粒子群优化算法(PSO)

合集下载

粒子群优化算法PSO

粒子群优化算法PSO
若w>1,则当前速度始终是初始速度的放大; 若w<1,则当前速度从初始速度开始,呈几何级数衰减; 若w=1,则粒子一直以初始速度飞行,不会改变飞行的方向和速度 的大小。 如果c1=0,则粒子没有个体认知能力,只有“社会”模型。在粒子相 互作用下,虽然可能探索新的解空间,但对复杂问题很容易陷入局部 极值点。 如果c2=0,则粒子之间没有社会信息共享,只有“个体认知”模型。 因为个体间没有交互,一个规模为m的群体等价于执行了m个粒子的 单独搜索,因而得到最优解的概率大大减小。 一般取c1=c2=2.
将车辆任务点编号为0, 1,…L , 其中: 0 为 中心仓库; 1, 2,…L 为收货点。 • 定义变量如下:
f ki
• cij 为从任务点i到任务点j的运输成本(运输 距离)
• Z为所有车辆行驶距离总和
非满载车辆优化调度的数学模型为
该模型要求每个收 货点都得到车辆配 送服务, 并且限制 每个收货点的需求 只能由某一台车辆 完成, 同时保证每 条路径上各收货点 的总需求量不超过 此路径上配送车辆 的容量。在满足上 述条件的情况下, 使所有车辆行驶距 离之和Z 最小。
12/03/12
Particle Swarms Optimization
粒子群最佳化
整合群体行为、人类决策与鸟群行为发展成为 粒子群演算法。
【Eberhart, Kennedy, 1995】
Russ Eberhart
Bionic Computing
Bionic Computing Lab, 2005
(1) 对粒子第二维向量xi 的元素xij 进行取整操作 int (xij) , 即可得到分配给收货点j 的车辆k 。 (2) 对于车辆k 的行驶路径, 按照粒子第三维向量y i 的元素yij 的大小顺序来确定, 即首先找出由车辆 k 完成配送的收货点j , 然后按照j 所对应yij 的大小, 从小到大进行排序, 从而确定车辆k的行驶路径。

粒子群优化算法(PSO)

粒子群优化算法(PSO)

粒⼦群优化算法(PSO)1、粒⼦群优化算法(Partical Swarm Optimization PSO),粒⼦群中的每⼀个粒⼦都代表⼀个问题的可能解,通过粒⼦个体的简单⾏为,群体内的信息交互实现问题求解的智能性。

2、粒⼦群算法最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅⾷⾏为的研究。

设想这样⼀个场景:⼀群鸟在随机搜寻⾷物,在这个区域⾥只有⼀块⾷物,所有的鸟都不知道⾷物在哪⾥,但是它们知道当前的位置离⾷物还有多远。

最简单有效的策略?寻找鸟群中离⾷物最近的个体来进⾏搜素。

PSO算法就从这种⽣物种群⾏为特性中得到启发并⽤于求解优化问题。

⽤⼀种粒⼦来模拟上述的鸟类个体,每个粒⼦可视为N维搜索空间中的⼀个搜索个体,粒⼦的当前位置即为对应优化问题的⼀个候选解,粒⼦的飞⾏过程即为该个体的搜索过程.粒⼦的飞⾏速度可根据粒⼦历史最优位置和种群历史最优位置进⾏动态调整.粒⼦仅具有两个属性:速度和位置,速度代表移动的快慢,位置代表移动的⽅向。

每个粒⼦单独搜寻的最优解叫做个体极值,粒⼦群中最优的个体极值作为当前全局最优解。

不断迭代,更新速度和位置。

最终得到满⾜终⽌条件的最优解。

3、算法流程如下:1、初始化⾸先,我们设置最⼤迭代次数,⽬标函数的⾃变量个数,粒⼦的最⼤速度,位置信息为整个搜索空间,我们在速度区间和搜索空间上随机初始化速度和位置,设置粒⼦群规模为M,每个粒⼦随机初始化⼀个飞翔速度。

