代谢组学

合集下载

代谢组学

代谢组学

-在模式识别方法中,主成分分析法(principal component analysis,PCA) 最为常用、有效。
30
研究步骤
第一,生物样品收集与制备。代谢组学的研究 对象很广,常用的有生物体液,包括尿液、血
液、唾液、组织提取液及活体组织等。
生物样品的收集与制备是代谢组学研究的第一
阶段,也是重要环节之一,样品的浓度、pH值
34
第四,通过找到一种空间变换方式,把经标准
也会影响实验结果。
31
第二,NMR制谱。NMR方法适合研究代谢产物中 的成分,表征和研究海量的代谢信息及其变化
规律,从而得到丰富的生理、病理、药理和毒
理等生物信息。
其中1HNMR对含氢化合物均有响应,能给出精
细的代谢物成分图谱即代谢物指纹图谱。
32
不同器官组织具有不同的代谢轮廓,广谱全采集
33
14
15
16
17
代谢组学的发展
• 最早起源于代谢轮廓分析(Metabolic profiling)。早 在二十世纪七十年代,Baylor药学院就已经提出并发表了 代谢轮廓分析的理论。 • 1975年,Thompson 和Markey利用气相色谱和质谱在代谢 轮廓分析的定量方面取得了较大进展;二十世纪七十年代 末期这种方法得到了广泛认同;;八十年代早期应用HPLC 和NMR来对代谢物进行分析。 • 1986年,Joumal of Chromatography A出版了一期关于 代谢轮廓分析的专辑。 • 随着基因组学的提出和迅速发展,Oliver于1997年提出了 代谢组学(metabolomics)的概念,之后很多植物化学家 开展了这方面的研究; • 1999年Jeremy K. Nicholson等人提出metabonomics的概 念。

代谢组学

代谢组学

缺点:
灵敏度较低,分辨率不高,检测动态范围有限, 难以检测到丰度较低的化合物,难以同时对同一样 品中含量相差很大的物质进行检测,对于能检测到 的但含量较低的化合物物信号较弱。
同一个代谢物可能会有多个信号,而有些信号 则是不同代谢物的信号叠加的结果,将NMR所给出的 为结构片段信息进行归属比较困难。
代谢组学的应用
ห้องสมุดไป่ตู้
代谢物组学这一技术自提出后 , 发展迅速 , 目前已经在 植物学、毒理学、临床诊断、药物研发、营养科学等研究领 域都得到了广泛的应用。
代谢组学在自身免疫性疾病中的研究应用:
如 Giera 等应用毛细管液相色谱 - 串联四极杆质谱系 统, 分析了类风湿关节炎患者滑液 (SF) 中的近 70 种溶血性磷 脂酰胆碱和脂酰胆碱成分。进一步采用基于 LC-MS 的代谢靶 标分析方法定性和定量分析RA患者SF中的maresin 1,UpoxinA4和resolvinD5,鉴别出脂氧合酶途径相互作用的 主要物质5S,12S-diHETE可能是RA的生物标志物。
仪器价格及维护费用昂贵,难以普及。
基于色谱质谱联用技术的代谢组学研究
利用色谱的分离作用和质谱的鉴定作用,对代 谢物进行快速的定性分析和准确的定量。 色谱质谱联用技术兼具色谱的高分离度、高通 量和质谱的高灵敏度、特异性等优点,能够获得更 加丰富的代谢物信息,弥补了 NMR灵敏度低、信号 重叠及代谢物谱窄的不足,逐渐成为代谢组学研究 中的常用手段。
尿液为研究对象有其独特优势: 首先,尿样采集没有侵入性,使用代谢笼装置 即可实现连续采样,而且可实现自身对照,进而最 大限度地降低了个体差异对研究结果的影响; 其次,尿液经过肾小球的过滤,可以使氨基酸、 小分子有机酸等成分得到浓缩,方便检测;

