高2021届高2018级江苏省南京市金陵中学高三上学期8月学情调研测试数学试题解析版
江苏省南京市2018届高三上学期期初学情调研考试-数学

南京市2018届高三年级学情调研数学柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上. 1.若集合P ={-1,0,1,2},Q ={0,2,3},则P ∩Q = ▲ . 2.若(a +b i)(3-4i)=25 (a ,b ∈R ,i 为虚数单位),则a +b 的值为 ▲ .3.某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业 倾向,用分层抽样的方法从该校这四个专业中抽取40名学生进行调查,则应从丙专业抽 取的学生人数为 ▲ .4.如图所示的算法流程图,若输出y 的值为12,则输入x 的值为 ▲ .5.记函数f (x )=4-3x -x 2 的定义域为D .若在区间 [-5,5]上随机取一个数x ,则x ∈D 的概率为 ▲ . 6.在平面直角坐标系xOy 中,双曲线x 216-y 29=1的焦点到其渐近线的距离为 ▲ .7.已知实数x ,y 满足条件⎩⎪⎨⎪⎧2≤x ≤4,y ≥3,x +y ≤8,则z =3x -2y 的最大值为 ▲ .8.将一个正方形绕着它的一边所在的直线旋转一周,所得 圆柱的体积为27πcm 3,则该圆柱的侧面积为 ▲ cm 2. 9.若函数f (x )=A sin(ωx +ϕ)(A >0,ω>0,|ϕ|<π)的部分图 象如图所示,则f (-)的值为 ▲ .10.记等差数列{a n }前n 项和为S n .若a m =10,S 2m -1=110, 则m 的值为 ▲ .11.已知函数f (x )是定义在R 上的奇函数,且在(-∞,0]上为单调增函数.若f (-1)=-2,则满足f (2x -3)≤2的x 的取值范围是 ▲ .Y(第4题)结束输入xx ≥0y ←2x输出yN开始y ←log 2(-x )xOy(第9题)4π212.在△ABC 中,AB =3,AC =2,∠BAC =120︒,→BM =λ→BC .若→AM ·→BC =-173,则实数λ的值为 ▲ .13.在平面直角坐标系xOy 中,若圆(x -2)2+(y -2)2=1上存在点M ,使得点M 关于x 轴的对称点N 在直线kx +y +3=0上,则实数k 的最小值为 ▲ .14.已知函数f (x )=⎩⎨⎧2x 2,x ≤0,-3|x -1|+3,x >0.若存在唯一的整数x ,使得f (x )-ax >0成立,则实数a 的取值范围为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在直三棱柱ABC -A 1B 1C 1中,AB =AC ,E 是BC 的中点,求证: (1)平面AB 1E ⊥平面B 1BCC 1; (2)A 1C //平面AB 1E .16.(本小题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos B =45.(1)若c =2a ,求sin Bsin C 的值;(2)若C -B =π4,求sin A 的值.17.(本小题满分14分)A 1B 1C 1ABCE(第15题)某工厂有100名工人接受了生产1000台某产品的总任务,每台产品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置.设加工甲型装置的工人有x 人,他们加工完甲型装置所需时间为t 1小时,其余工人加工完乙型装置所需时间为t 2小时.设f (x )=t 1+t 2. (1)求f (x )的解析式,并写出其定义域; (2)当x 等于多少时,f (x )取得最小值?18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点(1,32).过椭圆C 的左顶点A 作直线交椭圆C 于另一点P ,交直线l :x =m (m >a )于点M .已知点B (1,0),直线PB 交l 于点N . (1)求椭圆C 的方程;(2)若MB 是线段PN 的垂直平分线,求实数m 的值.(第18题)19.(本小题满分16分)已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.(1)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;(2)若对于任意x∈(0,+∞),f(x)+f(-x)≥12ln x恒成立,求a的取值范围;(3)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),记h(a)=M(a)-m(a),求h(a)的最小值.20.