运放电路分析

合集下载

经典运放电路分析

经典运放电路分析

从虚断,虚短分析基本运放电路运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。

在分析它的工作原理时倘没有抓住核心,往往令人头大。

为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位看完后有所斩获。

遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。

虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。

而运放的输出电压是有限的,一般在 10 V~14 V。

因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

运放典型应用电路

运放典型应用电路

运放典型应用电路一、什么是运放运放,即运算放大器,是一种集成电路芯片,主要用于放大、滤波、求导等信号处理方面。

它的特点是输入阻抗高、输出阻抗低,增益高、带宽宽广,可以通过外接电路改变其工作方式。

二、基本运放电路1. 非反馈式基本运放电路非反馈式基本运放电路由一个差动输入级和一个单端输出级组成。

其中差动输入级由两个晶体管组成,用于将输入信号转换为差模信号;单端输出级由一个共射极晶体管组成,用于将差模信号转换为单端输出信号。

2. 反馈式基本运放电路反馈式基本运放电路在非反馈式基本运放电路的基础上加入了反馈网络。

反馈网络可以改变增益、频率响应等特性,使得运放可以适应不同的应用场合。

三、典型应用电路1. 反相比例放大器反相比例放大器是一种常见的运放应用电路。

它的原理是将输入信号经过一个负反馈网络后再输入到非反相输入端口上。

这样可以实现对输入信号进行负反馈放大,从而达到比例放大的效果。

2. 非反相比例放大器非反相比例放大器与反相比例放大器类似,只是将输入信号输入到非反相输入端口上。

这样可以实现对输入信号进行正反馈放大,从而达到比例放大的效果。

3. 仪表放大器仪表放大器是一种高精度、高稳定性的运放应用电路。

它通过差分输入、高增益、低噪声等设计特点,实现对小信号的高精度测量和处理。

4. 滤波器滤波器是一种常见的运放应用电路。

它通过选择不同的电容和电感组合,可以实现不同类型的滤波功能,如低通滤波、高通滤波、带通滤波等。

5. 稳压电源稳压电源是一种常见的运放应用电路。

它通过反馈网络控制输出电压,使得输出电压保持稳定不变。

稳压电源广泛应用于各种电子设备中。

6. 正弦波振荡器正弦波振荡器是一种常见的运放应用电路。

它通过选择合适的RC组合和反馈网络,可以实现正弦波振荡输出。

正弦波振荡器广泛应用于各种信号发生器中。

四、总结运放是一种功能强大的集成电路芯片,可以应用于放大、滤波、求导等信号处理方面。

不同的运放应用电路具有不同的特点和功能,可以满足各种不同的应用需求。

运放绝对值电路分析

运放绝对值电路分析

电压绝对值电路,顾名思义就是输出电压是输入电压的绝对值。

在很多运放的datasheet上可以看见绝对值电路的身影,就拿大家熟悉的OP07为例其绝对值电路如图1所示图1.OP07电压绝对值电路图现在我们来分析分析图1电路的工作过程。

(1)输入为正电压时电路可以等效为两个单位增益反向放大器级联,达到“负负得正”的效果。

可以将电路图拆分,得到前一个反向放大器如图2所示。

图2.前级反向放大器图2为什么是一个反向放大器的电路呢?主要是多了两个二极管,让我们觉得与一般的反向放大有些不同了。

我们可以看看它的工作情况。

从仿真的结果可以看出,其中D1导通,D2截止。

这个比较好理解,电路从输入口流到运放的2端口,运放的输入电流很小(可忽略),所以电路一分为二,继续向前流,都遇到10K的电阻,也同样遇到了二极管,但是上面的是从二极管正端流入,下面的是负端流入,当然D1导通,D2截止啦!(我是这么理解的,不是很科学,但是比较容易懂)。

那么下面一个10k和D2的电路截止了,就可以忽略不计了,电路就可以当做一个方向放大器来理解了。

再加上后面一个方向放大,就“负负得正”了。

(2)输入电压为负时图3.负电压仿真当输入为-6.32V,输出为6.32V。

设输入为Vin,运放1的正相输入和反相输入端电压分别为V1+、V1-,运放2的正相输入和反相输入端电压分别为V2+、V2-,R1与R2间的节点电压为V o1,电路输出电压V out.由虚短可知V1+=V1-=0V,V2+=V2-,所以V2+-V1+=V2--V1-,即这两条之路的压差相等。

