envi叶面积指数计算
植被光谱分析与植被指数计算

植被光谱分析与植被指数计算在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation indices——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。
目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。
本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。
这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁迫性相关的色素、植被冠层中水分含量等。
包括以下内容:植被光谱特征植被指数HJ-1-HSI植被指数计算1.植被光谱特征植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm高反射。
很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。
研究植被的波长范围一般为400 nm to 2500 nm,这也是传感器设计选择的波长范围。
这个波长范围可范围以下四个部分:可见光(Visible):400 nm to 700 nm近红外(Near-infrared——NIR):700 nm to 1300 nm短波红外1(Shortwave infrared 1——SWIR-1):1300 nm to 1900 nm短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。
LAI叶面积指数介绍

叶面积指数(LAI)基本概念叶面积指数(LAI)又叫叶面积系数,是指单位土地面积上植物叶片总面积占土地面积的倍数。
即:叶面积指数=叶片总面积/土地面积。
它是大多数生态系统生产力模型和全球气候、水文、生物地球化学和生态模型中的重要参数。
陆地生态系统生产力的模拟是全球碳循环研究中的关键问题。
而LAI作为光合作用中碳同化的重要影响因子,是生产力评估模型中的重要参数。
因此,使用生产力模型分析净生产力、净生物群区生产力几十年的变化趋势,需要输入LAI的长期连续数据。
数学模型获取LAI的方法可分为三类:接触测量法、仪器与半球数字摄影测量法、遥感反演法。
直接测量法包括比叶重法、落叶收集法、分层收割法、点接触法等,该方法的精度很高,然而需要耗费大量的人力,通常只针对单个地点或小区域,难以覆盖大的区域范围。
仪器和半球数字摄影测量法避免了直接测量法耗费大量人力的缺点,它使用一些商用测量仪器或鱼眼镜头测量多个角度上的空隙率,利用比尔定律,反算出LAI。
然而,不论是直接测量法,还是仪器和半球数字摄影测量法,得到的都是点上数据,难以扩展到面上;并且其空间覆盖范围和持续时间有限。
而使用遥感手段观测LAI,不仅不需要耗费大量人力、成本低廉,而且能对全球范围实现长期连续监测。
因此从获得长时间序列的全球LAI数据集的角度来看,遥感反演是最优且唯一可行的方法。
本项目LAI产品主要采用遥感反演方法,利用MODIS中分辨率成像光谱仪数据遥感反演的植被指数叶面积指数LAI作为植物生长长势的指标用于分析生态系统健康及其变化,生态系统参数的遥感反演是以晴空状态下的地表反射为输入,因此预先合成多天晴空状态的地表反射率,并进行去云及其它噪音处理,采用改进的最小可见光波段选择的合成算法,既能有效消除云的影响,也能有效消除云阴影的影响,叶面积指数和植被光合有效辐射吸收系数是通过反演冠层辐射传输方程获得,输入数据为合成的无云地表反射率数据。
叶面积指数LAI产品主要采用经验公式法计算,利用植物的胸径、树高、边材面积、冠幅等容易测量的参数与叶面积或叶面积指数的相关关系建立经验公式来计算。
叶面积指数测量方法

叶面积指数测量方法
1. 直接测量法呀,这就像你直接去数地上的苹果一样清楚直白!比如拿个尺子直接去量叶片的大小,然后计算呀,简单粗暴吧!
2. 方格纸法也不错哦,就好像在方格纸上玩填色游戏一样,把叶片的轮廓画上去,再去数数方格,多有意思!
3. 图像分析法可厉害啦!这就跟你看照片找不同一样,通过对叶片图像的分析来得出叶面积指数,好神奇呀!
4. 称重法也能行呀,想象一下,就像称水果的重量一样来间接算出叶面积指数,是不是很独特?
5. 激光扫描法听起来就很酷吧!如同科幻电影里的高科技扫描一样,精确地测量出叶面积指数。
6. 光电感应法也是个好办法呀,就好像光和叶子在互相感应一样,从而得到相关数据呢。
7. 叶绿素含量法呢,是不是感觉像在探索叶片里的小秘密呀,通过叶绿素含量来推断叶面积指数呢。
8. 数学模型法哇,这就像是给叶片构建一个专属的数学世界,用各种数据和公式来算出叶面积指数呢!
我觉得呀,这些叶面积指数测量方法都各有各的奇妙之处,都值得我们去好好了解和尝试呀!。
遥感应用模型5-植被(2)-叶面积指数估算模型

