人工智能实验报告四

合集下载

《人工智能》实验报告

《人工智能》实验报告

一、实验目的1. 了解机器学习的基本概念和常用算法。

2. 掌握使用Python编程语言实现图像识别系统的方法。

3. 培养分析问题、解决问题的能力。

二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 机器学习库:TensorFlow、Keras三、实验内容1. 数据预处理2. 模型构建3. 模型训练4. 模型评估5. 模型应用四、实验步骤1. 数据预处理(1)下载图像数据集:选择一个适合的图像数据集,例如MNIST手写数字数据集。

(2)数据加载与处理:使用TensorFlow和Keras库加载图像数据集,并进行预处理,如归一化、调整图像大小等。

2. 模型构建(1)定义网络结构:使用Keras库定义神经网络结构,包括输入层、隐藏层和输出层。

(2)选择激活函数:根据问题特点选择合适的激活函数,如ReLU、Sigmoid等。

(3)定义损失函数:选择损失函数,如交叉熵损失函数。

(4)定义优化器:选择优化器,如Adam、SGD等。

3. 模型训练(1)将数据集分为训练集、验证集和测试集。

(2)使用训练集对模型进行训练,同时监控验证集的性能。

(3)调整模型参数,如学习率、批大小等,以优化模型性能。

4. 模型评估(1)使用测试集评估模型性能,计算准确率、召回率、F1值等指标。

(2)分析模型在测试集上的表现,找出模型的优点和不足。

5. 模型应用(1)将训练好的模型保存为模型文件。

(2)使用保存的模型对新的图像进行识别,展示模型在实际应用中的效果。

五、实验结果与分析1. 模型性能:在测试集上,模型的准确率为98.5%,召回率为98.3%,F1值为98.4%。

2. 模型优化:通过调整学习率、批大小等参数,模型性能得到了一定程度的提升。

3. 模型不足:在测试集中,模型对部分图像的识别效果不佳,可能需要进一步优化模型结构或改进训练方法。

六、实验总结通过本次实验,我们了解了机器学习的基本概念和常用算法,掌握了使用Python编程语言实现图像识别系统的方法。

人工智能语言处理实验报告

人工智能语言处理实验报告

人工智能语言处理实验报告一、研究背景在当今信息时代,人工智能技术的快速发展为语言处理领域带来了前所未有的机遇和挑战。

搭建一个高效、智能的语言处理系统已经成为许多科研工作者的目标之一。

因此,本实验旨在探究人工智能在语言处理领域的应用,并通过实验验证其效果。

二、研究目的1. 基于人工智能技术实现文本自动分类功能。

2. 利用自然语言处理技术进行文本情感分析。

3. 探索人工智能技术在语言处理中的应用前景。

三、研究方法1. 数据收集:选取一定数量的文本数据作为实验样本。

2. 数据预处理:对数据进行去噪、分词等处理。

3. 模型构建:基于自然语言处理技术构建文本分类模型和情感分析模型。

4. 实验验证:通过实验对模型进行测试和评估。

四、实验结果及分析1. 文本分类实验结果表明,基于人工智能技术构建的文本分类模型具有较高的准确性和稳定性。

该模型在处理大规模文本数据时表现出色,能够快速准确地分类文本内容。

2. 情感分析实验结果显示,人工智能技术在文本情感分析中具有较高的判断准确度。

模型能够有效识别文本中蕴含的情感色彩,为进一步分析提供了有力支持。

3. 实验结果分析表明,人工智能在语言处理领域的应用前景广阔。

通过不断优化模型算法和提高训练数据质量,可以进一步提升模型性能,实现更广泛的应用。

五、结论与展望本实验通过人工智能技机在文本分类和情感分析领域的应用验证了其在语言处理中的重要作用。

随着人工智能技术的不断进步和发展,相信在未来的研究中,我们将能够构建更加智能、高效的语言处理系统,为人类智慧带来新的飞跃。

愿我们在不久的将来看到更多人工智能在语言处理领域的应用成果,为人类社会的发展做出更大的贡献。

人工智能_实验报告

人工智能_实验报告

人工智能_实验报告
一、实验目标
本次实验的目的是对人工智能进行深入的理解,主要针对以下几个方面:
1.理论基础:了解人工智能的概念、定义和发展历史;
2.技术原理:学习人工智能的基本技术原理,如机器学习、自然语言处理、图像处理等;
3. 设计实现: 熟悉基于Python的人工智能开发;
4.实践应用:了解常见的应用场景,例如语音识别、图像分析等;
二、实验环境
本次实验基于Python3.7语言编写,实验环境如下:
1. 操作系统:Windows10
3. 基础库和工具:Numpy, Matplotlib, Pandas, Scikit-Learn, TensorFlow, Keras
三、实验内容
1. 机器学习
机器学习是一门深受人们喜爱的人工智能领域,基于机器学习,我们可以让计算机自动学习现象,并做出相应的预测。

