遗传学 课后练习 复习题 总结 第十三章 数量性状的遗传
遗传学复习资料

第一章绪论1.“遗传因子”是孟德尔提出来的2.“基因”是约翰森提出来的3.摩尔根创立基因学说4.瓦特森和克里克提出DNA双螺旋第二章遗传的细胞学基础名词解释:同源染色体:形态大小相同的一对染色体称为同源染色体联会:各同源染色体在细胞分裂前期配对着丝粒:着丝粒是真核生物细胞在有丝分裂和减数分裂,染色体分离的一种“装置”一,核型分析二,根据染色体着丝点位置不同,染色体可分为四类:m中着丝点染色体sm近中着丝点染色体t端着丝点染色体st近端着丝点染色体三,染色体四级结构四,有丝分裂过程及意义1,过程①间期:主要进行染色体的复制(即DNA的复制和有关蛋白质的合成,它包括(G1、S、G2三个时期),动物细胞此时中心粒也进复制,一组中心粒变成两组中心粒。
②前期最大特点是:核膜逐渐解体、核仁逐渐消失,植物细胞由两极发出纺锤丝,动物细胞两组中心粒分别移到细胞两极,由中心粒发出星射线。
③中期:着丝点排列在赤道板上,此时染色体的形态、数目最清楚,我们常找有丝分裂中期细胞来观察染色体的形态、数目。
④后期:着丝点分开,姐妹染色单体分开,在纺锤丝牵引下移到细胞两极,此时染色体加倍。
⑤末期:核膜、核仁重现,染色体变成染色丝,植物细胞中央形成细胞板,一个细胞分裂形成两个子细胞。
动物细胞膜从中间内陷,一个细胞分裂形成两个子细胞。
这样就完成一次细胞分裂,此时形成的子细胞,有的细胞停止分裂,然后分化,有的细胞暂停分裂;有的细胞继续分裂进入下一个细胞周期。
2,意义生物学意义:(1)多细胞生物生长是通过细胞数目增加或者体积增加实现的(2)均等式分裂维持了个体的生长发育,也保证了物种的连续性和稳定性遗传学意义:保证了亲代与子代遗传的稳定性和基因的完整性,提高子代的环境竞争力和生存率五,减数分裂最重要的时期?再细分1.减数第一次分裂前期2.前期根据染色体的形态,可分为5个阶段(细偶粗双终):细线期:细胞核内出现细长、线状染色体,细胞核和核仁体积增大.每条染色体含有两条姐妹染色单体.偶线期:又称配对期.细胞内的同源染色体两两侧面紧密相进行配对,这一现象称作联会.由于配对的一对同源染色体中有4条染色单体,称四分体.粗线期:染色体连续缩短变粗,同时,四分体中的非姐妹染色单体之间发生了DNA的片断交换,从而导致了父母基因的互换,产生了基因重组,但每个染色单体上仍都具有完全相同的基因.双线期:发生交叉的染色单体开始分开.由于交叉常常不止发生在一个位点,因此,染色体呈现V、X、8、O等各种形状.终变期:染色体变成紧密凝集状态并向核的周围靠近.以后,核膜、核仁消失,最后形成纺锤体. 生活周期研究材料:果蝇,红色面包酶,细菌与病毒遗传---研究优点第四章孟德尔遗传一,名词解释侧交:为了确定F1纯合或者杂合,让F1与隐性纯合子杂交回交:子一代与亲本中任意一个杂交二,分离定律与自由组合定律的实质?1.分离定律的实质是:在杂合体的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;在减数分裂形成配子的过程中,等位基因会随同源染色体的分开而分离,分别进入两个配子中,独立地随配子遗传给后代.2.自由组合定律的实质是:位于非同源染色体上的非等位基因的分离或组合是互不干扰的;在减数分裂过程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合三,显隐致死基因?1.