(本小题满分16分)已知数列{a n}的各项均为正数,记数列{a n}的前n项和为S n,数列{a n2}的前n项和为T n,且3T n=S n2+2S n,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式;(3)若k,t∈N*,且S1,S k-S1,S t-S k成等比数列,求k和t的值.南京市2018届高三年级学情调研卷数学附加题 2017.09注意事项:1.附加题供选修物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校写在答题卡上.试题的答案写在答.题卡..上对应题目的答案空格内.考试结束后,交回答题卡.21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答.卷.卡指定区域内......作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,CD 是圆O 的切线,切点为D ,CA 是过圆心O 的割线且交圆O 于点B , DA =DC .求证: CA =3CB .B .选修4—2:矩阵与变换设二阶矩阵A =⎣⎡⎦⎤1234.(1)求A -1;(2)若曲线C 在矩阵A 对应的变换作用下得到曲线C ':6x 2-y 2=1,求曲线C 的方程.C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-1+t ,y =t(t 为参数),圆C的参数方程(第21A 题)为⎩⎨⎧x =a +cos ,y =2a +sin(θ为参数).若直线l 与圆C 相切,求实数a 的值.D .选修4—5:不等式选讲 解不等式:|x -2|+|x +1|≥5.【必做题】第22题、第23题,每题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB ⊥AD ,AD ∥BC ,AP =AB =AD=1.(1)若直线PB 与CD 所成角的大小为π3,求BC 的长;(2)求二面角B -PD -A 的余弦值.23.(本小题满分10分)袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球. (1)若两个球颜色不同,求不同取法的种数;(2)在(1)的条件下,记两球编号的差的绝对值为随机变量X ,求随机变量X 的概率分布与数学期望.CDPBA(第22题)南京市2018届高三年级学情调研数学参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,计70分.)1.{0,2} 2.7 3.16 4.- 2 5.126.3 7. 6 8.189.-1 10.611.(-∞,2] 12.13 13.-4314.[0,2]∪[3,8]二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内) 15.(本小题满分14分)证明:(1)在直三棱柱ABC -A 1B 1C 1中,CC 1平面ABC . 因为AE 平面ABC ,所以CC 1AE . ……………2分因为AB =AC ,E 为BC 的中点,所以AE BC . 因为BC 平面B 1BCC 1,CC 1平面B 1BCC 1,且BC ∩CC 1=C ,所以AE 平面B 1BCC 1. ………………5分 因为AE 平面AB 1E ,所以平面AB 1E 平面B 1BCC 1. ……………………………7分 (2)连接A 1B ,设A 1B ∩AB 1=F ,连接EF .A 1B 1C 1 ABCE(第15题) F在直三棱柱ABC -A 1B 1C 1中,四边形AA 1B 1B 为平行四边形,所以F 为A 1B 的中点. ……………………………9分 又因为E 是BC 的中点,所以EF ∥A 1C . ……………………………11分 因为EF 平面AB 1E ,A 1C 平面AB 1E ,所以A 1C ∥平面AB 1E . ……………………………14分16.(本小题满分14分) 解:(1)解法1在△ABC 中,因为cos B =45,所以a 2+c 2-b 22ac =45. ………………………2分因为c =2a ,所以(c2)2+c 2-b 22c ×c 2=45,即b 2c 2=920,所以b c =3510. ……………………………4分又由正弦定理得sin B sin C =bc ,所以sin B sin C =3510. ……………………………6分 解法2因为cos B =45,B ∈(0,),所以sin B =1-cos 2B =35.