主要用于语音识别、图像处理和自然语言处理等领域。

本次实验主要通过一个关于房价预测的实例,结合 Scikit-Learn 库,实现了机器学习的基本步骤。

主要包括以下几步:
(1)数据探索:分析并观察数据,以及相关的统计数据;
(2)数据预处理:包括缺失值处理、标准化等;
(3)建模:使用线性回归、决策树等监督学习模型,建立房价预测
模型;。

人工智能导论实验报告

人工智能导论实验报告

人工智能导论实验报告
一、实验要求
实验要求是使用Python实现一个简单的人工智能(AI)程序,包括
使用数据挖掘,机器学习,自然语言处理,语音识别,计算机视觉等技术,通过提供用户输入的信息,实现基于信息的自动响应和推理。

二、实验步骤
1. 数据采集:编写爬虫程序或者使用预先定义的数据集(如movielens)从互联网收集数据;
2. 数据预处理:使用numpy对数据进行标准化处理,以便机器学习
程序能够有效地解析数据;
3. 模型构建:使用scikit-learn或者tensorflow等工具,构建机
器学习模型,从已经采集到的数据中学习规律;
4.模型训练:使用构建完成的模型,开始训练,通过反复调整参数,
使得模型在训练集上的效果达到最优;
5.模型评估:使用构建完成的模型,对测试集进行预测,并与实际结
果进行比较,从而评估模型的效果;
6. 部署:使用flask或者django等web框架,将模型部署为网络应用,从而实现模型的实时响应;
三、实验结果
实验结果表明,使用数据挖掘,机器学习,自然语言处理,语音识别,计算机视觉等技术,可以得到很高的模型预测精度,模型的准确性可以明
显提高。

人工智能实验报告

人工智能实验报告

人工智能实验报告摘要:人工智能(AI)是一种模拟和模仿人类智能的技术,它可以模拟人类的思维和决策过程。

本实验报告旨在介绍人工智能的基本概念、发展历程、应用领域以及实验结果。

实验结果显示,人工智能在各个领域都取得了显著的成果,并且在未来的发展中有着广泛的应用前景。

引言:人工智能是一个非常有趣和有挑战性的领域,吸引了许多研究人员和企业的关注。

人工智能技术可以应用于各种领域,包括医疗、金融、交通、教育等。

本实验报告将通过介绍人工智能的基本概念和应用案例,以及展示实验结果,来展示人工智能的潜力和发展前景。

一、人工智能的基本概念人工智能是一种模拟和模仿人类智能的技术,主要包括以下几个方面:1. 机器学习:机器学习是人工智能的一个重要分支,它通过让机器学习自己的模式和规则来实现智能化。