代谢组学概述

代谢组学概述

代谢组学概述代谢组学是一门综合性的生物学研究领域,通过分析生物体内代谢产物的变化,揭示生物体内代谢网络的调控机制和代谢异常与疾病之间的关系。

代谢组学在生命科学研究、医学诊断与治疗、食品安全等领域具有重要的应用价值。

代谢组学的研究对象主要是代谢产物,包括代谢物、代谢酶和代谢途径等。

代谢产物是生物体代谢活动的结果,通过分析代谢产物的种类和含量,可以了解生物体的代谢状态和变化。

代谢酶是催化代谢反应的关键蛋白质,通过研究代谢酶的活性和表达水平,可以揭示代谢途径的调控机制。

代谢途径是一系列相互关联的化学反应,通过研究代谢途径的变化,可以了解生物体的代谢网络和调控机制。

代谢组学的研究方法主要包括代谢物分析、代谢酶活性测定和代谢途径研究等。

代谢物分析是代谢组学的核心技术,目前常用的代谢物分析方法包括质谱技术、核磁共振技术和高效液相色谱技术等。

质谱技术可以用于代谢物的定性和定量分析,核磁共振技术可以用于代谢物的结构鉴定,高效液相色谱技术可以用于代谢物的分离和纯化。

代谢酶活性测定是研究代谢酶功能的重要方法,通过测定代谢酶的催化反应速率,可以了解代谢酶的活性和调控机制。

代谢途径研究是研究代谢途径调控机制的关键方法,通过构建代谢途径模型,可以揭示代谢途径的结构和调控机制。

代谢组学在生命科学研究中具有广泛的应用价值。

通过代谢组学的研究,可以了解生物体在不同生理状态下的代谢特征和代谢网络的调控机制,揭示疾病发生发展的分子机制,为疾病的预防和治疗提供理论依据。

代谢组学在医学诊断与治疗中也有重要的应用,通过分析生物体的代谢产物,可以进行疾病的早期诊断、疾病的分型和预后评估,并为个体化治疗提供依据。

此外,代谢组学还可以用于食品安全的检测和评估,通过分析食品中的代谢产物,可以了解食品的质量和安全性。

代谢组学是一门综合性的生物学研究领域,通过分析生物体内代谢产物的变化,揭示生物体内代谢网络的调控机制和代谢异常与疾病之间的关系。

代谢组学在生命科学研究、医学诊断与治疗、食品安全等领域具有重要的应用价值。

代谢组学简介-百趣代谢组学

代谢组学简介-百趣代谢组学

什么是代谢组学?代谢组学(Metabonomics/Metabolomics)是继基因组学和蛋白质组学之后发展起来的新兴的组学技术,是系统生物学的重要组成部分,研究对象大都是相对分子质量1000以内的小分子物质。

代谢组学是对某一生物体组份或细胞在一特定生理时期或条件下所有代谢产物同时进行定性和定量分析,以寻找出目标差异代谢物。

可用于疾病早期诊断、药物靶点发现、疾病机理研究及疾病诊断等。

国内外研究现状简述国际上,代谢组学研究很活跃:美国国家健康研究所(NIH)在国家生物技术发展的路线图计划中制订了代谢组学的发展规划;许多国家的科研单位和公司均开始了代谢组学相关研究及业务,如英国帝国理工大学的Jeremy Nicholson实验室、美国加州大学Davis分校的Oliver Fiehn 实验室、美国Scripps实验室、荷兰莱顿大学的Jan van der Greef实验室等。

其中许多机构已经开始了多组学整合研究工作。

国内多家科研机构已先后开展了代谢组学的研究工作,包括中国科学院大连化学物理研究所许国旺实验室、中国科学院武汉数学物理研究所唐惠儒实验室、上海交通大学贾伟实验室、军科院等。

没有任何一个分析技术能够同时分析代谢组中的所有化合物,只能通过选择性地提取结合各种分析技术的并行分析来解决。

样品之间的变异、仪器动力学范围的局限和分析误差的存在也给代谢组学分析带来巨大的挑战。

因此在取样方法,新型分析仪器和分析技术的研发等方面,都需要进一步深入开发。

代谢组学分析产生出海量的数据,当前我们缺乏适当的代谢组数据库和数据交换版式,需要完善代谢组学数据库,建立代谢产物数据的标准,并且需要开发功能强大的数据分析工具。

代谢组学服务有哪些?一、非靶标代谢组学经过多年发展,BIOTREE现已拥有完善的非靶标代谢组学平台,包括UHPLC-QTOFMS、Orbitrap LC-MS、GC-TOF-MS、GC-Q-MS 等,能够准确、快速地分析各种生物样本(血、尿、动物组织、唾液、羊水、细胞和细胞液、植物、微生物等)中的小分子代谢物。