隐性致死基因:只有在隐性纯合是才使个体死亡2.显性致死基因:在杂合状态是就可以导致个体死亡四,卡方测验(可能计算题)五,基因之间概率,显隐性概率六,ABO血型(可能大题)七,非等位基因之间互作比例第五章连锁遗传和性遗传连锁遗传(概念,生物学基础,相关概念)联合遗传三点测验(交换值计算,遗传作图,十分可能考大题)性染色体有哪几种类型同配性别,异配性别真君连锁遗传的交换值计算性联锁:根据表型判断基因型性别决定第六章染色体变异思考:紫外线照射后,基因突变来源于π二联体本身吗?其他原因?修复过程中的差错是突变的主要原因基因突变是染色体上的点突变,是基因内部化学性质的变化,可遗传基因突变的6大特点1稀有性2可逆性3多方向性4重演性平行性6有害,有利基因突变的鉴定:1.二倍体植物2.果蝇突变的检测(CIB和致死平衡系)3.生化突变的检测(微生物)诱变途径1.物理因素及修复机制2.化学因素(转换和颠倒)第七章细菌与病毒的遗传细菌影印法研究F+, hfr,F’菌株特点掌握细菌四种遗传方式:接合,性导,转导,转化掌握中断杂交和重组作图的原理噬菌体类型,特点第十章基因突变第十一章细胞质遗传第十三章数量遗传质量性状与数量性状的区别多基因假说遗传率的估算,广义,侠义(可能十分大题)近亲繁殖,回交,杂种优势复习题一,名词解释二,三大定律的实质,区别,对象,配子的描述遗传学三大基本定律:分离定律、自由组合定律、连锁与交换定律。
遗传学复习题

(1) 质量性状:单基因遗传的性状或疾病决定于单个的主基因,其变异在一个群体中的分布是不连续的,可以把变异的个体明显的区分为2~3群,这2~3群之间差异显著,具有质的不同,常表现为有或无的变异。
(2) 数量性状:多基因遗传其变异在群体中的分布是连续的,某一性状的不同变异个体之间只有量的差异而无质的不同。
39. 线粒体DNA的遗传特点:
(1) mtDNA复制具有半自主性
(2) 线粒体基因组所用的遗传密码和通用密码不同
(3) mtDNA为母系遗传
(4) mtDNA在有丝分裂和减数分裂期间都要经过复制分离
(5) mtDNA的杂质性与阈值效应
(6) mtDNA的突变率极高
(7) mtDNA的分离
遗传病往往表现为家族性疾病,家族性疾病往往并不一定是遗传病。
遗传病虽然由于共同的致病基因继承而表现有发病的家族聚集,但是这并非必然的。首先,一些常染色体隐性遗传病就常看不到家族性发病而是散发病例;再者,一些环境因素所致的疾病中,由于同一家族的不同成员生活于相同的环境中,也可以表现为发病的家族聚集,例如在某些缺碘地区,甲状腺肿的发病就有发病的家族聚集,但是,不能认为这是遗传病。
1. 遗传病:是遗传物质改变所导致的疾病。
2. 遗传病的分类:(1)单基因病 1)常染色体显性遗传病,AD;2)常染色体隐形遗传病,AR;3)X连锁显性遗传病,XD;4)X连锁隐形遗传病;5)Y连锁遗传病;6)线粒体病。(2)多基因病 (3)染色体病
3. 家族性疾病和遗传病、先天性疾病和遗传病的区别
例如,半乳糖血症是一种AR病。
Ⅰ型患者:分解半乳糖的酶缺乏→使半乳糖还原为半乳糖醇→表现为先天性智力发育障碍、肝硬化和白内障。
第十三章 数量性状资料

a1 a1 =1/8 ×1/8=1/64 4/64 =1/16(近交系数)
兄、妹婚配的近交系数——假定有某基因 a
第一代 兄、妹
a1a2
a1 =1/2
a1 carry ?
a3a4
a1 =1/2 a1 carry ?