我们先不理会二极管D1与D2。

那么R1、R2支路与R5支路的压差相等,但是电阻为2:1,则电流为1:2.而这两条支路电路之和等于输入电流。

由这样的关系可以计算得:V2-=V2+=-2/3Vin,V o1=-1/3Vin,因此R2两端的压差为-1/3V in。

最后的输出为:V out=V2-+[(1/3Vin)/R2] *R3=-Vin。

十一种经典运放电路分析

十一种经典运放电路分析

十一种经典运放电路分析从虚断,虚短分析基本运放电路由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。

而运放的输出电压是有限的,一般在10 V~14 V。

因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

1)反向放大器:传输文件进行[薄膜开关] 打样图1图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。

流过R1的电流:I1 = (Vi - V-)/R1 ………a流过R2的电流:I2 = (V- - Vout)/R2 ……bV- = V+ = 0 ………………cI1 = I2 ……………………d求解上面的初中代数方程得Vout = (-R2/R1)*Vi这就是传说中的反向放大器的输入输出关系式了。

运放电路的分析方法

运放电路的分析方法
信息加密包括:(1)数据传输加密。目的是对 传输中的数据流加密,常用的方针有线路加密 和端点加密两种。前者是对保密信息通过各线 路采用不同的加密密钥提供安全保护,是保护 网络节点之间的链路信息安全。后者则指信息 在发送者端对信息加密处理,并封装成 T C P / IP 数据包,成为一种不可识别的数据进行传输, 当这些信息到达目的地址后,再按照密钥重组、 解密,成为可读数据。(2)数据存储加密。目是保 护在存储介质上的数据安全,可分为密文存储 和存取控制两种。前者一般是通过加密算法转 换、附加密码、加密模块等方法实现;后者则是 对用户资格、格限加以审查和限制,防止非法用 户存取数据或合法用户越权存取数据。(3)数据完 整性分析。完整性分析主要关注某个文件或对 象是否被更改,这经常包括文件和目录的内容 及属性,它在发现被更改的、被特洛伊化的应用 程序方面特别有效。只要是成功的攻击导致了 文件或其它对象的任何改变,它都能够发现。缺 点是一般以批处理方式实现,不用于实时响应。
U I= - (R 1/ R 2 )U R= U T 显然,当 U I>U T 时,U o′= U OH,所以 U o= - UZ (U Z 为稳压管的稳压值);同理,U I < U T 时, U o= + U Z。图 5 是 U R> 0 时 U o 与 U I 的关系曲线。 综上所述,分析比较器的步骤是:首先求出
一、运放的特点
尽管集成运放的应用是多种多样的,但在 一般分析计算中,都将看成是理想运放。
1、线性区 当运放工作在线性区,其输入
信号与输出信号应满足 U o = A od (U P- U N)由于 Aod 非常大,为使其工作在线性区,必须引入负 反馈,以减小输入电压(U P-U N),保证输出电 压不超过线性范围。如运放的输出端与反向输

运放基本电路全解析!

运放基本电路全解析!

运放基本电路全解析!我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。

在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。

1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。

这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。

但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。

在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。

绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。

一般是正负15V,正负12V和正负5V也是经常使用的。

输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。

单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。

正电源引脚接到VCC+,地或者VCC-引脚连接到GND。

将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。

有一些新的运放有两个不同的最高输出电压和最低输出电压。

这种运放的数据手册中会特别分别指明Voh 和Vol 。

需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。

(参见1.3节)通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。

另外现在运放的供电电压也可以是3V 也或者会更低。

运算放大器电路分析

运算放大器电路分析

第五章 含运算放大器的电路的分析◆ 重点:1、运放的传输特性2、比例器、加法器、减法器、跟随器等运算电路3、含理想运放的运算电路的分析计算◆ 难点:1、熟练计算含理想运放的思路5.1 运放的电路模型5.1.1 运放的符号运放是具有高放大倍数的直接耦合放大电路组成的半导体多端实际元件。