………………………2分因为c =2a ,由正弦定理得sin C =2sin A , 所以sin C =2sin(B +C )=65cos C +85sin C ,即-sin C =2cos C . ………………………4分 又因为sin 2C +cos 2C =1,sin C >0,解得sin C =255,所以sin B sin C =3510. ………………………6分 (2)因为cos B =45,所以cos2B =2cos 2B -1=725. …………………………8分又0<B <π,所以sin B =1-cos 2B =35,所以sin2B =2sin B cos B =2×35×45=2425. …………………………10分因为C -B =π4,即C =B +π4,所以A =π-(B +C )=3π4-2B ,所以sin A =sin(3π4-2B )=sin 3π4cos2B -cos 3π4sin2B ………………………………12分=22×725-(-22)×2425=31250. …………………………………14分17.(本小题满分14分)解:(1)因为t 1=9000x, ………………………2分t 2=30003(100-x )=1000100-x , ………………………4分所以f (x )=t 1+t 2=9000x +1000100-x , ………………………5分定义域为{x |1≤x ≤99,x ∈N *}. ………………………6分 (2)f (x )=1000(9x +1100-x )=10[x +(100-x )]( 9x +1100-x)=10[10+9(100-x )x + x100-x ]. ………………………10分因为1≤x ≤99,x ∈N *,所以9(100-x )x >0,x100-x>0, 所以9(100-x )x + x100-x≥29(100-x )x x100-x=6, …………………12分 当且仅当9(100-x )x =x100-x ,即当x =75时取等号. …………………13分答:当x =75时,f (x )取得最小值. ………………………14分18.(本小题满分16分) 解:(1)因为椭圆C 的离心率为32,所以a 2=4b 2. ………………………2分 又因为椭圆C 过点(1,32),所以1a 2+34b 2=1, ………………………3分解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1. ………………………5分(2)解法1设P (x 0,y 0),-2<x 0<2, x 0≠1,则x 024+y 02=1.因为MB 是PN 的垂直平分线,所以P 关于B 的对称点N (2-x 0,-y 0),所以2-x 0=m . ………………………7分 由A (-2,0),P (x 0,y 0),可得直线AP 的方程为y =y 0x 0+2(x +2),令x =m ,得y =y 0(m +2) x 0+2,即M (m ,y 0(m +2)x 0+2).因为PB ⊥MB ,所以k PB ·k MB =-1,所以k PB ·k MB =y 0x 0-1·y 0(m +2)x 0+2 m -1=-1, ………………………10分即y 02(m +2)(x 0-1)( x 0+2)( m -1)=-1. 因为x 024+y 02=1.所以( x 0-2)(m +2)4(x 0-1) ( m -1)=1. ………………………12分因为x 0=2-m ,所以化简得3m 2-10m +4=0,解得m =5±133. ………………………15分因为m >2,所以m =5+133. ………………………16分解法2①当AP 的斜率不存在或为0时,不满足条件. ………………………6分 ②设AP 斜率为k ,则AP :y =k (x +2),联立⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x +2),消去y 得(4k 2+1)x 2+16k 2x +16k 2-4=0.因为x A =-2,所以x P =-8k 2+24k 2+1,所以y P =4k 4k 2+1,所以P (-8k 2+24k 2+1,4k4k 2+1). ………………………8分因为PN 的中点为B ,所以m =2--8k 2+24k 2+1=16k 24k 2+1.(*) ……………………10分因为AP 交直线l 于点M ,所以M (m ,k (m +2)),因为直线PB 与x 轴不垂直,所以-8k 2+24k 2+1≠1,即k 2≠112,所以k PB =4k4k 2+1-8k 2+24k 2+1-1=-4k 12k 2-1,k MB =k (m +2)m -1. 因为PB ⊥MB ,所以k PB ·k MB =-1,所以-4k 12k 2-1·k (m +2)m -1=-1.(**) ………………………12分将(*)代入(**),化简得48k 4-32k 2+1=0,解得k 2=4±1312,所以m =16k 24k 2+1=5±133. ………………………15分又因为m >2,所以m =5+133. ………………………16分19.