a1 =1/2 ×1/2
a1 =1/2 ×1/2
a1a1 = 1/16 a2a2 = 1/16 a3a3 = 1/16 a4a4 = 1/16
度, 近亲繁殖导致群体内基因型数目迅速减少,群 体迅速趋向纯合。(以自交为例——下表)
自交
自交群体
子代群体中 近交数
世代
的基因型
杂合体比例 (F)
0
Aa
1
0
1 1/4AA 2/4Aa 1/4aa 1/2
1/2
2 3/8 2/8 3/8
1/4
1 - 1/4
3 7/16 4 15/32
2/16 7/16 2/32 15/-312
a1 a1 =1/4×1/4=1/16 4/616=1/4(近交系数)
几类近亲婚配后代中的近交系数
婚配类型
自交(近亲婚配的极端类型) 嫡亲兄妹 叔侄,姑侄 嫡亲堂(表)兄妹 从表兄妹 再从表兄妹
近交系数(F)
1/2 1/4 1/8 1/16 1/64 1/256
3、近亲交配的遗传效应 ① 近交(尤其是自交)会提高群体基因型纯和
● 双亲基因型的纯合程度 ● 杂交优势在 F1 代表现最为明显,F2代开始衰
退, F1 优势越强的, F2优势下降越显著。 3、杂交优势的遗传理论 ● 显性假说(dominance hypothesis)——显
性基因互补假说
P AAbbCCDDee × aaBBccddEE
(整理)-2012上学期选课普通遗传学复习题-zxm.

2011-2012上学期选课普通遗传学复习题第一章遗传的细胞学基础1、名词解释:染色体:当细胞分裂时,核内的染色质便卷缩而呈现为一定数目与形态的染色体。
细胞周期;同源染色体异源染色体有丝分裂二倍体二价体姊妹染色单体核型分析2、染色体的外部形态包括哪些部分,根据染色体的形态特征可将染色体分为哪几种类型?3、玉米体细胞10对染色体,它的根、叶、胚乳、胚、卵细胞、精细胞中分别有多少条染色体?4、假定一个杂种细胞含有3对同源染色体,其中A、B、C来自父本,而a、b、c来之母本,经过减数分裂后,该杂种可以形成几种类型的配子?5、减数分裂与有丝分裂有何异同?从遗传学的角度来看这两种细胞分裂各有何意义?6、马是二倍体(2n=64),其中包括36条近端着丝粒染色体。
驴也是二倍体(2n=62),其中包括22条近端着丝粒染色体。
请你说明马和驴的杂种后代骡子为何高度不育?7、假定一个体细胞含有一对同源染色体Aa和另一条染色体B(无配对的同源染色体,并假定该染色体在减数分裂过程中没被丢失),该个体经过减数分裂后,可以产生哪些类型的配子?第二章孟德尔遗传1、名词解释相对性状单位性状、显性性状、隐性性状基因、等位基因显性基因隐性基因基因型表现性完全显性、不完全显性纯合体、杂合体、回交、自交、测交、复等位基因、共显性。
2、请你简要说明分离规律和自由组合规律的细胞学基础。
4、假定某个体具有AaBbDd基因型,三对基因分别位于不同常染色体上。
请你写出该个体所产生配子类型及其比例。
如果该个体自交,在子代群体中AaBbDd、AABbdd、AABBDD、aaBBdd基因型个体的概率分别是多少?5、假定某个体具有AaBbDd基因型,三对基因分别位于不同常染色体上。
若果该个体自交,在其子代群体中携带有3个显性性状、2个显性性状、一个显性性状和3个隐性性状的个体的概率分别是多少?6、假定某个体具有AaBbDd基因型,三对基因分别位于不同常染色体上。
《遗传学》朱军版习题及答案

《遗传学(第三版)》朱军主编课后习题与答案目录第一章绪论 (1)第二章遗传的细胞学基础 (2)第三章遗传物质的分子基础 (6)第四章孟德尔遗传 (9)第五章连锁遗传和性连锁 (12)第六章染色体变异 (15)第七章细菌和病毒的遗传 (21)第八章基因表达与调控 (27)第九章基因工程和基因组学 (31)第十章基因突变 (34)第十一章细胞质遗传 (35)第十二章遗传与发育 (38)第十三章数量性状的遗传 (39)第十四章群体遗传与进化 (44)第一章绪论1.解释下列名词:遗传学、遗传、变异。
答:遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。
同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。
遗传:是指亲代与子代相似的现象。
如种瓜得瓜、种豆得豆。
变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。
如高秆植物品种可能产生矮杆植株:一卵双生的兄弟也不可能完全一模一样。
2.简述遗传学研究的对象和研究的任务。
答:遗传学研究的对象主要是微生物、植物、动物和人类等,是研究它们的遗传和变异。
遗传学研究的任务是阐明生物遗传变异的现象及表现的规律;深入探索遗传和变异的原因及物质基础,揭示其内在规律;从而进一步指导动物、植物和微生物的育种实践,提高医学水平,保障人民身体健康。
3.为什么说遗传、变异和选择是生物进化和新品种选育的三大因素?答:生物的遗传是相对的、保守的,而变异是绝对的、发展的。
没有遗传,不可能保持性状和物种的相对稳定性;没有变异就不会产生新的性状,也不可能有物种的进化和新品种的选育。
遗传和变异这对矛盾不断地运动,经过自然选择,才形成形形色色的物种。
同时经过人工选择,才育成适合人类需要的不同品种。
因此,遗传、变异和选择是生物进化和新品种选育的三大因素。
4. 为什么研究生物的遗传和变异必须联系环境?答:因为任何生物都必须从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。
遗传学各章习题及答案

遗传学各章习题及答案《遗传学》试题库一、《遗传学》各章及分值比例:(x%)(一)绪论(3-5%)(二)遗传的细胞学基础(5-8%)(三)孟德尔遗传(12-15%)(四)连锁遗传和性连锁(15-18%)(五)数量性状的遗传(10-13%)(六)染色体变异(8-10%)(七)病毒和细菌的遗传(5-7%)(八)遗传物质的分子基础(5-7%)(九)基因突变(8-10%)(十)细胞质遗传(5-7%)(十一)群体遗传与进化(10-12%)二、试题类型及分值:(x分/每题):1.名词解释(3-4)2.选择题或填空题(1-1.5)3.判断题(1-1.5)4.问答题(5-7)5.综合分析或计算题(8-10)三、各章试题和参考答案:第一章绪论(教材1章,3-5%)(一)名词解释:1.遗传学:研究生物遗传和变异的科学。
2.遗传与变异:遗传是亲子代个体间存在相似性。
变异是亲子代个体之间存在差异。
(二)选择题或填空题:a.单项选择题:1.1900年(2)规律的重新发现标志着遗传学的诞生。
(1)达尔文(2)孟德尔(3)拉马克(4)魏斯曼2.通常认为遗传学诞生于(3)年。
(1)1859(2)1865(3)1900(4)19103.普遍认为遗传学的奠基人就是(3):(1)jlamarck(2)thmorgan(3)gjmendel(4)crdarwin4.公认细胞遗传学的奠基人是(2):(1)jlamarck(2)thmorgan(3)gjmendel(4)crdarwinb.填空题:1.mendel提出遗传学最基本的两大定律是分离和自由组合定律;2.morgan提出遗传学第三定律是:连锁、交换定律;3.遗传学研究的对象主要是:微生物、植物、动物和人类;4.生物进化和新品种选育的三大因素是:遗传、变异和选择(三)判断题:1.后天赢得的性状可以遗传(×);2.遗传、变异和自然选择将构成物种(√);3.遗传、变异和人工挑选将构成品种、品系(√);4.种质同意体质,就是遗传物质和性状的关系(√)。
遗传学复习题(简答题和计算题)

