(完整版)必修二第3章直线与方程题型总结
必修二第三章直线与方程知识点总结及练习(答案)

必修二第三章直线与方程(1)直线的倾斜角定义: x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时 , 我们规定它的倾斜角为0 度。
所以,倾斜角的取值范围是0°≤α< 180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用 k 表示。
即k tan。
斜率反应直线与轴的倾斜程度。
当直线 l与 x 轴平行或重合时 ,α =0° , k = tan0° =0;当直线 l与 x 轴垂直时 ,α = 90 ° , k不存在 .当0,90 时,k 0;当90 ,180时, k 0 ;当90时, k 不存在。
②过两点的直线的斜率公式: k y2y1 (x1x2 )( P1(x1,y1),P2(x2,y2),x1≠ x2 )x2x1注意下边四点: (1)当 x1x2时,公式右侧无心义,直线的斜率不存在,倾斜角为90°;(2)k 与 P1、 P2的次序没关;(3)此后求斜率可不经过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率获得。
(3)直线方程①点斜式:y y1k( x x1 ) 直线斜率k,且过点x1, y1注意:当直线的斜率为= 0°时, k=0,直线的方程是y y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不可以用点斜式表示.但因l 上每一点的横坐标都等于x ,所以它的方程是x=x 。
11②斜截式:y kx b ,直线斜率为k,直线在 y 轴上的截距为b③两点式:y y1x x1( x1 x2 , y1y2)直线两点x1, y1,x2, y2y2y1x2x1④截矩式:xy 1 此中直线l与 x 轴交于点 (a,0) ,与y轴交于点 (0,b) ,即l与 x 轴、y轴a b的截距分别为 a,b 。
高中数学必修2第三章直线与方程知识点归纳及作业

第三章直线与方程3.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°.2、 倾斜角α的取值范围:0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是 k = tan α⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在.4、 直线的斜率公式:给定两点P 1(x 1,y 1),P 2(x 2,y 2),x 1≠x 2,用两点的坐标来表示直线P 1P 2的斜率: 斜率公式: k=y 2-y 1/x 2-x 1 3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即(充要条件)注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k 1=k 2, 那么一定有l 1∥l 22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即12121k k l l =-⇔⊥(充要条件) 3.2.1 直线的点斜式方程1、直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=-2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(b b kx y +=3.2.2 直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠y-y 1/y-y 2=x-x 1/x-x 22、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 3.2.3 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。
高中数学必修二直线与直线方程题型归纳总结

高中数学必修二直线与直线方程题型归纳总结知识点归纳概括:1.直线的倾斜角为0°≤α<180°,斜率为k=tanα(α≠90°)。
2.已知两点求斜率公式为k=(y2-y1)/(x2-x1)(x2≠x1)。
3.两直线平行时,它们的斜率相等;垂直时,它们的斜率之积为-1.4.直线的五种方程:点斜式、斜截式、两点式、截距式、一般式。
5.两直线的交点坐标可通过联立两直线方程求得,两点间距离可用距离公式计算。
题型归纳分析:1.直线的倾斜角与斜率的计算。
2.平行和垂直直线的判断及斜率之间的关系。
3.直线的方程及其应用。
4.两直线交点坐标和两点间距离的计算。
例1:过点M(-2,a)和N(a,4)的直线的斜率等于1,则a的值为()。
A。
1B。
4C。
1或3D。
