c2 2c 1,然
【详解】
根据完全平方的形式可得,缺失的平方项为 9b2
故选 C.
【点睛】
本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.
8.把三角形按如图所示的规律拼图案,其中第①个图案中有 4 个三角形,第②个图案中 有 6 个三角形,第③个图案中有 8 个三角形,…,按此规律排列下去,则第⑦个图案中三 角形的个数为( )
进行判断即可. 【详解】
解:A: a3 a3 2a3 ,故选项 A 错; B: a6 a3 a3 ,故选项 B 错;
C: a2 a3 a5 ,故本选项正确;
D.: a3 3 a9 ,故选项 D 错误.
故答案为 C. 【点睛】 本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概
D. 9
【详解】
5x 2 3xy 5y = 2 3xy 5(x y) ,
∵ x y 3,xy 2 ,
∴原式=2-6+15=11, 故选:B. 【点睛】 此题考查整式的化简求值,正确去括号、合并同类项是解题的关键.
17.如图,从边长为( a 4 )cm 的正方形纸片中剪去一个边长为( a 1 )cm 的正方形 ( a 0 ),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )
此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知 识,正确掌握运算法则是解题关键.
3.下列运算正确的是()
A. a3 a3 a6
B. a6 a3 a2