遗传学复习题(简答题和计算题)遗传学部分习题答案(简答题和计算题)四、简答题1、简述真核生物DNA合成与原核生物DNA合成的主要区别。
答:(1)真核细胞DNA的合成只是在细胞周期的S期进行,而原核生物则在整个细胞生长过程中都可进行DNA合成。
(2)真核生物染色体的复制是多起点的,而原核生物DNA的复制是单起点的。
(3)真核生物DNA合成所需的RNA引物及后随链上合成的冈崎片段的长度比原核生物要短。
(4)在真核生物中,有两种不同的DNA聚合酶即DNA聚合酶δ和DNA聚合酶α分别控制前导链和后随链的合成;而在原核生物中,由DNA聚合酶Ⅲ同时控制两条链的合成。
(5)真核生物染色体为线状,有染色体端体的复制;而原核生物的染色体多为环状,无端体的复制。
2、述减数分裂与遗传三大规律之间的关系。
答:减数分裂是性母细胞成熟时配子形成过程中的特殊的有丝分裂,减数分裂过程中染色体的动态变化直接体现了遗传学的三大规律的本质。
间期时完成了染色体的复制及相关蛋白的合成,结果每条染色体有两条染色单体构成。
前期Ⅰ的细线期同源染色体联会,粗线期同源染色体的非姊妹染色单体出现交换(基因交换),中期Ⅰ同源染色体排列在赤道板的两边,后期Ⅰ同源染色体分离(基因分离),非同源染色体自由组合(基因自由组合)分别移向细胞的两极,一条染色体上的遗传物质连锁在一起(基因连锁);减数第二次分裂重复一次有丝分裂。
这样形成的配子中各自含有双亲的一套遗传信息,又有交换的遗传信息,配子结合成合子后发育成的个体既有双亲的遗传信息,又有变异的遗传物质。
3、独立分配规律的实质及遗传学意义。
4、自由组合定律的实质是什么?答:控制两对性状的两对等位基因分别位于不同的同源染色体上,在减数分裂形成配子时,每对同源染色体上的每一对等位基因发生分离,(2.5分)而位于非同源染色体上的基因之间可以自由组合。
(2.5分)5、大豆的紫花基因H对白花基因h为显性,紫花×白花的F1全为紫花,F2共有1653株,其中紫花1240株,白花413株,试用基因型说明这一试验结果。
遗传学复习题

2010遗传复习题一、名词解释(每小题2分)计10分1、着丝点2、异源染色体3、等位基因4、胚乳直感:又称花粉直感。
在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状。
5、果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状6、多聚合糖体:在氨基酸多肽链的延伸合成过程中,当mRNA上蛋白质合成的起始位置移出核糖体后,另一个核糖体可以识别起始位点,并与其结合,然后进行第二条多肽链的合成。
此过程可以多次重复,因此一条mRNA分子可以同时结合多个核糖体,形成一串核糖体,称为多聚核糖体(polyribosome 或者polysome)。
7、镶嵌显性8、共显性9、复等位基因10、致死基因11、交换值:12、缺失杂合体13、同源多倍体14、整倍体15、非整倍体:在植物群体中某些植株比该物种的正常合子染色体数(2n)多或少一个以至若干个染色体的现象。
16、基因突变的重演性:同一突变可以在同种生物的不同个体间多次发生,称为突变的重演性。
17、基因突变的平行性:亲缘关系相近的物种因遗传基础比较近似,往往发生相似的基因突变。
这种现象称为突变的平行性。
18、细胞质遗传:由细胞内的基因即细胞质基因所决定的遗传现象和遗传规律叫细胞质遗传。
19、广义遗传率:通常定义为总的遗传方差占表现型方差的比率。
20、狭义遗传率:通常定义为加性遗传方差占表现型方差的比率。
二、选择填空(单选,每小题2分)计20分1、染色体非整倍体类型中2n+1为(a三体)。
a三体 b单体 c双三体2、染色体非整倍体类型中2n+2为(b四体)。