2、个体极值与全局最优解定义适应度函数,个体极值为每个粒⼦找到的最优解,从这些最优解找到⼀个全局值,叫做本次全局最优解。

与历史全局最优⽐较,进⾏更新。

3、更新速度和位置的公式4、终⽌条件(1)达到设定迭代次数;(2)代数之间的差值满⾜最⼩界限以上就是最基本的⼀个标准PSO算法流程。

和其它群智能算法⼀样,PSO算法在优化过程中,种群的多样性和算法的收敛速度之间始终存在着⽭盾.对标准PSO算法的改进,⽆论是参数的选取、⼩⽣境技术的采⽤或是其他技术与PSO的融合,其⽬的都是希望在加强算法局部搜索能⼒的同时,保持种群的多样性,防⽌算法在快速收敛的同时出现早熟收敛。

粒子群优化算法(PSO)综述介绍

粒子群优化算法(PSO)综述介绍

带收缩因子的PSO算法:
vi
t 1
X [ v i 1U 1 ( pbi x i ) 2U 2 ( gb x i )]
t t t t t t t
收缩因子保证了收敛性并提高了收敛速度。 显然,该迭代公式和标准迭代公式相比并无本质区别, 只要适当选取参数,二者完全相同。
局部PSO算法:
在计算机上模拟该模型的结果显示:当g_increment较大 时,所有的个体很快地聚集到“谷地”上;反之,粒子缓 慢地摇摆着聚集到“谷地”的四周。 受此模型启发Kennedy和Eberhart设计出了一种演化优化 算法,并通过不断的试验和试错,最后将此算法的基本型 固定为:
vi
t 1
v i 1U 1 ( pbi x i ) 2U 2 ( gb x i )
vi
t 1
v i 1U 1 ( pbi x i ) 2U 2 ( lb x i )
t t t t t为自身最优位置 pbest和种群最优位置gbest。 对应的,在局部版本中,微粒除了追随自身最优位置 pbest之外,不跟踪种群最优位置gbest,而是跟踪拓 扑邻域中的所有微粒的最优位置lbest。
算法思想:
1.初始化种群数量,使他们随机的分布在平面上; 2.根据模型评估每个粒子的位置; 3.如果一个粒子当前的位置比它之前的的位置好,则记录下 新位置,记为pbest;
4.确定种群中最好的粒子的位置,记为gbest;
5.根据公式:
vi
t 1
v i 1U 1 ( p bi x i ) 2U 2 ( g b x i )
背景知识:
粒子群优化算法(Particle Swarm Optimization——PSO), 是由J. Kennedy和R. C. Eberhart于1995年提出的一种基 于种群的随机的优化算法。

粒子群优化算法(PSO)Python实现

粒子群优化算法(PSO)Python实现

粒子群优化算法(PSO)Python实现粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,它模拟了鸟群或鱼群等群体协同的行为。

PSO算法通过模拟每个个体(粒子)在解空间中的移动,以找到最优解。

在PSO算法中,粒子的位置和速度表示解空间中的一个点,而每个粒子的局部最优解和全局最优解则用来指导粒子的方向。

下面是一个简单的PSO算法的Python实现:```pythonimport random#定义粒子类class Particle:def __init__(self, dimensions, min_values, max_values):self.dimensions = dimensionsself.min_values = min_valuesself.max_values = max_valuesself.position = [random.uniform(min_values[i], max_values[i]) for i in range(dimensions)]self.velocity = [random.uniform(-(max_values[i] -min_values[i]), max_values[i] - min_values[i]) for i inrange(dimensions)]self.best_position = self.position.copydef update_velocity(self, global_best_position,inertia_weight, cognitive_weight, social_weight):for i in range(self.dimensions):r1 = random.randomr2 = random.randomdef update_position(self):for i in range(self.dimensions):self.position[i] += self.velocity[i]if self.position[i] < self.min_values[i]:self.position[i] = self.min_values[i]elif self.position[i] > self.max_values[i]:self.position[i] = self.max_values[i]def update_best_position(self):if objective_function(self.position) <objective_function(self.best_position):self.best_position = self.position.copy#定义目标函数(此处仅为示例,实际应用中需根据问题进行定义)def objective_function(position):return sum(position)def pso(num_particles, dimensions, min_values, max_values, num_iterations, inertia_weight, cognitive_weight, social_weight): particles = [Particle(dimensions, min_values, max_values)for _ in range(num_particles)]global_best_position = particles[0].position.copyfor _ in range(num_iterations):for particle in particles:particle.update_velocity(global_best_position,inertia_weight, cognitive_weight, social_weight)particle.update_positionparticle.update_best_positionif objective_function(particle.best_position) <objective_function(global_best_position):global_best_position = particle.best_position.copyreturn global_best_position#示例使用num_particles = 30dimensions = 2min_values = [-5, -5]max_values = [5, 5]num_iterations = 100inertia_weight = 0.5cognitive_weight = 0.8social_weight = 0.8best_position = pso(num_particles, dimensions, min_values, max_values, num_iterations, inertia_weight, cognitive_weight, social_weight)print("最优解:", best_position)print("最优值:", objective_function(best_position))```在上面的代码中,首先定义了一个`Particle`类来表示粒子。