(本小题满分16分)解:(1)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a ,所以曲线y =f (x )在x =0处的切线斜率k =f ′(0)=6a ,所以6a =3,所以a =12. ………………………2分(2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立,所以-(a +1)≥2ln xx 2. ………………………4分令g (x )=2ln xx 2,x >0,则g '(x )=2(1-2ln x )x 3.令g '(x )=0,解得x =e .当x ∈(0,e)时,g '(x )>0,所以g (x )在(0,e)上单调递增;当x ∈(e ,+∞)时,g '(x )<0,所以g (x )在(e ,+∞)上单调递减. 所以g (x )max =g (e)=1e , ………………………6分所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值范围为(-∞,-1-1e ]. ………………………8分(3)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4.令f ′(x )=0,则x =1或a . ………………………10分 f (1)=3a -1,f (2)=4.①当1<a ≤53时,当x ∈(1,a )时,f '(x )<0,所以f (x )在(1,a )上单调递减; 当x ∈(a ,2)时,f '(x )>0,所以f (x )在(a ,2)上单调递增.又因为f (1)≤f (2),所以M (a )=f (2)=4,m (a )=f (a )=-a 3+3a 2, 所以h (a )=M (a )-m (a )=4-(-a 3+3a 2)=a 3-3a 2+4. 因为h ' (a )=3a 2-6a =3a (a -2)<0, 所以h (a )在(1,53]上单调递减,所以当a ∈(1,53]时,h (a )最小值为h (53)=827.………………………12分②当53<a <2时,当x ∈(1,a )时,f '(x )<0,所以f (x )在(1,a )上单调递减; 当x ∈(a ,2)时,f '(x )>0,所以f (x )在(a ,2)上单调递增.又因为f (1)>f (2),所以M (a )=f (1)=3a -1,m (a )=f (a )=-a 3+3a 2, 所以h (a )=M (a )-m (a )=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1. 因为h ' (a )=3a 2-6a +3=3(a -1)2≥0. 所以h (a )在(53,2)上单调递增,所以当a ∈(53,2)时,h (a )>h (53)=827. ………………………14分③当a ≥2时,当x ∈(1,2)时,f '(x )<0,所以f (x )在(1,2)上单调递减, 所以M (a )=f (1)=3a -1,m (a )=f (2)=4, 所以h (a )=M (a )-m (a )=3a -1-4=3a -5, 所以h (a )在[2,+∞)上的最小值为h (2)=1.综上,h (a )的最小值为827. ………………………16分20.(本小题满分16分)解:(1)由3T 1=S 12+2S 1,得3a 12=a 12+2a 1,即a 12-a 1=0.因为a 1>0,所以a 1=1. ………………………2分 (2)因为3T n =S n 2+2S n , ①所以3T n +1=S n +12+2S n +1,②②-①,得3a n +12=S n +12-S n 2+2a n +1. 因为a n +1>0,所以3a n +1=S n +1+S n +2, ③ ………………………5分 所以3a n +2=S n +2+S n +1+2,④④-③,得3a n +2-3a n +1=a n +2+a n +1,即a n +2=2a n +1,所以当n ≥2时,a n +1a n =2. ………………………8分又由3T 2=S 22+2S 2,得3(1+a 22)=(1+a 2)2+2(1+a 2), 即a 22-2a 2=0.因为a 2>0,所以a 2=2,所以a 2a 1=2,所以对n ∈N *,都有a n +1a n=2成立,所以数列{a n }的通项公式为a n =2n -1,n ∈N *. ………………………10分(3)由(2)可知S n =2n -1.因为S 1,S k -S 1,S t -S k 成等比数列,所以(S k -S 1)2=S 1(S t -S k ),即(2k -2)2=2t -2k , ………………………12分所以2t =(2k )2-32k +4,即2t -2=(2k -1)2-32k -2+1(*). 由于S k -S 1≠0,所以k ≠1,即k ≥2.