a缺体 b四体 c双单体3、染色体非整倍体类型中2n+1+1(c双三体)a双单体 b三体 c双三体4、染色体非整倍体类型中2n-2为(a缺体)。
a缺体 b四体 c单体5、1、制作洋葱根尖有丝分裂装片时,使细胞分离的方法是将根尖:( b ) a放入清水中10min b 放入15%盐酸和95%酒精的混合液中5minc放入0.0lg/mL的龙胆紫溶液中5min d放入0.01g/mL的醋酸洋红溶液中5min6、从细胞周期来看,着丝点排列在赤道板上,染色体的数目和形态非常清晰发生在所给选项的哪个时期?( b中期 )a间期 b中期c后期 d末期7、从细胞周期来看,着丝点分裂,被纺锤丝牵向细胞两极的是在所给选项的哪个时期?(c后期)a间期 b中期c后期 d末期8、从细胞周期来看,细胞赤道板处出现细胞板现象的是在哪个时期?(d末期) a间期 b中期 c后期 d末期9、从细胞周期来看,细胞中变化复杂,但视野中又很难观察到的是在哪个时期?(a间期)a间期 b中期 c后期 d末期10、一简单的四核苷酸链碱基顺序为A—T—C---G,它是(a、DNA)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章数量性状的遗传本章习题1.解释下列名词:广义遗传率、狭义遗传率、近交系数、共祖系数、数量性状基因位点、主效基因、微效基因、修饰基因、表现型值、基因型与环境互作广义遗传率:通常定义为总的遗传方差占表现型方差的比率。
狭义遗传率:通常定义为加性遗传方差占表现型方差的比率。
近交系数:是指个体的某个基因位点上两个等位基因来源于共同祖先某个基因的概率。
共祖系数:个体的近交系数等于双亲的共祖系数。
数量性状基因位点:即QTL,指控制数量性状表现的数量基因在连锁群中的位置。
主效基因:对某一性状的表现起主要作用、效应较大的基因。
微效基因:指一性状受制于多个基因,每个基因对表现型的影响较小、效应累加、无显隐性关系、对环境敏感,这些基因称为微效基因。
修饰基因:对性状的表现的效应微小,主要是起增强或减弱主基因对表现型的作用。
表现型值:是指基因型值与非遗传随机误差的总和即性状测定值。
基因型与环境互作:数量基因对环境比较敏感,其表达容易受到环境条件的影响。
因此,基因型与环境互作是基因型在不同环境条件下表现出的不同反应和对遗传主效应的离差。
2.质量性状和数量性状的区别在哪里?这两类性状的分析方法有何异同?答:质量性状和数量性状的区别主要有:①. 质量性状的变异是呈间断性,杂交后代可明确分组;数量性状的变异则呈连续性,杂交后的分离世代不能明确分组。
②. 质量性状不易受环境条件的影响;数量性状一般容易受环境条件的影响而发生变异,而这种变异一般是不能遗传的。
③. 质量性状在不同环境条件下的表现较为稳定;而控制数量性状的基因则在特定时空条件下表达,不同环境条件下基因表达的程度可能不同,因此数量性状普遍存在着基因型与环境互作。
对于质量性状一般采用系谱和概率分析的方法,并进行卡方检验;而数量性状的研究则需要遗传学方法和生物统计方法的结合,一般要采用适当的遗传交配设计、合理的环境设计、适当的度量手段和有效的统计分析方法,估算出遗传群体的均值、方差、协方差和相关系数等遗传参数等加以研究。
3.叙述表现型方差、基因型方差、基因型×环境互作方差的关系。
估计遗传协方差及其分量在遗传育种中有何意义?答:表现型方差由基因型方差(V G)、基因型×环境互作方差(V e)和环境机误方差()构成,即,其中基因型方差和基因型×环境互作方差是可以遗传的,而纯粹的环境方差是不能遗传的。
由于存在基因连锁或基因的一因多效,生物体的不同数量性状之间常存在不同程度的相互关连。
在统计分析方法中常用协方差来度量这种相互关联的变异程度。
由于遗传方差可以进一步区分为基因型方差和基因型×环境互作方差等不同的方差分量,故遗传协方差也可进一步区分为基因型协方差和基因型×环境互作协方差等分量。