而在本章中,所讲到“运放”,是指实际运放的电路模型——一种四端元件。

其符号为+u-_o+ _图5-1 运放的符号在新国标中,运放及理想运放的符号分别为图5-2 运放的新国标符号5.1.2 运放的简介一、同相与反相输入端运放符号中的“+”、“-”表示运放的同相输入端和反相输入端,即当输入电压加在同相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相同;反之,当输入电压加在反相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相反。

其意义并不是电压的参考方向。

二、公共端在运放中,公共端往往取定为接地端——电位为零,实际中,电子线路中的接地端常常取多条支路的汇合点、仪器的底座或机壳等,输入电压、输出电压都以之为参考点。

有时,电路中并不画出该接地端,但计算时要注意它始终存在。

5.1.3运放的输入输出关系一、运放输入输出关系曲线在运放的输入端分别同时加上输入电压+u和-u(即差动输入电压为du)时,则其输出电压u o为uouAuuAu=-=-+)(d图5-3 运放输入输出关系曲线实际上,运放是一种单向器件,即输出电压受输入电压的控制,而输入电压并不受输出电压的控制。

由其输入输出关系可以看出,运放的线性放大部分很窄,当输入电压很小时,运放的工作状态就已经进入了饱和区,输出值开始保持不变。

二、运放的模型au-u ou图5-4 运放的电路模型由运放的这一模型,我们可以通过将运放等效为一个含有受控源的电路,从而进行分析计算。

例:参见书中P140所示的反相比例器。

(学生自学)5.1.4有关的说明在电子技术中,运放可以用于1.信号的运算——如比例、加法、减法、积分、微分等2.信号的处理——如有源滤波、采样保持、电压比较等3.波形的产生——矩形波、锯齿波、三角波等4.信号的测量——主要用于测量信号的放大5.2 具理想运放的电路分析5.2.1 含理想运放的电路分析基础所谓“理想运放”,是指图中模型的电阻R in、R0为零,A为无穷大的情况。

含有运算放大器电路分析

含有运算放大器电路分析

(15.2)低运功算放耗大型器运的算电放路大组器成及其分类 随着便携式仪器应用范围的扩大,必须使用低电源电压供 电、低功率消耗的运算放大器。常用的运算放大器有TL022C、TL-060C等,其工作电压为±2~±18V,消耗电流 为50~250A。目前,有的产品功耗已达W级,例如 ,ICL7600的供电电源为1.5V,功耗为10mW,可采用单节 电池供电。 (6)高压大功率型运算放大器 普通的运算放大器若要提高输出电压或增大输出电流,集 成运放外部必须要加辅助电路。高压大电流集成运算放大器 外部不需附加任何电路,即可输出高电压和大电流。例如, D41集成运放的电源电压可达±150V,A791集成运放的输 出电流可达1A。
1 Rf
ua
1 Rf
uo
ui1 R1
ui2 R2
ui3 R3
根据虚短路性质 ua u u 0
所以有
ui1 ui2 ui3 uo

R1 R2 R3 Rf
uo =
Rf R1
ui1
Rf R2
ui2
Rf R3
ui3
由上式可知,输出信号的大小是输入信号的加权和,
因此,该电路实现了加权加法运算。式中的系数为对应
uo A(u u ) Aud
当同相输入端接地时,即
u 0 有
uo Au
当反相输入端接地时,
u 0 有
uo Au
1.5 理想运算放大器 在线性放大区分析运算放大器时,一般可将它看成一个
理想运算放大器,把运放电路做如下的理想化处理。 (1)放大倍数A→∞ 若输出电压uo为有限值,则当放大倍数A→∞时,必须满
1.2 运算放大器的电路组成及其分类
集成运算放大器的分类方法很多,按照运算放大器的参数 来分可分为如下7种类型。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从虚断,虚短分析基本运放电路遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi ,那是一个反向放大器,然后得出Vo=-Rf*Vi今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。

虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB 以上。

而运放的输出电压是有限的,一般在10 V~14 V。

因此运放的差模输入电压不足 1 mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入暂时忘掉那些输入输出关系的公式这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