1或4解析:由题意可得,直线MN的斜率为1,即(k=(4-a)/(a+2)=1),解得a=2,故选B。
变式1:已知点A(1,3)、B(-1,3),则直线AB的倾斜角是()。
A。
60°B。
30°C。
120°D。
150°解析:由斜率公式可得,k=(3-3)/(-1-1)=0,因为斜率为0,所以直线与x轴平行,倾斜角为0°,故选A。
变式2:已知两点A(3,2)、B(-4,1),求过点C(-1.)的直线l与线段AB有公共点,求直线l的斜率k的取值范围。
解析:首先求出AB的斜率k1=(1-2)/(-4-3)=-1/7,然后求出点C到直线AB的距离d,d=|(-1-3)×(-1)+(?-2)×(-4+3)|/√((-4+3)²+(1-2)²)=|4-2×(?-1)|/√5,因为直线l与AB有公共点,所以点C到直线l的距离也为d,根据距离公式可得,|k1×(-1)+1×(?-1)-d|/√(k1²+1²)=d,化简得,|k1×(-1)+1×(?-1)|=2d√(k1²+1²),即|k1+?(?-1)|=2d√(k1²+1²),因为直线l过点C,所以直线l的斜率为k2=(?-1)/(-1-3),代入得,|k1+k2|=2d√(k1²+1²),整理得,|?-1+7k2|=2d√(50),因为|?-1+7k2|≥0,所以d≥0,又因为√(50)>7,所以|?-1+7k2|≤2d×7,即|?-1+7k2|≤14d,代入得|?-1+7(?-1)/(-1-3)|≤14d,即|-2?-6/(-4)|≤14d,解得-1/2≤d≤1/2,因为d≥0,所以1/2≥d≥0,代入得-1/2≤?-1+7k2≤1/2,解得-3/14≤k2≤1/14,故k2的取值范围为[-3/14,1/14]。
必修2-第三章-直线与方程-知识点及经典例题

数学必修2 第三章 直线与方程练习知 识 点(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°性质:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=0°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即 当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
必修二第三章直线和方程小结_97

d=_______A_2_+__B_2____________.
(3)两条平行线间的距离 |C1-C2|
A2+B2
两平行线l1:Ax+By+C1=0和l2:Ax+By+C2
一、基础练习
4.下列四个命题中,假命题是
( D)
A.经过定点P(x0,y0)的直线不一定都可以用
名称 点斜式
方程 yy 1k(x x 1 )
适用范围 不含垂直于x轴的直线
斜截式
ykxb
不含垂直于x轴的直线
两点式
yy1 xx1 y2y1 x2x1
不含直线x=x1 (x1≠x2) 和直线y=y1 (y1≠y2)
截距式
x y 1 ab
不含垂直于坐标轴和过原 点的直线
一般式
三、课堂小结
一、知识点
1.直线的倾斜角和斜率 2.垂直和平行 3.直线方程
二、思想方法
1.用待定系数法求直线方程 2.数形结合和分类讨论思想
• 114页 A组 2、5、6、9、10、11。 • B组 1、3、4。
5.如果A·C<0,且B·C<0,那么直线Ax+By+C=0
不通过
(C )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6 . 不 论 m 为 何 实 数 , 直 线 (m 1 )xy 2 m 1 0
恒 过 定 点 _ _ (_ _ 2_ ,_ 1_ )_ _
二、例题分析
例 1.已 知 两 条 直 线 l1:2x(m1)y40, l2:mx3ym20,m为 何 值 时 , l1与 l2: (1)垂 直 ; (2)平 行 ; (3)相 交 。
(完整版)数学必修2第三章知识点小结及典型习题,推荐文档

1 = 1( x 人教版高中数学必修二第三章直线与方程知识点总结第三章 直线与方程1、直线倾斜角的概念:当直线 l 与 x 轴相交时, 取 x 轴作为基准, x 轴正向与直线 l 向上方向之间所成的角 α 叫做直线 l 的倾斜角.特别地,当直线 l 与 x 轴平行或重合时, 规定 α=0°.2、 倾斜角 α 的取值范围: 0°≤α<180°. 当直线 l 与 x 轴垂直时, α= 90°.3、直线的斜率:⑴一条直线的倾斜角 α(α≠90°)的正切值叫做这条直线的斜率,常用小写字母 k 表示,也就是 k = tan α。
①当直线 l 与 x 轴平行或重合时, α=0°, k = tan0°=0; ②当直线 l 与 x 轴垂直时, α= 90°, k 不存在.当∈ [0 ,90 时, k ≥ 0 ,k 随着 α 的增大而增大; 当∈ (90,180)时, k < 0 ,k 随着α 的增大而增大; 当= 90时,k 不存在。