在作物遗传改良过程中,对某一性状进行选择时常会引起另一相关性状的变化,为了取得更好地选择效果, 并使一些重要的性状能够得到同步改良, 有必要进行性状间的协方差即相关性研究。
如基因加性效应对选择是有效的, 细胞质效应亦可通过母本得以传递,因此当育种的目标性状不易测定或遗传率较低、进行直接选择较难取得预期效果时, 利用与其具有较高加性相关和细胞质相关的其它性状进行间接选择, 则较易取得育种效果。
显性相关则是控制性状的有关基因的显性效应相互作用而产生的相关性, 杂交一代中表现尤为强烈, 在杂种优势利用中可以加以利用。
但这种显性相关会随着世代的递增和基因的纯合而消失, 且会影响选择育种中早代间接选择的效果, 故对于显性相关为主的成对性状应以高代选择为主。
所以, 进行各种遗传协方差分析更能明确性状间相关性的遗传本质, 有利于排除环境因素对间接选择的影响,取得更好的选择效果,对于作物的选择育种具有重要的指导意义。
4.基于对数量性状遗传本质的理解,叙述数量性状的多基因假说的主要内容。
答:在遗传机制方面,数量性状受多基因控制,基因与基因间的关系错综复杂; 数量基因的表达对环境条件的变化比较敏感,基因的作用与环境条件的影响混杂在一起。
因此,数量性状的多基因假说的主要内容是:⑴.数量性状受制于多对微效基因或称多基因的联合效应;⑵.各对微效基因的效应相等而且是累加的,故又可称是累加基因;⑶.各对基因对某一性状的效应微小,多基因不能予以个别的辨认,只能按性状的表现作为一个多基因体系进行研究;⑷.微效基因之间无显隐性关系,一般用大写字母表示增效、小写字母表示减效作用;⑸.微效基因对环境敏感,因而数量性状的表现易受环境的影响而发生变化;⑹.微效基因具有多效性,除对数量性状起微效多基因的作用外,对其它性状有时也可能产生一定的修饰作用;⑺.微效基因和主效基因均处于细胞核的染色体上,具有分离、重组、连锁等性质。
5.叙述主效基因、微效基因、修饰基因对数量性状遗传作用的异同。
答:主效基因、微效基因、修饰基因在数量性状遗传中均可起一定的作用,其基因表达均可控制数量性状的表现。
但是它们对数量性状所起的作用又有所不同,主效基因的遗传效应较大,对某一数量性状的表现起着主要作用,一般由若干个基因共同控制该性状的遗传;修饰基因的遗传效应微小,主要是对主效基因起修饰作用,起增强或减弱主基因对表现型的作用;而微效基因是指控制数量性状表现的基因较多,而这些基因的遗传效应较小,它们的效应是累加的,无显隐性关系,对环境条件的变化较敏感,且具有一定的多效性,对其它性状有时也可能产生一定的修饰作用。
6.什么是普通遗传率和互作遗传率?他们在育种实践上有何指导意义?答:遗传率是指基因型方差(V G)占表型总方差(V p)的比值,它是衡量基因型变异和表型总变异相对程度的遗传统计量。
遗传率反映了通过表型值预测基因型值的可靠程度,表明了亲代变异传递到子代的能力。
同时也可以作为考查亲代与子代相似程度的指标。
由于导致群体表现型产生变异的遗传原因可以进一步区分为由遗传主效应产生的普通遗传变异和由基因型×环境互作效应产生的互作遗传变异,故遗传率可以分解为普通遗传率和互作遗传率两个分量。
其中普通遗传率是指由遗传主效应引起的那部分遗传率,一般指遗传方差占表现型方差的比率;互作遗传率是指由基因型×环境互作效应引起的那部分遗传率,一般指基因型×环境互作方差占表现型方差的比率。
育种实践表明,根据遗传率的大小可以决定不同性状的选择时期和选择方法,这对于改进育种方法,避免育种工作的盲目性和提高育种效果是很有效的。
一些遗传率较高的性状,可在杂种的早期世代进行选择,收效比较显著:而对于遗传率较低的性状,则需要在杂种后期世代进行选择才能收到更好的效果。