《代谢组学介绍》课件

《代谢组学介绍》课件

代谢组学的研究内容
代谢产物的检测与
鉴定
通过高通量检测技术,对生物体 内的代谢产物进行定性和定量分 析,了解代谢产物的种类和含量 。
代谢产物的变化规

研究生物体在生理、病理或环境 因素刺激下,代谢产物的变化规 律及其与生物功能的关系。
代谢调控机制
探讨代谢产物的合成、分解、转 化等过程,揭示代谢调控的机制 和规律。
跨学科融合
代谢组学与生物信息学、人工智能等领域的交叉融合,将有助于从海量数据中挖掘出更 具有预测性和指ห้องสมุดไป่ตู้意义的生物标志物。
应用领域拓展
代谢组学在药物研发、毒理学、营养学等领域的应用将不断拓展,为相关领域的研究提 供新的思路和方法。
未来代谢组学的研究方向
提高检测灵敏度和特异性
进一步改进和完善代谢组学技术,提高检测灵敏度和特异性,是未 来研究的重要方向之一。
代谢组学研究的新方法与新技术
代谢组学研究的新方法
随着技术的不断发展,代谢组学研究的方法也在不断更新。近年来,新的研究方法如基于质谱的代谢组学、核磁 共振代谢组学和代谢组学数据分析方法等得到了广泛应用。这些新方法提高了代谢组学研究的灵敏度、特异性和 可重复性,为代谢组学研究提供了更可靠的工具。
代谢组学研究的新技术
代谢组学在个体化医疗和精准医学方 面具有广阔的应用前景。通过对个体 代谢产物的差异进行分析,可以为个 体化医疗和精准医学提供更准确的诊 断和治疗方案。
代谢组学与其他领域的交叉研究
营养学与代谢组学
营养学与代谢组学的交叉研究对于了解营养物质在生物体内的代谢过程和作用机制具有重要意义。通 过代谢组学的研究,可以深入了解不同营养物质对生物体代谢的影响,为营养学提供更科学的基础。

代谢组学名词解释

代谢组学名词解释

代谢组学名词解释代谢组学,简称Metabolomics,是一个研究机构研究物质代谢及其变化的科学领域。

它是一门以系统生物学方法研究生物体代谢状态的一种系统研究,是聚焦细胞的活动、代谢过程以及其与表型的联系的学科。

通过研究物质代谢及其构成、调节、机制以及其和表型的联系,代谢组学研究者探寻出深层的生物体代谢规律,使得科学家们能够更好地了解生物体的发育、病理过程和重要的生物活动。

代谢组学技术是以独特的代谢物组成为标记,使用多种分析工具和多种生物学技术来研究物质代谢及其变化。

它涉及到整个生物体的一系列代谢活动,其中包括形成物质代谢物的发酵过程。

对物质代谢进行监测,其实就是在不同体系中,研究活动丰富的代谢物种和其中的变化,这种研究能够更好地理解其中的系统和功能。

代谢组学的各种技术主要包括代谢分析技术、生物信息学技术、细胞培养技术、分子水平的分析技术等。

代谢分析技术包括质谱学、气相色谱、高效液相色谱和其它新兴技术。

高效液相色谱是一种常用的细胞代谢分析技术,它可以有效地检测大量微量物质,并将它们用于生物学样品分析。

生物信息学技术则是用来分析数据及其表现形式,建立更准确的分析模型。

在这些研究之中,运用细胞培养技术对相应的物质的形成和功能,以及分子水平的分析技术,可以更好地探究其内在机制。

代谢组学的应用发展到目前为止,已经有许多良好的研究成果,用户可以通过使用这些成果来提升性能和生产能力。

例如,代谢组学可以更好地调控物质代谢,从而提高发酵过程中产物生成量;深入研究微生物群落的代谢过程,可以更好地利用发酵物;通过研究植物代谢特征,可以更好地筛选植物抗病性的优良品系,发现抗病性物种;运用代谢组学分析,可以更好地研究药物的特性和药效,并设计出更好的治疗方案;进行疾病物质代谢的研究,可以更好地揭示疾病的发病机制,更加有效的应对疾病。