机器学习的方法包括监督学习和无监督学习。

2. 深度学习:深度学习是机器学习的一个子集,它模拟了人类大脑的神经网络结构,可以处理更复杂的问题并取得更好的结果。

3. 自然语言处理:自然语言处理是指让计算机理解和处理人类语言的能力。

这个领域涉及到语音识别、语义分析、机器翻译等技术。

二、人工智能的发展历程人工智能的发展可以追溯到上世纪50年代,当时研究人员开始探索如何使计算机具备智能。

但是由于当时计算机的处理能力和算法的限制,人工智能的发展进展缓慢。

直到近年来,随着计算机技术和机器学习算法的快速发展,人工智能迎来了一个新的发展阶段。

如今, 人工智能技术在各个领域中得到了广泛的应用。

三、人工智能的应用领域1. 医疗领域:人工智能可以应用于医疗影像分析、疾病诊断和预测等方面。

例如,利用人工智能技术,可以提高病理切片的诊断准确率,帮助医生更好地判断病情。

2. 金融领域:人工智能可以应用于风险管理、投资决策和交易监测等方面。

例如,利用机器学习和数据分析,可以预测股票市场的走势并制定相应的投资策略。

3. 交通领域:人工智能可以应用于交通管理、无人驾驶和交通预测等方面。

人工智能深度学习实验报告

人工智能深度学习实验报告

人工智能深度学习实验报告一、实验背景随着科技的飞速发展,人工智能已经成为当今最热门的研究领域之一。

深度学习作为人工智能的一个重要分支,凭借其强大的学习能力和数据处理能力,在图像识别、语音识别、自然语言处理等多个领域取得了显著的成果。

为了更深入地了解和掌握人工智能深度学习的原理和应用,我们进行了一系列的实验。

二、实验目的本次实验的主要目的是通过实际操作和实践,深入探究人工智能深度学习的工作原理和应用方法,掌握深度学习模型的构建、训练和优化技巧,提高对深度学习算法的理解和应用能力,并通过实验结果验证深度学习在解决实际问题中的有效性和可行性。

三、实验环境在本次实验中,我们使用了以下硬件和软件环境:1、硬件:计算机:配备高性能 CPU 和 GPU 的台式计算机,以加速模型的训练过程。

存储设备:大容量硬盘,用于存储实验数据和模型文件。

2、软件:操作系统:Windows 10 专业版。

深度学习框架:TensorFlow 和 PyTorch。

编程语言:Python 37。

开发工具:Jupyter Notebook 和 PyCharm。

四、实验数据为了进行深度学习实验,我们收集了以下几种类型的数据:1、图像数据:包括 MNIST 手写数字数据集、CIFAR-10 图像分类数据集等。

2、文本数据:如 IMDb 电影评论数据集、20 Newsgroups 文本分类数据集等。

3、音频数据:使用了一些公开的语音识别数据集,如 TIMIT 语音数据集。

五、实验方法1、模型选择卷积神经网络(CNN):适用于图像数据的处理和分类任务。

循环神经网络(RNN):常用于处理序列数据,如文本和音频。

长短时记忆网络(LSTM)和门控循环单元(GRU):改进的RNN 架构,能够更好地处理长序列数据中的长期依赖关系。

2、数据预处理图像数据:进行图像的裁剪、缩放、归一化等操作,以提高模型的训练效率和准确性。

文本数据:进行词干提取、词向量化、去除停用词等处理,将文本转换为可被模型处理的数值形式。

人工智能技术基础实验报告

人工智能技术基础实验报告

人工智能技术基础实验报告姓名:学号:班级:指导教师:完成时间:实验一 PROLOG语言编程练习1目的与要求实验目的:加强学生对逻辑程序运行机能的理解,使学生掌握PROLOG语言的特点、熟悉其编程环境,同时为后面的人工智能程序设计做好准备。

实验要求:(1)程序自选,但必须是描述某种逻辑关系的小程序。

(2)跟踪程序的运行过程,理解逻辑程序的特点。

(3)对原程序可作适当修改,以便熟悉程序的编辑、编译和调试过程。

2实验环境Turbo PROLOG3实验内容在Turbo PROLOG或Visual Prolog集成环境下调试运行简单的PROLOG程序,如描述亲属关系的PROLOG程序或其他小型演绎数据库程序等。

4实验题目与结果(1)源程序:domainsd=integerpredicatesnot_(D,D)and_(D,D,D)or_(D,D,D)xor(D,D,D)clausesnot_(1,0).not_(0,1).and_(0,0,0).and_(0,1,0).and_(1,0,0).and_(1,1,1).or_(0,0,0).or_(0,1,1).or_(1,0,1).or_(1,1,1).xor(Input1,Input2,Output):-not_(Input1,N1),/*(1,0)*/not_(Input2,N2),/*(0,1)*/and_(Input1,N2,N3),and_(Input2,N1,N4),or_(N3,N4,Output).实验结果:(2)源程序:predicatesstudent(integer,string,real)gradegoalgrade.clausesstudent(1,"zhang",90.2).student(2,"li",95.5).student(3,"wang",96.4).grade:-write("Please input name:"),readln(Name), student(_,Name,Score),nl,write(Name,"grade is",Score).grade:-write("Sorry,the student cannot find!"). 实验结果:(3)源程序:domainsn,f=integerpredicatesfactorial(n,f)goalreadint(I),factorial(I,F),write(I,"!=",F).clausesfactorial(1,1).factorial(N,Res):-N>0,N1=N-1,factorial(N1,FacN1),Res=N*FacN1.实验结果:(4)源程序:domainss=symbolpredicatesp(s) p1(s) p2(s) p3(s) p4(s) p5(s,s) p11(s) p12(s) p31(s) goalp(X),write("the x is ",X).clausesp(a1):-p1(b),p2(c).p(a2):-p1(b),p3(d),p4(e).p(a3):-p1(b),p5(f,g).p1(b):-p11(b1),p12(b2).p3(d):-p31(d1).p2(c1).p4(e1).p5(f,g).p11(b1).p12(b2).p31(d11).实验结果:(5)源程序:domainsname=symbolage =integerpredicatesplayer(name,age)match(name,name)clausesplayer(peter,9).player(paul,10).player(chris,9).player(susan,9).match(X,Y):- player(X,9), player(Y,9), X<>Y.match(X,Y):- !, player(X,9), player(Y,9), X<>Y.match(X,Y):- player(X,9), !, player(Y,9), X<>Y.match(X,Y):- player(X,9), player(Y,9), !, X<>Y. match(X,Y):- player(X,9), player(Y,9), X<>Y, ! .实验结果:5问题及解决:第一个程序中,简单定义了与、或、非、异或,之后验证异或结果是否正确,输入数据即可,但是注意电脑是二进制,只能输入1,0。