一般而言,当数量性状的基因型×环境互作效应越强,其互作遗传率就会越大,该性状的遗传表现就越易因环境而异,通过选择只能获得适应某一年份或某一特殊环境(如某一生态区域)的品种或组合;而基因型×环境互作效应小的性状则其普通遗传率就会越大,容易通过选择来改良育种材料的遗传组成,获得能够适应不同年份或不同环境的品种(组合)。
故普通遗传率适用于不同环境条件下的选择,而互作遗传率则只适用于某一特定条件下的选择。
某一年份或环境下的选择总效益,可以根据总的遗传率大小(普通遗传率 + 某一环境中的互作遗传率)进行预测和分析,以了解通过选择个体或个体群改良其基因型的准确性和选择效率。
7.什么是基因的加性效应、显性效应及上位性效应?它们对数量性状遗传改良有何作用?答:基因的加性效应(A):是指基因位点内等位基因的累加效应,是上下代遗传可以固定的分量,又称为"育种值"。
显性效应(D):是指基因位点内等位基因之间的互作效应,是可以遗传但不能固定的遗传因素,是产生杂种优势的主要部分。
上位性效应(I):是指不同基因位点的非等位基因之间相互作用所产生的效应。
上述遗传效应在数量性状遗传改良中的作用:由于加性效应部分可以在上下代得以传递,选择过程中可以累加,且具有较快的纯合速度,具有较高加性效应的数量性状在低世代选择时较易取得育种效果。
显性相关则与杂种优势的表现有着密切关系,杂交一代中表现尤为强烈,在杂交稻等作物的组合选配中可以加以利用。
但这种显性效应会随着世代的递增和基因的纯合而消失, 且会影响选择育种中早代选择的效果, 故对于显性效应为主的数量性状应以高代选择为主。
上位性效应是由非等位基因间互作产生的,也是控制数量性状表现的重要遗传分量。
其中加性×加性上位性效应部分也可在上下代遗传,并经选择而被固定;而加性×显性上位性效应和显性×显性上位性效应则与杂种优势的表现有关,在低世代时会在一定程度上影响数量性状的选择效果。
8.什么是基因的加性×环境互作效应、显性×环境互作效应及上位性×环境互作效应?它们对数量性状遗传改良作用与基因的遗传主效应有何异同?答:加性×环境互作效应(AE):是指基因加性效应与环境互作产生的遗传效应,是一部分可以在上下代传递、并加以固定的遗传效应,但会因环境条件的变化而产生较大差异。
显性×环境互作效应(DE):是指基因显性效应与环境互作产生的遗传效应,是一部分可以遗传、但不能固定的遗传效应,主要与杂种的优势表现有关,这部分效应也会因环境的变化而异。
上位性×环境互作效应(IE):是指基因上位性效应与环境互作产生的遗传效应,在不同环境中会有较大差异。
其中加性×加性上位性互作效应部分经选择可被固定;而加性×显性上位性互作效应和显性×显性上位性互作效应与杂种优势的表现有关,在低世代时会在一定程度上影响数量性状的选择效果。
不同的环境互作效应与遗传主效应的作用一样,对数量性状的遗传改良起着重要作用,可以影响数量性状的表现和选择效果。
但两者也有较大的差异,特别是一些受基因加性、显性或上位性等遗传主效应控制的数量性状在遗传改良中较为稳定,不同环境条件对这些数量性状的选择效果影响较小,通过选择容易获得适合不同年份或不同地点的育种材料或组合。
相反,某一数量性状的基因型与环境互作效应越强,该性状的遗传表现就越容易受到环境变化的影响,通过选择一般可以获得适合某一特定年份或某一特定环境的育种材料。
因此不同环境下的基因型稳定性对作物种子品质育种目标的制定非常重要。
9.以下是陆地棉4个亲本及其F1在8月9 日和9月3日的平均单株成铃数的分析资料(1981,1985)表1 方差和协方差计算结果:表2 基于群体均值的F1平均优势的预测结果(%)义遗传率、互作狭义遗传率,说明这两个时期单株成铃数的遗传规律及其对选择育种的指导意义;⑵. 根据F1普通平均优势和互作平均优势的预测结果,评价不同杂交组合的杂种优势利用的潜力。