当k =2时,2t =8,得t =3. ………………………14分当k ≥3时,由(*),得(2k -1)2-32k -2+1为奇数,所以t -2=0,即t =2,代入(*)得22k -2-32k -2=0,即2k =3,此时k 无正整数解. 综上,k =2,t =3. ………………………16分南京市2018届高三年级学情调研数学附加题参考答案及评分标准21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲 证明:连接OD ,因为DA =DC ,所以∠DAO =∠C .………………………2分在圆O 中,AO =DO ,所以∠DAO =∠ADO ,所以∠DOC =2∠DAO =2∠C .………………………5分因为CD 为圆O 的切线,所以∠ODC =90°,从而DOC +C =90°,即2C +C =90°,故∠C =30°, ………………………7分 所以OC =2OD =2OB ,所以CB =OB ,所以CA =3CB . ………………………10分B .选修4—2:矩阵与变换解:(1)根据逆矩阵公式,可得A -1=⎣⎢⎢⎡⎦⎥⎥⎤-2132-12. ………………………4分 (2)设曲线C 上任意一点P (x ,y )在矩阵A 对应的变换作用下得到点P(x,y),则⎣⎢⎡⎦⎥⎤x y =⎣⎡⎦⎤1234 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y ,所以⎩⎨⎧x =x +2y ,y =3x +4y .……………………8分因为(x ,y )在曲线C 上,所以6x 2-y 2=1,代入6(x +2y )2-(3x +4y )2=1,化简得8y 2-3x 2=1,DB CO (第21A 题)所以曲线C 的方程为8y 2-3x 2=1. ………………………10分C .选修4—4:坐标系与参数方程解:由直线l 的参数方程为⎩⎨⎧x =-1+t ,y =t,得直线l 的普通方程为x -y +1=0.………………………2分由圆C 的参数方程为⎩⎨⎧x =a +cos ,y =2a +sin ,得圆C 的普通方程为(x -a )2+(y -2a )2=1.………………………4分因为直线l 与圆C 相切,所以∣a -2a +1∣2=1, ………………………8分解得a =1±2.所以实数a 的值为1±2. ………………………10分 D .选修4—5:不等式选讲解:(1)当x <-1时,不等式可化为-x +2-x -1≥5,解得x ≤-2;……………………2分(2)当-1≤x ≤2时,不等式可化为-x +2+x +1≥5,此时不等式无解;……………4分 (3)当x >2时,不等式可化为x -2+x +1≥5,解得x ≥3; ……………………6分 所以原不等式的解集为(-∞,-2]∪[3,+∞). …………………………10分 【必做题】第22题、第23题,每题10分,共计20分. 22.(本小题满分10分)解:(1)以{→AB ,→AD ,→AP }为单位正交基底,建立如图所示的空间直角坐标系A -xyz . 因为AP =AB =AD =1,所以A (0,0,0),B (1,0,0),D (0,1,0),P (0,0,1). 设C (1,y ,0),则→PB =(1,0,-1),→CD =(-1,1-y ,0).…………………………2分因为直线PB 与CD 所成角大小为π3,所以|cos <→PB ,→CD >|=|→PB →CD ∣→PB ∣∣→CD ∣|=12, 即12×1+(1-y )2=12,解得y =2或y =0(舍),DPBA(第22题) x y z所以C (1,2,0),所以BC 的长为2. ………………………5分 (2)设平面PBD 的一个法向量为n 1=(x ,y ,z ).因为→PB =(1,0,-1),→PD =(0,1,-1), 则⎩⎪⎨⎪⎧→PB n 1=0,→PD n 1=0,即⎩⎨⎧x -z =0,y -z =0.令x =1,则y =1,z =1,所以n 1=(1,1,1). ………………………7分 因为平面P AD 的一个法向量为n 2=(1,0,0),所以cos <n 1,n 2>=n 1n 2∣n 1∣|n 2∣=33,所以,由图可知二面角B -PD -A 的余弦值为33. ………………………10分 23.(本小题满分10分)解:(1)两个球颜色不同的情况共有C 24⋅42=96(种). ………………………3分(2)随机变量X 所有可能的值为0,1,2,3.P (X =0)=4C 2496=14, ………………………5分 P (X =1)=3C 14⋅C 1396=38, P (X =2)=2C 14⋅C 1396=14, P (X =3)=C 14⋅C 1396=18.所以随机变量X 的概率分布列为:………………………8分所以E (X )=014+138+214+318=54. ………………………10分X 0 1 2 3 P1438 1418。