优化算法——粒子群算法(PSO)

优化算法——粒子群算法(PSO)

优化算法——粒子群算法(PSO)粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于鸟群智能行为的全局优化算法,最初由Kennedy和Eberhart于1995年提出。

PSO是一种启发式算法,通过模拟鸟群中鸟的群体行为来寻找问题的最优解。

PSO算法的基本思想是通过每个粒子的个体最优位置和整个群体的全局最优位置来实现过程。

在算法开始时,所有粒子根据问题的空间范围随机初始化,每个粒子具有一个速度和位置。

粒子根据自身的速度依次更新位置,并根据当前位置和历史最优位置来更新速度和个体最优位置。

整个群体通过比较个体最优位置来更新全局最优位置。

更新速度和位置的过程通过调整权重因子来实现。

PSO算法的关键是如何设置速度更新公式和适应度函数。

速度更新公式包括两个部分:粒子的个体最优位置和整个群体的全局最优位置。

粒子根据自身的速度和个体最优位置来调整速度,以向个体最优位置靠近。

同时,粒子还需要考虑整个群体的全局最优位置,以保持协作和合作。

适应度函数用于评估每个粒子的位置的好坏,它是问题特定的,需要根据具体问题来设计。

PSO算法的特点是简单、易于实现和收敛速度快。

与其他算法相比,PSO算法具有以下优势:1.不需要问题的导数信息。

PSO算法只需要计算目标函数即可,不依赖于问题的导数信息,适用于非线性和高度复杂的问题。

2.全局能力强。

通过群体的协作和合作,PSO算法具有很好的全局能力,能够找到问题的全局最优解。

3.算法参数少且易于调整。

PSO算法只有几个参数需要调整,调整参数相对简单,不需要复杂的参数优化过程。

然而,PSO算法也存在一些问题:1.容易陷入局部最优解。

由于算法的随机性和全局能力,PSO算法容易陷入局部最优解,无法找到问题的全局最优解。

为了克服这个问题,研究者提出了很多改进的PSO算法,如自适应权重PSO、混合PSO等。

2.对问题的形状和维度敏感。

PSO算法对问题形状和维度敏感,对于特定形状的问题(如凸函数),PSO算法能够找到最优解,但对于非凸函数等形状复杂的问题,可能会出现收敛速度较慢或找不到最优解的情况。

pso粒子群算法

pso粒子群算法

onal Conference on Neural Networks.1995.1942~1948.)。源
算法介绍 算法介绍
设想这样一个场景:一群鸟在随机的搜索食物。 PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最 优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pb 在这个区域里只有一块食物,所有的鸟都不知 est,gbest)来更新自己。 道食物在那。但是它们知道自己当前的位置距 在找到这两个最优值后,粒子通过下面的公式来更新自己 离食物还有多远。 的速度和位置。
的总数
算法介绍
算法介绍 算法介绍
抽象: PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最 鸟被抽象为没有质量和体积的微粒 (点),并延伸到N维 优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pb 空间,粒子 I 在N维空间的位置表示为矢量Xi=(x1,x est,gbest)来更新自己。 x , ,„,xN),飞行速度表示为矢量Vi=x(v 2在找到这两个最优值后,粒子通过下面的公式来更新自己 1 V v2,„,v ).每个粒子都有一个由目标函数决定的适应值(fitne N的速度和位置。 ss value) ,并且知道自己到目前为止发现的最好位置 (1) 式 (pbest) 和现在的位置 Xi .这个可以看作是粒子自己的 V V c rand () ( pbest i i 1 i xi ) c2 rand () ( gbesti xi ) 飞行经验.除此之外,每个粒子还知道到目前为止整个 (2)式 群体中所有粒子发现的最好位置(gbest)(gbest是pbest x x V i i 中的最好值)i .这个可以看作是粒子同伴的经验.粒子 在式 (1)、(2)中,i=1,2,…,M,M是该群体中粒子 就是通过自己的经验和同伴中最好的经验来决定下一步 的总数 的运动。