由此可知, 一条直线 l 的倾斜角 α 一定存在,但是斜率 k 不一定存在.P (x , y ) 、 P (x , y )y 2 - y 1 ⑵过两点 11 12 22 的直线的斜率公式:k =(x 1 ≠ x 2 )x 2 - x 1注意下面四点:(1)当 x 1 = x 2 时,公式右边无意义,直线的斜率不存在,倾斜角为 90°; (2)k 与 P 1、P 2 的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率,再求倾斜角。
※三点共线的条件:如果所给三点中任意两点的连线都有斜率且都相等,那么这三点共线; 反之,三点共线,任意两点连线的斜率不一定相等。
解决此类问题要先考虑斜率是否存在。
4、直线方程(注意各种直线方程之间的转化)①直线的点斜式方程: y - y 0 = k (x - x 0 ) ,k 为直线的斜率,且过点(x 0 , y 0 ),适用条件是不垂直 x 轴。
高中数学必修2第三章直线与方程总结

第三章 直线与方程 知识点 总结代县中学高二数学组一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向;②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°);②垂直:斜率k 不存在;③范围: 斜率 k ∈ R 。
当 α=0°时,k=0当0<α<90°时,k.>0当α=90°时,k 不存在当90°<α<180°,k<03、斜率与坐标:12122121tan x x y y x x y y k --=--==α ①构造直角三角形(数形结合);②斜率k 值于两点先后顺序无关;③注意下标的位置对应。
4、直线与直线的位置关系:判断方法一:222111:,:b x k y l b x k y l +=+=①平行:<1> 斜率都存在时:2121,b b k k ≠=;<2> 斜率都不存在时:两直线都与x 轴垂直②垂直:<1> 0211=⊥k k x l 不存在,则轴,即;<2> 斜率都存在时:121-=•k k 。
③重合: 斜率都存在时:2121,b b k k ==;④相交:斜率21k k ≠(前提是斜率都存在)判断方法二:11112222:0,:0l A x B y C l A x B y C ++=++=,①1l ∥2l ⇔ 122112211221A B A B B C B C =≠≠且或A C A C ,当(A ,B ,C 不为0时)212121C C B B A A ≠= ②1l ⊥2l ⇔12120A A B B +=③重合:A 1B 2=A 2B 1且B 1C 2=B 2C 1或A 1C 2=A 2C 1,212121C C B B A A == ④相交:A 1B 2≠A 2B 1 ,2121B B A A ≠ 二、方程与公式:1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可; ④截距式:1=+by a x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0在距离公式当中会经常用到直线的“一般式方程”。
必修2第三章 直线与方程知识点归纳、习题汇总(精选)

3.1倾斜角和斜率1.直线的倾斜角的概念:当直线l 与x 轴相交, 取x 轴作为基准, x 轴正向与直线l 向上方向所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°.2.倾斜角α的取值范围:0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°.3.直线的斜率:直线的倾斜角α(α≠90°)的正切值叫做直线的斜率,常用k 表示,即 k = tan α.⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 注意:由此可知, 直线的倾斜角α一定存在,但是斜率k 不一定存在.4. 斜率公式:若直线过两点P 1(x 1,y 1),P 2(x 2,y 2),x 1≠x 2,斜率公式: k=y 2-y 1/x 2-x 1 . 【题型1】求直线斜率33-D. 33C. 3-B. 3.A 120.1的斜率为(),则直线的倾斜角为若直线l l ︒ 34D. 43C. 34B. 43A..,53sin .2±±=则此直线的斜率为(),若已知直线的倾斜角为αα21D.C.2 21-B. 2-A..52B 31A .3率为())两点,则此直线的斜,(),,(若直线过 31-D. 31C. 3-B. A.3.013.4的斜率是()直线=+-y x 【题型2】求直线倾斜角︒︒︒︒D.135C.60 B.45 A.30.1.1的倾斜角为(),则直线的斜率为若直线l l︒︒︒︒=+- D.90C.60 B.45 A.30.0122.2的倾斜角为():直线y x l,不存在,不存在,,()的倾斜角和斜率分别是直线︒︒︒︒-= D.180 C.90 1B .135 1A.45.1.3x不存在的倾斜角为()直线 D. C.90 B.45 A.0.1.4︒︒︒=y【题型3】直线斜率大小比较123321213231321321 D. C. B. A...1k k k k k k k k k k k k k k k l l l <<<<<<<<,则必有()、、的斜率分别为、、如图,直线【题型4】求直线斜率、倾斜角范围)2[ ]4D.