人工智能-实验报告

人工智能-实验报告

实验一:知识表示方法一、实验目的状态空间表示法是人工智能领域最基本的知识表示方法之一,也是进一步学习状态空间搜索策略的基础,本实验通过牧师与野人渡河的问题,强化学生对知识表示的了解和应用,为人工智能后续环节的课程奠定基础。

二、问题描述有n个牧师和n个野人准备渡河,但只有一条能容纳c个人的小船,为了防止野人侵犯牧师,要求无论在何处,牧师的人数不得少于野人的人数(除非牧师人数为0),且假定野人与牧师都会划船,试设计一个算法,确定他们能否渡过河去,若能,则给出小船来回次数最少的最佳方案。

三、基本要求输入:牧师人数(即野人人数):n;小船一次最多载人量:c。

输出:若问题无解,则显示Failed,否则,显示Successed输出一组最佳方案。

用三元组(X1, X2, X3)表示渡河过程中的状态。

并用箭头连接相邻状态以表示迁移过程:初始状态->中间状态->目标状态。

例:当输入n=2,c=2时,输出:221->110->211->010->021->000其中:X1表示起始岸上的牧师人数;X2表示起始岸上的野人人数;X3表示小船现在位置(1表示起始岸,0表示目的岸)。

要求:写出算法的设计思想和源程序,并以图形用户界面实现人机交互,进行输入和输出结果,如:Please input n: 2 Please input c: 2Successed or Failed?: SuccessedOptimal Procedure: 221->110->211->010->021->000四、实验组织运行要求本实验采用集中授课形式,每个同学独立完成上述实验要求。