粒子群优化法-概述说明以及解释

粒子群优化法-概述说明以及解释

粒子群优化法-概述说明以及解释1.引言1.1 概述粒子群优化法(Particle Swarm Optimization,简称PSO)是一种用于求解优化问题的启发式算法。

它模拟了鸟群或鱼群中的群体协作行为,通过不断更新粒子的位置和速度,逐步逼近最优解。

PSO算法最早由Russell Eberhart和James Kennedy于1995年提出,并在之后的二十多年里得到了广泛应用和研究。

PSO算法是一种简单但高效的优化算法,其灵感源于群体智能中的群体行为。

它通过模拟从鸟群和鱼群等自然界中观察到的协同行为,将搜索空间中的解表示为“粒子”,每个粒子根据自己当前的位置和速度信息动态调整,并通过与其他粒子的互动来引导搜索过程。

在PSO算法中,每个粒子都有自己的位置和速度,并且能够记忆并更新自己及其他粒子的最优解。

通过不断地根据历史最优值和邻域最优值进行位置和速度的更新,粒子能够在搜索空间中逐渐找到最优解。

PSO算法具有计算简单、易于实现、收敛速度较快等优点,能够应用于解决连续优化问题、离散优化问题以及多目标优化问题等多个领域。

总的来说,粒子群优化法是一种基于群体智能的优化算法,通过模拟自然界中群体的协同行为,实现了对复杂优化问题的求解。

在实际应用中,PSO算法已经在函数优化、图像处理、机器学习、工程设计等众多领域展现出了良好的性能和广阔的应用前景。

本文将详细介绍粒子群优化法的原理和应用领域,并探讨其优势和发展前景。

1.2文章结构1.2 文章结构本文将按以下顺序展开对粒子群优化法的深入研究和讨论:1.2.1 粒子群优化法的概述首先,我们将介绍粒子群优化法的概念以及其基本原理。

我们将讨论其运作方式,了解粒子群如何模拟鸟群在搜索问题中寻找全局最优解的行为。

1.2.2 粒子群优化法的应用领域接下来,我们将探讨粒子群优化法在不同领域中的广泛应用。

粒子群优化法已被应用于许多问题领域,包括函数优化、图像处理、数据挖掘等。

粒子群算法

粒子群算法

粒子群算法粒子群算法(ParticleSwarmOptimization,PSO)是一种仿生算法,可以用来求解优化问题,是基于社会诱导原理以及群集智能的分布式搜索过程,其灵感来自于一群鸟类(如谷雀)在共同搜寻有害物质或食物的行为模式。

PSO是一种无视搜索空间,迭代更新搜索最优解或最近最优解的方法。

每个粒子都有一组独立的位置和速度,它们会在迭代更新中改变位置,使其位置越接近最优解,而速度则会随着历史最优解的不断更新而改变。

二、典型应用自动寻找系统最优参数是各种控制应用中最重要的问题之一,粒子群算法是解决此问题的非常有效的算法。

例如,在过滤能廉价有效的情况下,它可以有效地提取出最佳的控制系统参数,以最大限度地改善系统性能。

粒子群算法也被广泛应用于各种研究领域,如计算机视觉,社会网络分析,增强学习等。

例如,在视觉识别应用中,PSO可以用来自动调节和改变图像处理算法的参数,使其最大化全局性能;在社会网络分析中,PSO可以用来提取社区结构,它可以发现社会社区,并估计社区数量和节点划分。