[0 ]4[0 C. )43[ ]4[0 B. )[0 A..))(1(B )12(A 2.) [0,]1D. ]1 C. ) B.[-1, A.1350.12ππππππππαα,,,,,,()的倾斜角的取值范围为两点,那么直线,,,经过点直线,(,(),()的斜率的取值范围为(,则直线,且的倾斜角为已知直线⋃⋃∈∞+⋃-∞--∞-∞+∞+∞-≤≤︒︒l R m m l l l3.2.1 点斜式方程1.点斜式方程:(1)条件:直线l 经过点),(000y x P ,且斜率为k .(2)方程:2.斜截式方程:(1)条件:直线l 的斜率为k ,与y 轴的交点为),0(b .(2)方程:3.2.2 两点式方程1.两点式方程:(1)条件:两点),(),,(222111y x P y x P其中),(2121y y x x ≠≠.(2)方程:2.截距式方程:(1)条件:直线l 与x 、y 轴的交点分别为A )0,(a 、B ),0(b ,其中0,0≠≠b a . (2)方程:3.2.3 直线的一般方程1、直线的一般式方程:关于y x ,的二元一次方程 (A ,B 不同时为0)2、各种直线方程之间的互化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修2 第3章 直线与方程
理论知识:
1直线的倾斜角和斜率
1、倾斜角:
2、 倾斜角α的取值范围: ..
3、直线的斜率: k = 记住特殊角的正切值
⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0;
⑵当直线l 与x 轴垂直时, α= 90°, k 不存在.
4、 直线的斜率公式:
给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k =
2两条直线的平行与垂直
1,L1∥L2则 注意:
2、
则 注意:
3.直线方程
1、 直线的点斜式方程:
2、、直线的斜截式方程: 3 直线的一般式方程: 4.了解斜率和截距的性质
4.两条直线的交点坐标求法:联立方程组。
5.距离
1.两点间的距离公式: .
2.点到直线距离公式:
3、两平行线间的距离公式:
6.对称问题
1.中点坐标公式:已知两点P 1 (x 1,y 1)、P 1(x 1,y 1),则线段的中点M 坐标为
2.若点11(,)M x y 及(,)N x y 关于(,)P a b 对称;求解方法:
3.点关于直线的对称: 若111(,)P x y 与222(,)P x y 关于直线:0l Ax By C ++=对称,求解方法:
直线与方程测试题
题型一(倾斜角与斜率)
1.直线053=-+y x 的倾斜角是( )
A.120°
B.150°
C.60°
D.30°
2.若直线x =1的倾斜角为 ,则( ).
A .等于0
B .等于
C .等于2π
D .不存在
3.图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则( ). A .k1<k2<k3 B .k3<k1<k2 C .k3<k2<k1 D .k1<k3<k2
4.求直线3x +ay =1的斜率为
题型二(直线位置关系)
1.已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x ,6),且l1∥l2,则x =(
). A .2 B .-2 C .4 D .1
2.已知直线l 与过点M(-3,2),N(2,-3)的直线垂直,则直线l 的倾斜角是( ).
A .3π
B .32π
C .4π
D .43π
3.设直线 l1经过点A(m ,1)、B(—3,4),直线 l2经过点C(1,m)、D(—1,m+1),
当(1) l1/ / l2 (2) l1⊥l1时分别求出m 的值
4.已知两直线l1: x+(1+m) y =2—m 和l2:2mx+4y+16=0,m 为何值时l1与l2①相交②平行
5.. 已知两直线l1:(3a+2) x+(1—4a) y +8=0和l2:(5a —2)x+(a+4)y —7=0垂直,求a 值。
题型三(直线方程)
1:根据下列各条件写出直线的方程,并且化成一般式:
(1)斜率是1
2-,经过点A(8,—2); .
(2)经过点B(4,2),平行于x 轴; .
(3)在x 轴和y 轴上的截距分别是3
,32-; .
