15有效应力原理
三轴试验原理与技术 书中的 第五节 总应力与有效应力

1.92
13.0 15.5 8.5
漂砾粘土
10
9.5
2.08
9.5 10.5 8.5
漂砾粘土
19
10.7
2.02
10.7 12.4 26.0
残积粘土
20
27.5
1.51
27.5 31.5 20.0
残积粘土
44
23.0
1.57
23.0 25.0
注
试样直径为 100mm,高 200mm,以标准击实功能击实。
A A u(1 a) A
或
u( 1 a )
(1-16)
接触面积 a 难以测定,不过其值很小,可以忽略不计,故式(1-16)可以写成:
u
以式(1-14)、式(1-15)代入式(1-17),得:
(1-17)
h2 ( w ) h2
u hw w (h1 h2 ) w
1
(1-14)
h1
hw h2 2 a a ( a) 3 3 b b b b 6 5 4
· A
· A
· A
( b)
· A
(c)
图 1-17 沉积土内的应力 (a) 沉积土层;(b)完全饱和;(c)部分饱和 1— 水位;2—土体单元;3—土颗粒; 4—孔隙水;5—孔隙气;6—孔隙水
A f 值。
6
三轴试验原理与应用技术
表 1-7
孔隙压力系数 B 和 A f (不排水剪测得)
孔隙压 力系数
粘粒含量 土 类 <0.002mm (%)
最优含水率 w (%)
最大干密度
试验时含 水率 w (%) 6.8
孔隙压 力系数 B 0.06 0.26 0.90 0.02 0.23 0.46 0.04 0.26 0.54 0.03 0.27 0.69 0.05 0.05 0.14 0.03 0.16 0.36
有效应力法确定强度包线

有效应力法确定强度包线1.引言1.1 概述概述部分的内容可以是关于有效应力法确定强度包线的背景和意义。
可以包括以下几个方面的叙述:1. 介绍强度包线的概念:强度包线是指材料在一定条件下能够承受的最大应力的曲线,它是一种材料性能的重要指标,对于工程设计和材料评估具有重要作用。
2. 强度包线的确定方法:在过去的研究中,确定强度包线的方法有很多种,包括极限状态设计法、强度折减法等。
然而,这些方法对于非线性材料和复杂应力状态下的强度包线确定较为困难。
3. 有效应力法的基本原理:有效应力法是一种将复杂应力状态下的材料强度简化为等效应力的方法。
它通过考虑应力分量的组合作用,将多个应力分量转化为一个等效应力,从而简化了强度包线的确定。
4. 有效应力法的应用:有效应力法在工程实践中广泛应用于强度包线的确定。
通过对材料的实验测试和数值模拟分析,可以利用有效应力法确定材料在不同应力状态下的强度包线,从而为工程设计提供可靠的依据。
5. 本文的研究目的:本文旨在通过对有效应力法在强度包线确定中的应用进行深入研究和探讨,分析其在解决非线性材料和复杂应力状态下的强度包线确定中的优势和局限性,为工程实践提供参考和指导。
以上内容可以作为概述部分的内容,通过简要的介绍强度包线的概念和方法,以及有效应力法的基本原理和应用,引导读者对于后续的文章内容有一个整体的认识。
1.2文章结构1.2 文章结构本文将依次介绍有效应力法的基本原理和强度包线的概念与应用,并探讨有效应力法在强度包线确定中的优势。
文章结构如下所示:第二部分是正文部分,包括以下内容:2.1 有效应力法的基本原理:本部分将详细介绍有效应力法的基本原理。
首先,我们将说明什么是应力和应变,并解释为什么有效应力是一种更可靠的方法来评估材料的强度。
随后,我们将探讨有效应力的计算方法和应力状态的判定准则。
最后,我们将通过一些实际案例来说明有效应力法的应用。
2.2 强度包线的概念与应用:本部分将介绍强度包线的概念和应用。
浅谈有效应力原理的应用