三、原理粒子群算法是一种迭代搜索最优解或者最近最优解的基于模拟的搜索算法,它以群众社会诱导原理与群集智能为基础,模拟有害物质或食物搜索行为的谷雀群体。

粒子群算法的操作原理如下:首先,初始化一组搜索的粒子,采用随机位置和速度;然后,用粒子的位置和速度来求解目标函数,每一次迭代可以确定一个最优解;最后,计算粒子的最佳位置和最佳速度,并根据该最佳位置和最佳速度来更新每个粒子的位置和速度,直到满足停止条件后结束算法。

四、优缺点粒子群算法在许多优化问题上表现出色,因其具有许多优点。

例如,它计算快速、结果可靠、不容易进入局部最优解,不需要对初始参数赋值;另外,它对操作简单、可以用于多维空间等。

然而,粒子群算法也存在着一些缺点,例如在求解高维优化问题时,收敛较慢,而且容易受到设定参数的影响;另外,在搜索空间较大时,它很容易陷入局部最优解,失去全局搜索能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v w * v c1* rand * ( pbest x) c2 * rand * ( gbest x)
我们采用遗传算法的思想解决。 (1)w*v项可看作是一种变异操作。 (2)c1*(pbest-x) + c2*(gbest-x) 项可看作是一种 交叉操作。
交叉与变异
交叉: P1=(1 2 | 3 4 5 6 | 7 8 9) P2=(9 8 | 7 6 5 4 | 3 2 1) Q1=(1 2 | 7 6 5 4 | 3 8 9) Q2=(9 8 | 3 4 5 6 | 7 2 1) R=(1 2 | 3 4 5 6 | 7 8 9) S=(1 2 | 6 5 4 3 | 7 8 9)
756 4953
遗传算法 1.6s 28.1s 154.6s 200.6s 215.0s
567 3842
粒子群优化 0.016s 0.578s 31.9s 56.1s 73.9s
538 2579
时间分析
性能比较
模拟退火
遗传算法
粒子群优化
研究方向
• (1) 算法分析。PSO在实际应用中被证明是有效的, 但目前 还没有给出完整收敛性、收敛速度估计等方面的数学证明, 已有的工作还远远不够。 • (2) 参数选择与优化。参数w、c1、c2的选择分别关系粒子 速度的3个部分:惯性部分、社 会部分和感知部分在搜索中 的作用.如何选择、优化和调整参数,使得算法既能避免早 熟又 能比较快速地收敛,对工程实践有着重要意义。 • (3) 与其他演化计算的融合。如何将其它演化的优点和PSO 的优点相结合,构造出新的混合算 法是当前算法改进的一 个重要方向。 • (4) 算法应用。算法的有效性必须在应用中才能体现,广泛 地开拓PSO的应用领域,也对深化 研究PSO算法非常有意义。
网络资源
• http://clerc.maurice.free.fr/ (Dr.Clerc, France Telecom)
Thank you!
Email:ptyx960@
x x v
pbest:每个个体曾经达到的最好位置 gbest:整个群体曾经达到的最好位置 w:惯性权重 c1,c2:学习因子
算法原理
个体最优解 个体当前解
pi pg
种群最优解
x
v
实验设计
粒子群算法的本质是利用本身信息、个体 极值信息和全局极值 3 个信息, 指导粒子下一 步迭代位置。
变异:
实现算法
• While (迭代次数< 规定迭代次数) • do • For j = 1: 群体总个数 • 第j个粒子路径C0(j)与gbest交叉得到 C1(j) ; • C1(j) 与pbest 交叉得到C2(j) ; • 对C2(j) 产生变异得到C0(j) ; • End For
路程分析 Benchmark Tsp10 Tsp20 Att48 St70
实验结果
模拟退火 2.691 24.52 34290 711 遗传算法 2.691 24.52 38698 856 粒子群优化 2.691 24.52 34061 695 最优解 2.691 24.52 33523 675
Eil76 A280
578 3336
Benchmark Tsp10 Tsp20 Att48 St70 Eil70 模拟退火 4.5s 14.6s 62.7s 85.8s 9Leabharlann .3s蒲天算法介绍
粒子群优化算法(PSO)是一种进化计 算技术由Eberhart和Kennedy于1995年提出。 启发源于对鸟群捕食的行为研究。粒子群 优化算法的基本思想是通过群体中个体之 间的协作和信息共享来寻找最优解.
算法介绍
v w * v c1* rand * ( pbest x) c2 * rand * ( gbest x)
相关文档
最新文档