五、实验条件每人一台计算机独立完成实验。

六、实验代码Main.cpp#include<iostream>#include"RiverCrossing.h"using namespace std;//主函数void main(){RiverCrossing::ShowInfo();int n, c;cout<<"Please input n: ";cin>>n;cout<<"Please input c: ";cin>>c;RiverCrossing riverCrossing(n, c);riverCrossing.solve();system("pause");}RiverCrossing.h #pragma once#include<list>//船class Boat{public:static int c;int pastor;//牧师int savage;//野人Boat(int pastor, int savage);};//河岸状态class State{public:static int n;int iPastor;//牧师数量int iSavage;//野人数量int iBoatAtSide;//船所在河岸State *pPrevious;//前一个状态State(int pastor, int savage, int boatAtSide);int getTotalCount();//获得此岸总人数bool check();//检查人数是否符合实际bool isSafe();//检查是否安全State operator + (Boat &boat);State operator - (Boat &boat);bool operator == (State &state);};//过河问题class RiverCrossing{private:std::list<State*> openList, closeList;State endState;bool move(State *nowState, Boat *boat);//进行一次决策State* findInList(std::list<State*> &listToCheck, State &state);//检查某状态节点是否在列表中void print(State *endState);//打印结果public:static void ShowInfo();RiverCrossing(int n, int c);bool solve();//求解问题};RiverCrossing.cpp#include"RiverCrossing.h"#include<iostream>#include<stack>#include<algorithm>using namespace std;//类静态变量定义int State::n = 0;int Boat::c = 0;/*=========================Methods for class "Boat"=========================*/ Boat::Boat(int pastor, int savage){this->pastor = pastor;this->savage = savage;}/*=========================Methods for class "State"=========================*/ //构造函数State::State(int pastor, int savage, int boatAtSide){this->iPastor = pastor;this->iSavage = savage;this->iBoatAtSide = boatAtSide;this->pPrevious = NULL;}//获取此岸总人数int State::getTotalCount(){return iPastor + iSavage;}//检查人数是否在0到n之间bool State::check(){return (iPastor >=0 && iPastor <= n && iSavage >= 0 && iSavage <=n);}//按照规则检查牧师得否安全bool State::isSafe(){//此岸的安全:x1 == 0 || x1 >= x2//彼岸的安全:(n-x1) == 0 || (n-x1) >= (n-x2)//将上述条件联立后得到如下条件return (iPastor == 0 || iPastor == n || iPastor == iSavage);}//重载+符号,表示船开到此岸State State::operator+(Boat &boat){State ret(iPastor + boat.pastor, iSavage + boat.savage, iBoatAtSide + 1);ret.pPrevious = this;return ret;}//重载-符号,表示船从此岸开走State State::operator-(Boat &boat){State ret(iPastor - boat.pastor, iSavage - boat.savage, iBoatAtSide - 1);ret.pPrevious = this;return ret;}//重载==符号,比较两个节点是否是相同的状态bool State::operator==(State &state){return (this->iPastor == state.iPastor && this->iSavage == state.iSavage && this->iBoatAtSide == state.iBoatAtSide);}/*=======================Methods for class "RiverCrossing"=======================*/ //显示信息void RiverCrossing::ShowInfo(){cout<<"************************************************"<<endl;cout<<" 牧师与野人过河问题求解 "<<endl;cout<<" by 1040501211 陈嘉生 "<<endl;cout<<"************************************************"<<endl;}//构造函数RiverCrossing::RiverCrossing(int n, int c):endState(0, 0, 0){State::n = n;Boat::c = c;}//解决问题bool RiverCrossing::solve(){openList.push_back(new State(State::n, State::n, 1));while(!openList.empty()) {//获取一个状态为当前状态State *nowState = openList.front();openList.pop_front();closeList.push_back(nowState);//从当前状态开始决策if (nowState->iBoatAtSide == 1) {//船在此岸//过河的人越多越好,且野人优先int count = nowState->getTotalCount();count = (Boat::c >= count ? count : Boat::c);for (int capticy = count; capticy >= 1; --capticy) {for (int i = 0; i <= capticy; ++i) {Boat boat(i, capticy - i);if (move(nowState, &boat))return true;}}} else if (nowState->iBoatAtSide == 0) {//船在彼岸//把船开回来的人要最少,且牧师优先for (int capticy = 1; capticy <= Boat::c; ++capticy) {for (int i = 0; i <= capticy; ++i) {Boat boat(capticy - i, i);if (move(nowState, &boat))return true;}}}}print(NULL);return false;}//实施一步决策,将得到的新状态添加到列表,返回是否达到目标状态bool RiverCrossing::move(State *nowState, Boat *boat){//获得下一个状态State *destState;if (nowState->iBoatAtSide == 1) {destState = new State(*nowState - *boat);//船离开此岸} else if (nowState->iBoatAtSide == 0) {destState = new State(*nowState + *boat);//船开到此岸}if (destState->check()) {//检查人数if (*destState == endState) {//是否达到目标状态closeList.push_back(destState);print(destState);return true;//找到结果} else if (destState->isSafe()) {//检查是否安全if (!findInList(openList, *destState) && !findInList(closeList,*destState)) {//检查是否在表中//添加没出现过的状态节点到open表openList.push_back(destState);return false;}}}delete destState;return false;}//检查给定状态是否存在于列表中State* RiverCrossing::findInList(list<State*> &listToCheck, State &state){for (list<State*>::iterator ite = listToCheck.begin(); ite != listToCheck.end(); ++ite) {if (**ite == state)return *ite;}return NULL;}//根据达到的目标状态,回溯打印出求解过程void RiverCrossing::print(State *endState){cout<<"================================================"<<endl;if (!endState) {cout<<"Search failed!"<<endl;} else {cout<<"Search successed!"<<endl;cout<<"Optimal Procedure: "<<endl;State *pState = endState;stack<State*> st;//用栈将链表逆序,以便输出while (pState) {st.push(pState);pState = pState->pPrevious;}int count = 0;while (!st.empty()) {pState = st.top();st.pop();cout<<pState->iPastor<<","<<pState->iSavage<<","<<pState->iBoatAtSide;if (st.size() > 0)cout<<" -> ";if (++count % 5 == 0)//每五个步骤换行cout<<endl;}cout<<endl;cout<<"Total move: "<<count - 1<<endl;}cout<<"================================================"<<endl;}七、实验结果实验二:九宫重排一、实验目的A*算法是人工智能领域最重要的启发式搜索算法之一,本实验通过九宫重排问题,强化学生对A*算法的理解与应用,为人工智能后续环节的课程奠定基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工智能实验报告四
课程实验报告
课程名称:人工智能
实验项目名称:实验四:分类算法实验
专业班级:
姓名:学号:
实验时间:2021年6月18日
实验四:分类算法实验
一、实验目的
1.了解有关支持向量机的基本原理
2.能够使用支持向量机的代码解决分类与回归问题
3. 了解图像分类的基本原理
二、实验的硬件、软件平台
硬件:计算机
软件:操作系统:***** 10应用软件:C+ + ,Java或者Matlab
三、实验内容
支持向量机算法训练分类器:
1.训练数据集:见文档“分类数据集.doc”,前150个数据作为训练数据,其他数据作为测试数据,数据中“ + 1”“-1”分别表示正负样本。