4)经过两点P 1(3,—2)、P 2(5,—4); .
2:直线l的方程为A x+B y+C=0,若直线经过原点且位于第二、四象限,则()
A.C=0,B>0 B.C=0,B>0,A>0
C.C=0,AB<0 D.C=0,AB>0
3:直线l的方程为A x—B y—C=0,若A、B、C满足AB.>0且BC<0,则l直线不经的象限是()A.第一B.第二C.第三D.第四
4..如果AC<0,且BC<0,那么直线Ax+By+C=0不通过( ).
A.第一象限B.第二象限C.第三象限D.第四象限
5.设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6(m∈R,m≠-1),根据下列条件分别求m的值:
①l在x轴上的截距是-3;②斜率为1.
6.直线l过点(1,2)和第一、二、四象限,若直线l的横截距与纵截距之和为6,求直线l的方程.
7. 已知直线l的方程为
1
2
1
+
-
=x
y
,
(1)求过点(2,3)且垂直于l的直线方程;(2)求过点(2,3)且平行于l的直线方程。
8.与直线2x+3y+5=0平行,且在两坐标轴上截距的和为6的直线方程是.
题型四(交点问题)
1.求两条垂直直线l1:2x+ y +2=0和l2:mx+4y—2=0的交点坐标
2:求满足下列条件的直线方程
(1)经过点P(2,3)及两条直线l1:x+3y—4=0和l2:5x+2y+1=0的交点Q;
(2)经过两条直线l1:2x+y—8=0和l2:x—2y+1=0的交点且与直线4x—3y—7=0平行;
(3)经过两条直线l1:2x—3y+10=0和l2:3x+4y—2=0的交点且与直线3x—2y+4=0垂直;
(4)(4)过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为( ).
A.19x-9y=0 B.9x+19y=0 C.19x-3y=0 D.3x+19y=0
题型五(距离)
例1:求平行线l1:3x+4y —12=0与l2:ax+8y+11=0之间的距离。
例2:已知平行线l 1:3x +2y —6=0与l 2: 6x +4y —3=0,求与它们距离相等的平行线方程。
题型六(对称)
1:已知直线l :2x —3y +1=0和点P(—1,—2).
(1) 分别求:点P(—1,—2)关于x 轴、y 轴、直线y=x 、原点O 的对称点Q 坐标
(2) 分别求:直线l :2x —3y +1=0关于x 轴、y 轴、直线y=x 、原点O 的对称的直线方程.
(3) 求直线l 关于点P(—1,—2)对称的直线方程。
(4) 求P(—1,—2)关于直线l 轴对称的直线方程。
2:点P(—1,—2)关于直线l : x +y —2=0的对称点的坐标为 。
3. 已知点A(7,—4)、B(—5,6),求线段AB 的垂直平分线的方程:
4.点(4,0)关于直线5x +4y +21=0的对称点是( ).
A .(-6,8)
B .(-8,-6)
C .(6,8)
D .(-6,-8)
5.设A ,B 是x 轴上的两点,点P 的横坐标为2,且|PA|=|PB|,若直线PA 的方程为x -y +1=0,则直线PB 的方程是( ).
A .x +y -5=0
B .2x -y -1=0
C .2y -x -4=0
D .2x +y -7=0
6.已知点A(-2,1),B(1,-2),直线y =2上一点P ,使|AP|=|BP|,则P 点坐标为 .
7..一直线被两直线l1:4x +y +6=0,l2:3x -5y -6=0截得的线段的中点恰好是坐标原点,求该直线方程.
题型七(补充)
直线系方程:即具有某一共同性质的直线
(一)平行直线系:
(二)平行于已知直线0000=++
C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)
(二)过定点的直线系
(ⅰ)斜率为k 的直线系:
()00y y k x x -=-,直线过定点()00,y x ; (ⅱ)过两条直线0:1111
=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
(三)垂直直线系
垂直于已知直线0Ax By C
++=(,A B 是不全为0的常数)的直线系: 0Bx Ay C '-+=
例1:直线l :(2m+1)x +(m+1)y —7m —4=0所经过的定点为 。
(m ∈R )。