由于缺乏卫星过境时详细的大气剖面资料(如气 溶胶和水汽含量等),因此6S模型等大气校正模 型的应用将会受到限制。
利用暗目标法对遥感影像进行大气校正,以获得 地面反射率数据。
地面叶面积指数测量方法
考察路线与采样点的选取应遵循如下原则:一是 植物分布的代表性、均匀性;二是遥感图像可读 性;三是交通可行性。
因此,探讨利用遥感影像估算植被的叶面积指数的 方法已成为当前建立全球及区域气候、生态模型的 基础工作之一。
通常检验遥感反演叶面积指数的精度常常通过地 面实地测量的方式。
地面测量叶面积指数的方法有很多种,大致分为 两类—直接测量法和间接测量法。
➢直接测量法包括系数法和比叶重法等。在叶子 的采集和叶面积的测量过程中,具有一定的破 坏性。
➢光学模型法,基于植被的双向反射率分布函数 ,是一种建立在辐射传输模型基础上的模型, 它把LAI作为输入变量,采用迭代的方法来推算 LAI。
统计模型法输入参数单一,不需要复杂的计算, 因此成为遥感估算LAI的常用方法。但不同植被类 型的LAI与植被指数的函数关系会有所差异,在使 用时需要重新调整、拟合。
第二章 植被遥感本章主来自内容 叶面积指数估算模型
叶面积指数估算模型
叶面积指数(LAI)是指单位地表面积上方植物叶 单面面积的总和,它是叶覆盖的无量纲度量。
叶面积指数作为进行植物群体和群落生长分析的重 要参数和评价指标,在农业、林业及生态学等领域 得到了广泛的应用。
依靠传统的地面样方实测的方法来估算叶面积指数 又是一项花费巨大人力、财力且精度不高的工作。
光学模型法的优点是有物理模型基础,不受植被 类型的影响,然而由于模型过于复杂,反演非常 耗时,且反演估算LAI过程中有些函数并不总是收 敛的。
作物叶面积指数

作物叶面积指数
作物叶面积指数(Leaf Area Index,LAI),是衡量作物叶片覆
盖程度的一个重要指标。
它描述了单位地面积上作物叶片的总面积与
该地点地面的比值。
叶面积指数是作物生长状况和光合有效辐射利用
率的重要参考参数,也对作物的生产潜力和光合作用产生重要影响。
作物叶面积指数的数值通常介于0和无穷大之间。
数值较小时,
表示作物叶片覆盖程度较低,光合有效辐射利用率相对较低。
数值较
大时,表示作物叶片覆盖程度较高,光合有效辐射利用率相对较高。
叶面积指数还可以反映作物的生物量,因为叶片面积与生物量之间存
在一定的正相关关系。
测算作物叶面积指数的方法有多种,包括直接野外观测、遥感技
术和模型计算等。
其中,遥感技术是最常用的方法之一,通过使用遥
感图像和影像处理技术,可以较快速地获取大范围的叶面积指数数据,为农业生产和资源管理提供重要支持。
作物叶面积指数的变化具有季节性和空间分布性。
在作物生长季
节内,叶面积指数一般呈现出先增大后减小的趋势,最大值通常出现
在作物生长的中期。
不同作物的叶面积指数也存在差异,这取决于作
物的生长周期、生长速率和叶片结构等因素。
作物叶面积指数可以用于农田水分管理、作物生长模拟和农业遥
感监测等方面。
通过监测和分析叶面积指数的变化,可以及时了解作
物的生长状态和生长势,为农民提供科学合理的农业管理建议,提高
农田水分利用效率和作物产量。
ENVI下植被覆盖度的遥感估算(像元二分法)

ENVI下植被覆盖度的遥感估算(像元二分法)植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。
容易与植被覆盖度混淆的概念是植被盖度,植被盖度是指植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例。
两个概念主要区别就是分母不一样。
植被覆盖度常用于植被变化、生态环境研究、水土保持、气候等方面。
植被覆盖度的测量可分为地面测量和遥感估算两种方法。
地面测量常用于田间尺度,遥感估算常用于区域尺度。
估算模型目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。
下面是李苗苗等在像元二分模型的基础上研究的模型:VFC = (NDVI - NDVIsoil)/ ( NDVIveg - NDVIsoil) (1)其中, NDVIsoil 为完全是裸土或无植被覆盖区域的NDVI值,NDVIveg 则代表完全被植被所覆盖的像元的NDVI值,即纯植被像元的NDVI值。
两个值的计算公式为:NDVIsoil=(VFCmax*NDVImin- VFCmin*NDVImax)/( VFCmax- VFCmin) (2)NDVIveg=((1-VFCmin)*NDVImax- (1-VFCmax)*NDVImin)/( VFCmax- VFCmin) (3)利用这个模型计算植被覆盖度的关键是计算NDVIsoil和NDVIveg。
这里有两种假设: 1)当区域内可以近似取VFCmax=100%,VFCmin=0%。
公式(1)可变为:VFC = (NDVI - NDVImin)/ ( NDVImax - NDVImin) (4)NDVImax 和NDVImin分别为区域内最大和最小的NDVI值。
由于不可避免存在噪声,NDVImax 和NDVImin一般取一定置信度范围内的最大值与最小值,置信度的取值主要根据图像实际情况来定。
2)当区域内不能近似取VFCmax=100%,VFCmin=0%当有实测数据的情况下,取实测数据中的植被覆盖度的最大值和最小值作为VFCmax 和 VFCmin,这两个实测数据对应图像的NDVI作为NDVImax 和NDVImin。
植被指数计算方法