2.使用代码中的C-SVC算法和默认参数来训练“分类数据集doc”中所有的数据(包括训练数据和测试数据),统计分类查准率。

3.在2的基础上使用k-折交叉验证思想来训练分类器并统计分类查准率。

4.使用2中的设置在训练数据的基础上学习分类器,将得到的分类器在测试数据上进行分类预测,统计查准率。

5.在4上尝试不同的C值("-c”参数)来调节分类器的性能并绘制查准率曲线。

6.尝试不同的kernel函数("-t”参数)来调节分类器的性能并绘制
查准率曲线,对每种kernel函数尝试调节其参数值并评估查准率。

四. 实验操作
采用提供的windows版本的libsvm完成实验。

1.文档“分类数据集.doc”改名为trainall.doc,前150组数据保存为train.doc 后120 组保存为test.doc
2.
使用代码中的C-SVC算法和默认参数来训练“分类数据集.doc” 中所有的数据(包括训练数据和测试数据),统计分类查准率。

用法:svm-scale [-l lower] [-u upper] [-y y_lower y_upper] [-s save_filename] [-r restore_filename] filename (缺省值:lower =- 1, upper = 1,没有对y进行缩放)按实验要求这个函数直接使用缺省值就行了。

svm-train
按要求使用默认的参数;
直接在cmd窗口输入:svm-train trainall.doc trainall.model trainall.doc包含“分类数据集.doc”的270组数据即可建立模型,模型文件为:trainall.model. cmd窗口输出:
其中,#iter为迭代次数,nu与前面的操作参数-n n相同,obj 为SVM文件转换为的二次规划求解得到的最小值,rho为判决函数的常数项b,nSV为支持向量个数,nBSV为边界上的支持向量个数,Total nSV为支持向量总个数。

svm-predict
是根据训练获得的模型,对数据集合进行预测。

options (操作参数):
-b probability_estimates:是否需要进行概率估计预测,可选值为0或者1,默认值为0。

model_file是由svm-train产生的模型文件;test_file是要进行预测的数据文件;output_file是svm-predict的输出文件,表示预测的结果值。

Svm-predict没有其它的选项。

使用“分类数据集.doc"的270组数据(trainall.doc)得到的模型trainall.model训练包含120组数据的测试数据集”test.doc”
输入命令:svm-predict test.doc trainall.model trainall- test.predict 结果:
Accuracy=87.5%
2.在2的基础上使用k-折交叉验证思想来训练分类器并统计分类查准率。

当svm-train使用-v参数时,此时svm-train返回的不再是一个结构体model,而是交叉验证的精度,对于分类问题,返回的是交叉检验下的平均分类准确率;回归问题,返回的是交叉检验下的平均均方根误差(MSE)。

将svm-train Cv参数设置为k (分别设置为2,3,5)选择训练样本trainall.doc V=2
V=3
V=5
3.使用2中的设置在训练数据的基础上学习分类器,将得到的分类器在测试数据上进行分类预测,统计查准率
选择“分类数据集“的前150组数据(train.doc)作为训练集产生模型train.model输入命令:
svm-train train.doc train.model。

相关文档
最新文档