好了,让我们抓过两把“板斧”------ “虚短”和“虚断”,开始“庖丁解牛”了。

1)反向放大器:图 1图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2 的电流是相同的。

流过R1的电流:I1 = (Vi - V- )/R1 a流过R2的电流:I2 = (V- -V- = V+ = 0 Vout)/R2 bcI1 = I2 d求解上面的初中代数方程得Vout = (-R2/R1)*Vi这就是传说中的反向放大器的输入输出关系式了。

2)同向放大器:图 2图二中Vi 与V- 虚短,则Vi = V- a因为虚断,反向输入端没有电流输入输出,通过R1和R2 的电流相等,设此电流为I ,由欧姆定律得:I = Vout/(R1+R2) bVi 等于R2上的分压,即:Vi = I*R2 c由abc 式得Vout=Vi*(R1+R2)/R2 这就是传说中的同向放大器的公式了。

3)加法器1:图 3图三中,由虚短知:V- = V+ = 0 a由虚断及基尔霍夫定律知,通过R2与R1的电流之和等于通过R3的电流,故(V1 –V-)/R1 + (V2 –V-)/R2 = (V- –Vout)/R3 b代入a 式,b 式变为V1/R1 + V2/R2 = Vout/R3 如果取R1=R2=R,3 则上式变为-Vout=V1+V2,这就是传说中的加法器了。

4)加法器2:图 4请看图四。

因为虚断,运放同向端没有电流流过,则流过R1 和R2的电流相等,同理流过R4和R3的电流也相等。

故(V1 –V+)/R1 = (V+ - V2)/R2 a(Vout –V-)/R3 = V- /R4 b由虚短知:V+ = V- c 如果R1=R2,R3=R4,则由以上式子可以推导出V+ = (V1 + V2)/2 V- = Vout/2 故Vout = V1 + V2 也是一个加法器,呵呵!5)减法器图 5图五由虚断知,通过R1的电流等于通过R2的电流,同理通过R4的电流等于R3 的电流,故有(V2 –V+)/R1 = V+/R2 a(V1 –V-)/R4 = (V- - Vout)/R3 b如果R1=R2,则V+ = V2/2 c如果R3=R4,则V- = (Vout + V1)/2 d由虚短知V+ = V- e所以Vout=V2-V1 这就是传说中的减法器了。

图 6图六电路中,由虚短知,反向输入端的电压与同向端相等,由虚断知,通过R1的电流与通过C1 的电流相等。

通过R1的电流i=V1/R1通过C1的电流i=C*dUc/dt=-C*dVout/dt所以Vout=((- 1/(R1*C1)) ∫V1dt 输出电压与输入电压对时间的积分成正比, 这就是传说中的积分电路了。

若V1为恒定电压U,则上式变换为Vout = -U*t/(R1*C1) t 是时间,则Vout 输出电压是一条从0 至负电源电压按时间变化的直线。

图7图七中由虚断知,通过电容C1和电阻R2 的电流是相等的,由虚短知,运放同向端与反向端电压是相等的。

则:Vout = -i * R2 = -(R2*C1)dV1/dt这是一个微分电路。

如果V1 是一个突然加入的直流电压,则输出Vout 对应一个方向与V1 相反的脉冲。

图8由虚短知Vx = V1 aVy = V2 b由虚断知,运放输入端没有电流流过,则R1、R2、R3可视为串联,通过每一个电阻的电流是相同的,电流I=(Vx- Vy)/R2 c则:Vo1-Vo2=I*(R1+R2+R3) = (Vx- Vy)(R1+R2+R3)/R2 d由虚断知,流过R6与流过R7 的电流相等, 若R6=R7,则Vw = Vo2/2 e 同理若R4=R5,则Vout –Vu = Vu –Vo1,故Vu = (Vout+Vo1)/2 f由虚短知,Vu = Vw g由efg 得Vout = Vo2 –Vo1 h由dh 得Vout = (Vy –Vx)(R1+R2+R3)/R2 上式中(R1+R2+R3)/R2是定值,此值确定了差值(Vy –V x)的放大倍数。