2.1 归一化植被指数(NDVI )归一化植被指数(Normalized Difference Vegetation Index ,即N D V I )的计算公式为:NIR RED NIR REDNDVI ρρρρ-=+ 其中:NIR ρ和RED ρ分别代表近红外波段和红光波段的反射率NDVI 的值介于-1和1之间。
2.2 增强型植被指数(EVI )增强型植被指数(Enhanced Vegetation Index ,即EVI )计算公式为:2.5 6.07.51NIR RED NIR RED BLUE EVI ρρρρρ-=⨯+-+ NIR ρ、RED ρ和BLUE ρ分别代表近红外波段、红光波段和蓝光波段的反射率。
2.3 高光谱归一化植被指数(Hyp_NDVI )对于环境与灾害监测预报小卫星高光谱载荷,选取中心波长分别位于近红外和红光的谱段进行归一化植被指数计算:_____Hyp NIR Hyp RED Hyp NDVI Hyp NIR Hyp RED-=+ 2.4 其他植被指数(1) 比值植被指数(Ratio Vegetation Index ——RVI )NIR REDRVI ρρ= 该植被指数能够充分表现植被在红光和近红外波段反射率的差异,能增强植被与土壤背景之间的辐射差异。
但是RVI 对大气状况很敏感,而且当植被覆盖小于50%时,它的分辨能力显著下降。
(2) 差值植被指数(Difference Vegetation Index ——DVI )NIR RED DVI ρρ=-该植被指数对土壤背景的变化极为敏感,有利于对植被生态环境的监测,因此又被称为环境植被指数(EVI )。
(3) 土壤调整植被指数(Soil-Adjusted Vegetation Index ——SA VI )(1)NIR RED NIR RED SAVI L Lρρρρ-=+++ 其中,L 是一个土壤调节系数,该系数与植被浓度有关,由实际区域条件确定,用来减小植被指数对不同土壤反射变化的敏感性。
ENVI中常见植被指数介绍

作业9 植被指数植被指数概念:利用卫星不同波段探测数据组合而成的,能反映植物生长状况的指数。
植物叶面在可见光红光波段有很强的吸收特性,在近红外波段有很强的反射特性,这是植被遥感监测的物理基础,通过这两个波段测值的不同组合可得到不同的植被指数。
不同的植被覆盖类型可以通过其特有的光谱特征进行区分,这是由于叶绿素在红波段内对太阳辐射的吸收以及叶片细胞结构对红外波段内太阳辐射的强反射。
Broadband Greenness(5 indices)(宽带绿色指标(5))宽带绿度指数可以简单度量绿色植被的数量和生长状况,它对植物的叶绿素含量、叶子表面冠层、冠层结构比较敏感,这些都是植被光合作用的主要物质,与光合有效辐射(fAPAR)也有关系。
宽带绿度指数常用于植被物候发育的研究,土地利用和气候影响评估,植被生产力建模等。
宽带绿度指数选择的波段范围在可见光和近红外,一般的多光谱都包含这些波段。
下面的公式中规定波段的中心波长:ρNIR=800nm,ρRED=680nm,ρBLUE=450nm。
1. Normalized Difference Vegetation Index归一化植被指数增强在近红外波段范围绿叶的散射与红波段范围叶绿素的吸收差异。
简称NDVI: NDVI=(NIR-R)/(NIR+R)(1)应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;(2)-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;(3)NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。
对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI 对高植被区具有较低的灵敏度;(4)NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;2.Simple Ratio Index比值植被指数在近红外波段范围绿叶的散射与红波段范围叶绿素吸收的比值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
envi叶面积指数计算
在ENVI软件中,可以使用以下步骤来计算叶面积指数(LAI):
1.打开ENVI软件,选择要处理的图像。
2.在ENVI的“Band Math”工具中,输入叶面积指数的计算公式。
对于不同的植被类型和光谱条件,可能需要使用不同的公式。
例如,对于使用红光和近红外波段计算LAI,可以使用公式:LAI = 0.73 * (RVI^1.56) - 0.27。
3.点击“OK”按钮执行计算。
4.ENVI将计算出叶面积指数(LAI)并显示在图像上。
请注意,叶面积指数(LAI)是一个重要的植被参数,它表示单位地面上的绿叶面积,是植被冠层最显著的特征之一。
它是植被光合作用模型和蒸散模型中的重要参数之一。