浅谈有效应力原理的应用(西南交通大学峨眉校区土木工程系,四川,乐山,614202)有效应力原理在土力学中占有相当重要的地位,它的提出使土力学逐渐发展成为一门独立的学科,贯穿着土力学的始终。
它在边坡稳定性问题、支挡结构的土压力、软土地基的处理、沙土的地震液化等问题上都有着广泛的应用,很好的解释了这些问题。
标签:有效应力;孔隙水;应用1 关于有效应力原理的概念土体是非线性的弹塑性体,由固态、液态、气态三相组成,其中固体颗粒占有主要部分,他们形成了有孔隙的骨架结构。
骨架中含有孔隙水,孔隙水所承担的压力为孔隙水压力,它是一种中性力。
作用在骨架单位面积上的应力为有效应力,是一种面积力。
土体重力,水压力,外荷载作用力三者之和为总应力。
依据太沙基有效应力原理,有效应力为作用在饱和土体上的总应力与孔隙水压力之差。
即:有效应力=总应力-孔隙水压力。
而土体的强度和土的变形主要取决于有效应力,而并非总应力,二者不能混淆。
2 有效应力原理的应用2.1边坡稳定性问题由于自然或人为因素的作用,破坏了原有的稳定土坡的力学平衡时,土体将沿着某一滑面发生滑动,工程中的这一现象为滑坡。
边坡稳定性主要是由土的抗剪强度决定的。
土的抗剪能力越强,边坡就越稳定。
抗剪强度的指标在用总应力来表示时有三组,而在用有效应力表示时只有一组。
即土的抗剪强度与有效应力一一对应,所以边坡稳定性的强弱是由粘土地基中的有效应力大小决定的。
在施工过程中,若不计水的排出,填土荷载全部由孔隙水压力承担,随着深度的增加,超孔隙水压力不断增大,总应力不断增大,而剪力强度和有效应力均保持不变。
随着时间的推移,超孔隙水压力不断消散,抗剪强度和有效应力不断增强。
因此,边坡稳定性随着时间的推移而逐步增大。
所以对于边坡稳定性,要考虑到一段时间后边坡的有效应力增大时是否还能保持稳定。
必要时可以采取加固措施。
常用的增强边坡稳定措施有如下两种方法:(1)减载加重。
此方法从简算的基本原理出发,减小下滑力和滑动力矩,增大抗滑力和抗滑力矩,从而提高土坡的稳定性(2)增强排水措施。
有效应力原理名词解释

有效应力原理名词解释有效应力原理是指在材料受力时,只有在一定的应力范围内,才能保证材料的强度和耐久性。
有效应力原理是材料力学中的重要概念,对于材料的设计、工程应用和性能评价具有重要意义。
首先,我们需要了解应力的概念。
应力是单位面积上的力,通常用σ表示,其计算公式为力F除以单位面积A,即σ=F/A。
在材料受力时,会产生各种不同方向和大小的应力,如拉应力、压应力、剪应力等。
而有效应力则是指在复杂应力状态下,实际产生的引起材料变形和破坏的应力。
有效应力的大小决定了材料的强度和耐久性,是材料设计和应用中需要重点考虑的因素之一。
其次,有效应力原理的核心是应力集中和疲劳寿命。
应力集中是指在材料中出现局部应力集中的现象,当外部载荷作用于材料时,可能会在材料中产生应力集中,导致材料的疲劳破坏。
有效应力原理告诉我们,在材料设计和使用中,需要尽量避免应力集中的发生,以保证材料的强度和寿命。
另外,有效应力原理还与材料的强度和韧性有关。
在材料受力时,会产生应力,而材料的强度和韧性决定了其在受力情况下的表现。
有效应力原理告诉我们,只有在一定的应力范围内,材料才能保持其强度和韧性,超出这一范围,材料可能会发生变形和破坏。
最后,有效应力原理对于材料的性能评价和改进具有指导意义。
在材料的设计和工程应用中,需要对材料的强度、韧性、疲劳寿命等性能进行评价和改进,而有效应力原理可以帮助我们更好地理解材料在受力情况下的行为,指导我们进行材料性能的优化和改进。
综上所述,有效应力原理是材料力学中的重要概念,对于材料的设计、工程应用和性能评价具有重要意义。
通过对有效应力原理的理解和应用,可以帮助我们更好地设计和选择材料,保证材料在受力情况下的强度和耐久性,促进材料工程领域的发展和进步。
有效应力原理

有效应力原理
有效应力原理是固体力学中的一个重要概念,用于描述材料在外力作用下的变形行为。
在材料受外力作用时,内部会产生应力,而有效应力则是指对该材料产生变形所起主导作用的应力。
在实际应用中,材料受到的外力不仅包括单一的拉压力,还可能包含剪切力、弯曲力等复合力。
为了简化计算和分析,需要将这些复合力转化为一个等效的单轴应力,从而判断材料是否会破坏或产生塑性变形。
有效应力的计算需要考虑材料所处的环境,主要包括温度、湿度等因素。
对于一般情况下的材料,有效应力可以直接通过减去材料表面上的正应力值来计算,可以表示为:
σeff = σtotal - σsurface
其中,σtotal表示材料受到的总应力,而σsurface表示材料表
面上的正应力。
常见的有效应力计算方法有von Mises准则和Tresca准则。
有效应力原理的应用十分广泛。
在工程中,工程师们可以通过有效应力原理来分析结构物的承载能力,判断材料的破坏点和塑性变形情况,从而设计出更加安全可靠的结构。
此外,在材料科学和地质力学等领域,有效应力原理也被广泛应用于研究材料的力学性质和岩土工程中的土体变形行为。
总之,理解和应用有效应力原理对于有效分析和设计材料和结
构的性能至关重要,可以使工程师和科学家们更好地理解材料的力学性质并做出相应的决策。
简述有效应力原理