这个电路就是传说中的差分放大电路了。

9)电流检测:图9分析一个大家接触得较多的电路。

很多控制器接受来自各种检测仪表的0~20mA或4~20mA电流,电路将此电流转换成电压后再送ADC转换成数字信号,图九就是这样一个典型电路。

如图4~20mA电流流过采样100Ω电阻R1,在R1上会产生0.4~2V 的电压差。

由虚断知,运放输入端没有电流流过,则流过R3和R5 的电流相等,流过R2和R4 的电流相等。

故:(V2- Vy)/R3 = Vy/R5 a(V1-Vx)/R2 = (Vx-Vout)/R 4 b由虚短知:Vx = Vy c电流从0~20mA变化,则V1 = V2 + (0.4~2) d由cd 式代入b 式得(V2 + (0.4~2)-Vy)/R2 = (Vy- Vout)/R4 e如果R3=R2,R4=R5,则由e-a 得Vout = - (0.4~2)R4/R2 f图九中R4/R2=22k/10k=2.2 ,则f 式Vout = -(0.88~4.4)V ,即是说,将4~20mA电流转换成了-0.88 ~ -4.4V 电压,此电压可以送ADC去处理。

10)电压电流转换检测:图10电流可以转换成电压,电压也可以转换成电流。

图十就是这样一个电路。

上图的负反馈没有通过电阻直接反馈,而是串联了三极管Q1的发射结,大家可不要以为是一个比较器就是了。

只要是放大电路,虚短虚断的规律仍然是符合的!由虚断知,运放输入端没有电流流过,则(Vi –V1)/R2 = (V1 –V4)/R6 a同理(V3 –V2)/R5 =V2/R4 b由虚短知V1 = V2 c如果R2=R6,R4=R5,则由abc 式得V3-V4=Vi上式说明R7两端的电压和输入电压Vi 相等,则通过R7的电流I=Vi/R7 ,如果负载RL<<100KΩ,则通过Rl 和通过R7的电流基本相同。

11)传感器检测:图11来一个复杂的,呵呵!图十一是一个三线制PT100前置放大电路。

PT100 传感器引出三根材质、线径、长度完全相同的线,接法如图所示。

有2V 的电压加在由R14、R20、R15、Z1、PT100及其线电阻组成的桥电路上。

Z1、Z2、Z3、D11、D12、D83及各电容在电路中起滤波和保护作用,静态分析时可不予理会,Z1、Z2、Z3 可视为短路,D11、D12、D83及各电容可视为开路。

由电阻分压知,V3=2*R20/(R14+20)=200/1100=2/11 a由虚短知,U8B第6、7 脚电压和第 5 脚电压相等V4=V3 b由虚断知,U8A 第 2 脚没有电流流过,则流过R18 和R19 上的电流相等。

(V2-V4)/R19=(V5- V2)/R18 c由虚断知,U8A第3 脚没有电流流过,V1=V7 d 在桥电路中R15和Z1、PT100 及线电阻串联,PT100与线电阻串联分得的电压通过电阻R17加至U8A的第3 脚,V7=2*(Rx+2R0)/(R15+Rx+2R0) ..e由虚短知,U8A第3 脚和第 2 脚电压相等,V1=V2 f由abcdef 得,(V5-V7)/100=(V7-V3)/2.2 化简得V5=(102.2*V7-100V3)/2.2即V5=204.4(Rx+2R0)/(1000+Rx+2R0) –200/11 g上式输出电压V5 是Rx 的函数我们再看线电阻的影响。

Pt100 最下端线电阻上产生的电压降经过中间的线电阻、Z2、R22,加至U8C的第10 脚,由虚断知,V5=V8=V9=2*R0/(R15+Rx+2R0) a(V6- V10)/R25=V10/R26 b由虚短知,V10=V5 c由式abc 得V6=(102.2/2.2)V5=204.4R0/[2.2(1000+Rx+2R0)] h由式gh 组成的方程组知,如果测出V5、V6 的值,就可算出Rx 及R0,知道Rx,查pt100 分度表就知道温度的大小了。

相关文档
最新文档