可以总结,代谢组学在深入研究物质代谢过程、研究各种生物活动、研究药物机理及疾病发病机制、研究植物抗病性和发酵物利用等方面,均具有重要的意义。

代谢组学及其应用

代谢组学及其应用
1、代谢物分离和鉴定:通过分离和鉴定生物体中的小分子代谢物,了解其种 类和结构。
2、代谢谱分析:利用色谱、质谱等分析技术,对生物体的代谢谱进行分析, 找出特定代谢物或代谢途径的变化。
3、生物信息学分析:对代谢组学数据进行生物信息学分析,如主成分分析、 聚类分析等,找出特定代谢物或代谢途径的变化规律。
一、代谢组学的定义及概述
代谢组学主要研究生物体在受到内外环境因素刺激时,细胞内代谢产物的动态 变化及其与生物体代谢过程的。它以系统生物学、分析化学、计算机科学等多 学科为基础,涉及多个领域,包括代谢产物的检测、代谢途径的确定以及代谢 调控机制的研究等。目前,代谢组学在研究疾病发生发展、药物疗效及副作用、 环境污染等方面发挥着重要作用。
代谢组学及其应用
目录
01 一、代谢组学的定义 及概述
02
二、代谢组学技术的 应用
03
三、代谢组学技术的 未来发展
04 四、结论
05 参考内容
代谢组学是一门新兴的生物科学,专注于研究细胞内代谢产物的动态变化及其 与生物体代谢过程的。近年来,代谢组学在医学、药学、环境科学等多个领域 得到了广泛的应用,为诸多科学问题的解决提供了新的思路和方法。本次演示 将介绍代谢组学及其在各领域的应用,并探讨其未来发展趋势。
二、代谢组学技术的应用
1、医学领域
在医学领域,代谢组学主要用于疾病诊断、药物研发和机理研究。通过对患者 血液、尿液等样本中代谢产物的检测,可以实现对多种疾病的早期诊断和预后 评估。同时,通过对药物作用下机体内代谢产物的变化进行研究,有助于阐明 药物的作用机制及副作用,为新药研发提供依据。
2、药学领域
然而,代谢组学技术也存在一些挑战和限制。首先,代谢组学的实验成本较高, 需要大量的资金和设备投入。其次,代谢组学的数据分析复杂,需要专业的生 物信息学知识和技能。此外,由于生物体的代谢过程受到多种因素的影响,代 谢组学的结果可能存在一定的变异性和不确定性。

代谢组学概述

代谢组学概述

代谢组学概述代谢组学(metabonomics/metabolomics)是效仿基因组学和蛋白质组学的研究思想,对生物体内所有代谢物进行定量分析,并寻找代谢物与生理病理变化的相对关系的研究方式,是系统生物学的组成部分。

其研究对象大都是相对分子质量1000以内的小分子物质。

先进分析检测技术结合模式识别和专家系统等计算分析方法是代谢组学研究的基本方法。

一:代谢组学分析流程一般来说,代谢组的分析流程有:首先将代谢组分进行预处理,预处理的方法由测量分析方法决定,如使用质谱方法分析,则需要预先对代谢组分进行分离和离子化。

接着,再对预处理后的组分进行定性和定量分析。

预处理中,常用分离方法包括:气相色谱(Gas chromatography,GC),高效液相色谱(High performance liquid chromatography,HPLC)。

气相色谱具有较高的分辨率,但需要对代谢组分进行气化,并且对组分分子质量有一定的限制。

高效液相色谱也在代谢组分析中被广泛地使用,因其在液相中对代谢组分进行分离,因此不用对组分进行气化,相较气相色谱具有测量范围更广,更灵敏的优点。

此外,毛细管电泳法(Capillary electrophoresis)也可以对代谢组分进行分离,其应用较少,但在理论上其分离效率比高效液相色谱法高。

在预处理时,常常会加入内参(internal standards),以方便后续对样品的质量进行监控和对比,由于不同的实验批次、样品顺序对后续测量也有一定对影响,因此,还会加入空对照和混合样品对照来进行质量监控。

对不同的代谢组分进行定性和定量分析的方法包括质谱分析法(Mass spectrometry,MS)和核磁共振谱(Nuclear Magnetic Resonance Imaging,NMR)等。

其中,质谱分析法具有灵敏度高,特异性强等优点,被广泛地应用于检测代谢组分,可以对经过分离、离子化处理后的代谢组分进行定性和定量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