简述有效应力原理有效应力原理是材料力学中的重要概念,它对材料的强度和变形行为有着重要的影响。
在材料力学中,我们经常会遇到各种受力情况,而有效应力原理正是用来描述材料在受力状态下的应力分布和变形情况的重要原理之一。
首先,我们需要了解什么是应力。
在材料力学中,应力是描述材料内部受力情况的物理量,通常用σ表示。
而有效应力则是指在复杂受力状态下,能够产生与实际应力状态相同变形和破坏的等效简单应力状态。
有效应力原理的提出是为了简化复杂受力状态下的应力分析,使得我们能够更加方便地对材料的强度和变形进行分析和计算。
在实际工程中,材料往往会同时受到多种不同方向的受力,这就导致了材料内部的应力状态非常复杂。
而有效应力原理的核心思想就是将这种复杂的应力状态简化为一个等效的简单应力状态,从而使得我们能够更加方便地进行强度和变形的分析。
通过有效应力原理,我们可以将复杂的受力状态转化为一个等效的简单受力状态,从而得到相应的应力分布和变形情况。
在材料的强度分析中,有效应力原理能够帮助我们更加准确地评估材料的承载能力。
通过将复杂受力状态转化为等效简单应力状态,我们可以更加方便地使用材料的强度参数进行计算,从而得到材料在复杂受力状态下的承载能力。
这对于工程设计和材料选型都具有重要的意义。
另外,在材料的变形分析中,有效应力原理也能够帮助我们更加准确地评估材料的变形情况。
通过将复杂受力状态转化为等效简单应力状态,我们可以更加方便地使用材料的变形参数进行计算,从而得到材料在复杂受力状态下的变形情况。
这对于工程结构的稳定性和可靠性具有重要的意义。
总之,有效应力原理是材料力学中的重要概念,它能够帮助我们更加方便地进行材料的强度和变形分析。
通过将复杂受力状态转化为等效简单应力状态,我们可以更加准确地评估材料的承载能力和变形情况,从而为工程设计和材料选型提供重要的参考依据。
有效应力原理的应用将对工程领域产生深远的影响,为我们解决实际工程问题提供了重要的理论支持。
有效应力原理

有效应力原理
有效应力原理是一个重要的力学原理,它指的是,当一个物体受到一个外力的作用时,物体的力学行为与受力的位置和方向有关。
它会影响物体的结构和力学性能,甚至是其形状和大小。
有效应力原理的基本思想是,当一个物体受到力的作用时,其力学行为受到受力位置和方向的影响。
有效应力原理经常用于研究物体受力的方向和位置。
例如,当一个物体受到一个远程的力(如重力)时,物体的行为受到受力位置和方向的影响。
另外,当一个物体受到一个近距离的力,如挠度力或拉力时,它的行为也受到受力位置和方向的影响。
有效应力原理也可以用来计算物体受力的影响。
例如,当一个物体受到一个外力时,可以利用有效应力原理计算出物体受力的影响,从而推算出物体受力的大小和方向。
有效应力原理还可以用来研究物体受力的形状和大小。
例如,可以利用有效应力原理来研究物体受力的变形情况,从而推算出物体受力的大小和形状。
有效应力原理是一个重要的力学原理,它可以用来研究物体受力的方向、位置、大小和形状。
它可以用来计算物体受力的影响,并且可以用来研究物体受力的变形情况。
因此,有效应力原理在力学研
究中起着重要的作用。
有效应力原理

H1 satH 2
毛细水上升时土中有效应力计算
总应力 - 孔隙水压力 = 有效应力
毛细饱和区
H
whc
-
H whc
sat
ht
hc
hw
H sath t
+
wh w
H sath t w h w
有效应力σ’
Aw 1 A
( As ≤0.03)
PS
'u
' u
地下水位变化对有效应力的影响
(1) 静水条件 地下水位
σ’=σ-u =γwH1+γsatH2
-γw(H1+ H2)
H1
=(γsat-γw)H2 = γ ’H 2
sat
H2
σ’与地面以上 水位H1无关,与 地下水位H2有关。
H w h
渗透压力:
w h
基底压力 与基底附加压力的计算
概述
上部结构 建筑物 设计 基础 地基
基础结构的外荷载
上部结构的自 重及各种荷载 都是通过基础 传到地基中的
基底反力
基底压力 附加应力
基底压力:基础底面传 递给地基表面的压力, 也称基底接触压力。
地基沉降变形
影响因素 计算方法 分布规律
基底压力的影响因素
•大小、方向、分布
荷载条件
基底压力
地基条件
基础条件
•刚度 •形状 •大小 •埋深
•土类、密度、土层结构等
基底压力分布特征
条形基础,竖直均布荷载
基础抗弯刚度EI=0 → M=0; 基础变形能完全适应地基表面的 变形; 基础上下压力分布必须完全相同, 若不同将会产生弯矩。