软件:MATLAB version7.10 主成分分析(PCA) 相关性分析:Pearson相关性系数 马尔距离:MD=
结果与讨论
1H NMR分析 LCMS分析
标准品的NMR和LCMS响应值
样品LCMS-LCMS信号的相关性 生物学样品NMR-LCMS信号的相关性
1H
NMR分析
样品NMR-NMR信号的相关性
将取准后的蕃茄样品NMR信号强度进行相关性分析来
鉴定品系数据矩阵中有相关的NMR信号。 相关系数|r| ≥ 0.8→有相关 1008个NMR谱峰, >30000相关(置信区间α=3.0%)
理论上不同样品中同一化合物显著相关,如蕃茄样中
的葫芦巴碱(A)、蔗糖(B)、柠檬酸(C)证明这 点。
前言
NMR和LCMS是代谢学研究的常用的技术手段。
将同一样品的NMR和LCMS谱图分析获取的代谢组学数据
统计结合,这就可以了解同一代谢物的光谱及其性质的关 系。
相关性分析是一种统计学方法,可用于建立一生物系统代
谢物信息的相互关系。 在本文中, 利用1H NMR和精确质量液相—四极杆飞行时 间质谱(LS- QTOF-MS)技术分析50种蕃茄栽培品种成熟 果实的代谢谱图。
Thank you
樱桃番茄与牛肉番茄和圆番茄的代谢差异较大,牛肉
番茄和圆番茄的代谢相似
标准品的NMR和LCMS剂量效应
六种标准品在两种方法的计量效应关系。 在NMR中,仪器响应是呈线性关系(所有共振和被测的
代谢物,相关性系数均值为1)。 新型MS检测范围更广,本实验中,其检测响应在母离子 强度达到20000个/扫描时呈线形的
氯原酸不但与其特异异 构体还和其衍生物高度 相关→蕃茄中有一系列 的氯原酸衍生物;可鉴 定复杂混合物中生物化 学高度相关的化合物; 显著(r>0.8)的LCMSLCMS相关不仅在同一代 谢物中还在化学相关的 代谢物中。 氯原酸 II (353 m/z at 14.9 min)—677 m/z at 40.7 min = [三氯原酸 acid 苯丙氨酸 (164 m/z) (341 —165 m/z) m/z —387 = 2nd m/z = [蔗糖 of +HCOOH [phenylalanine H]-, II - H]-, 677 m/z at蔗糖 39.4 min = [三氯原酸 I -isotope H]-, 515 m/z at 30.7 min =H]-, III - H]-, 683m/z =at [蔗糖 蔗糖 - H]-, [二氯原酸 515 m/z 28.6 + min =[二氯原酸 II - H]-, 515 m/z at [phenylalanine - NH3H]684 Im/z = 353 2nd isotope of [ 蔗糖 + 蔗糖 - IH]-, 27.9 147 minm/z= = [二氯原酸 - H]-, m/z at 13.2 min =[ 氯原酸 - H]-. 1,025 m/z= [蔗糖 + 蔗糖 + 蔗糖- H]-
样品LCMS-LCMS信号的相关性
3374个质谱信号,>130000明显相关( α=1.2% )。
同一代谢物中质谱信号中相关度最明显的是蔗糖(r
>0.96) 。 三个化合物的分析情况:蔗糖(341 m/z)、Phe (164 m/z)和氯原酸(353 m/z, 保留时间14.9 min)。
学生:赵珊 夏常艳 王亮根 李戆敏
2008.10.26
代谢组学的定义
代谢组学( metabonomics/metabolomics) 是关于
生物体内源性代谢物质的整体及其变化规律的科 学。代谢组学的中心任务包括检测、量化和编录 生物内源性代谢物质的整体及其变化规律,联系 该变化规律与所发生的生物学事件或过程的本质。
•最大的簇A包含>50%的节点, 特征性NMR质谱为糖峰(除 8.205ppm),随后的峰可能是 甲酸,与一系列信号高度相关, 大多糖都是这个簇LCMS信号 (游离糖、糖基化的生物碱和 皂素)。在5.375、5385和 5.395ppm处的峰相当于糖的异 头物,与该簇75%信号相关→ 蕃茄中有丰富的糖基化代谢物。 •第二大簇B为柚皮素和柚皮酮 衍生物信号。8种柚皮素和柚 皮酮衍生物可由NMR-LCMS相 关性分析法鉴别。本簇有 NMR–LCMS相关性信号:山奈 酚糖苷→黄酮LCMS和NMR信号 的显著相关 是代谢组数据的完 善又一途经。
相关性分析(可从 蔗糖在5.385ppm处 一组混杂的信号中 强特征信号 ;在3分出同一化合物的 4.5ppm处有重叠 信号) → (游离糖,糖代谢 内源代谢物鉴定变 物)→蔗糖在蕃茄 得容易 中含量高。
样品中胡芦巴碱 信号强度低→其 部分质子高度去 屏蔽化→其部分 共振区间出现空 白(如在 9.2&8.9ppm)
在0.7 < |r|<0.8的 数集中, 发现几 个有内相关性信 号的代谢产物能析技术获取的NMR/LCMS中
的化学性重有意义。 问题:由NMR/LCMS技术得出同一代谢物的数量有困 难。 展望:A.随一些技术改进,有助于基于NMR/LCMS技 术的代谢谱图分析获取的内相关信号的质量和数量的 优化。B.可用于生物标记和未知代谢物的分析和坚定
NMR分析 500 MHz Bruker AMX NMR 光谱(5mm TXI 探针,298 K) +Bruker XWIN-NMR version 2.1(傅里叶变换) LCMS分析(LC-QTOF-MS) Waters Alliance 2795系统+分析柱+ HTWaters 2996 PDA 检测器 +QTOF Ultima V4.00.00质谱 数据处理
材料和方法
50个蕃茄栽培品种(94种基因型,华盛顿的温室)
六种标准品(L-Trp,D-(+)-Glc,柠檬酸,芦丁, 氯原 酸, α-蕃茄素)
样品前处理
蕃茄切片→氮冷冻→-80℃保存→冷冻干燥→精确称取 0.3克干粉→加1.2ml甲醇→超声15min→3000g离心 5min→φ0.2μm过滤→取600μl,NMR分析→稀释4 倍,LCMS分析(4 ℃ 条件下进行)。
• 指导性(supervised)方法
偏最小二乘法为基础的分析(partial least square,PLS)
应用
在基础生命科学研究中的应用
代谢组变化的分析可以与基因或表达改变的后果联系起来,从而认识 相关基因的功能 动物宿主代谢和体内菌群代谢相关性的整合研究
在药物研发中的应用用于
药物筛选、药物毒理、药理和临床评价等诸多方面
在病理生理研究中的应用
高血压、多种肿瘤、老年骨质疏松、风湿性关节炎、可传染性脑病、 血吸虫病、应激、肠炎和克朗氏病、衰老、肠道综合征、糖尿病和肝 炎、先天性代谢疾病等疾病
营养代谢组学
表儿茶素影响动物代谢组、大豆异黄酮影响人体代谢组、长链不饱和 脂肪酸动物代谢组影响
(Intra- and inter-metabolite correlation spectroscopy of tomato metabolomics data obtained by liquid chromatography-mass spectrometry and nuclear magnetic resonance)
芳香族化 合物区
•检测方法是建立先 前报导的番茄样品 研究结果和基于NMR 的数据库。 •初级代谢物:浓度 高 •次级代谢物:种类 多
糖区
氨基酸区
LCMS分析
代谢谱图与以前报导相似(MOCO et 2006) 检测方法基于先前出版的番茄代谢组学的LCMS数据

NMR/LCMS数据的PCA
生物学样品NMR-LCMS信号的相关性
LCMS信号×NMR谱峰(3374 × 1008) 514个显著正相关,47个显著负相关( α=0.016% ,
6%的数据参与相关性配对) NMR-LCMS相关性图( |r| ≥ 0.8 ) NMR-LCMS显著相关的网状图 观察到的NMR-LCMS变量相关性是变量间不同相互作 用的结果
作者:Sofia Moco, Jenny Forshed, Ric C. H. De Vos, Raoul J. bino, Jacques Veroort 文献来源:Metabolomics (2008) 4:202–215 DOI 10.1007/s11306-0080112-8
基于LCMS和NMR的番茄代谢组学相关 性分析

有人认为,“基因组学和蛋白质组学告诉你什 么可能会发生,而代谢组学则告诉你什么确实发 生了。”(Bill Lasley, UC Davis)
研究手段
分析方法 • 色谱-质谱联仪方法 • 磁共振波谱法 • 色谱-核磁-质谱联仪法
数据分析处理 • 非指导性(unsupervised)方法
主成分分析(principal component analysis,PCA)
Section of the correlation map of NMR–LCMS for tomato fruit: [3.005–6.995 ppm (NMR);2,900–3,100 (LCMS peak number) = (23.12–27.55 min)].Horizontally, the NMR buckets(ppm) of the samples are overlaid and vertically the LCMS peak numbers (peak numbers increase with retention time and m/z) of the samples are overlaid. In the central frame, the correlation coefficients, r, for NMR–LCMS correlations are displayed as a blue-red heat map
相关文档
最新文档