江苏省金陵中学2021届高三数学上学期期中

金陵中学2021—2021学年度高三数学第一学期期中考试试题考前须知:考生答题前请认真阅读考前须知及各题答案要求。
1.本试卷包含填空题〔第1题—第4题〕、解答题〔第15题—第20题〕两局部。
本试卷总分值160分,考试时间为120分钟。
2.答题前,请务必将自己的姓名、考试证号用书写黑色字的0.5毫米签字笔填写在试卷及答题卡上。
3.作答时必须用斗5写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位 置作答一律无效。
4.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚。
一、填空题:本大题共14小题,每题5分,共70分.不需要写出解答过程,把答案直接填在答题卡相应位置上.1.设集合M={x|0≤x -≤1},函数()1f x x =-的定义域为N ,那么M∩N= 。
2.复数z 满足〔1+2i 〕z=4+3i ,那么z= .3.函数y=x 2—2x (x∈[0,3]的值域是4.5cos 3a =。
且a∈〔一2π,0〕, 那么sin(a π-)= 。
5.在△ABC 中,3A=45°,B=75°,那么BC 等于 。
6.直线12y x b =+是曲线y=lnx(x>0)的 一条切线,那么实数b 的值是 。
7.一个算法的流程图如下图?假设输入的n 是100,那么输出值S 是 。
8.集合A=(x ,y 〕|x 一2y 一l=0},B={(x ,y)|ax-by+1=0},其中a ,b ∈{1,2,3,4,5,6},那么A ∩B=φ的概率为 .9.函数()sin()f x A x ωϕ=+(其中A>0,0ω>,||2πϕ<)的图象如下图,那么,f(0)= 。
10.3()f x x ax =-在区间[1,+∞〕上是单调增函数,那么实数a 的最大值是 。
11.不等式1||40x a x+-+>对于一切非零实数x 均成立,那么实数a 的取值范围是 。
12.向量1(1,1),(0,)5m n ==,设向量(cos ,sin )([0,]),()OA m OA n αααπ=∈⊥-且,那么tan α= 。
江苏省南京市金陵中学2023-2024学 年高三下学期期初学情调研测试数学试卷(含解析)

高三年级期初学情调研测试数学一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设向量,,则“”是“”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件2.若函数由下表给出,则函数的解析式可能是()012352.3 1.10.7 1.1 2.3 5.949.1A. B.C. D.3.已知集合,则中元素的个数为()A.1B.2C.3D.44.“中国剩余定理”又称“孙子定理”,1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲,1874年,英国数学家马西森指出此法符合1901年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”,“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到520这520个数中,能被3除余1且被4除余1的数从小到大的顺序排成一列,构成数列,则此数列的项数为()4.43 B.44 C.45 D.465.已知双曲线的光学性质:从双曲线的一个焦点出发的光线,经双曲线反射后,反射光线的反向延长线经过另一个焦点,如图所示,一镜面的轴截面是双曲线的一部分,是它的一条对称轴,是它的左焦点,光线从焦点发出,经过镜面上点,反射光线为,若,,则该双曲线的离心率为()A.2B.C.D.6.某单位春节共有四天假期,但每天都需要留一名员工值班,现从甲、乙、丙、丁、戊、己六人选出四人值班,每名员工最多值班一天,已知甲在第一天不值班,乙在第四天不值班,则值班安排共有()A.192种 B.252种 C.268种 D.360种7.已知函数,若,则实数的取值范围是()A. B. C. D.8.已知空间中13个不同的点构成的集合,满足时,均为正四面体,则集合中最多可以有()个点在同一平面内.A.9B.10C.11D.12二、多项选择题:本大题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分.9.下图为某商家1月至10月某商品的月销售量,则下列说法正确的是()A.这10个月的月销售量的极差为15B.这10个月的月销售量的第65位百分位数为33C.这10个月的月销售量的中位数为30D.前5个月的月销售量的方差大于后5个月的月销售量的方差10.设函数,若有且仅有三个零点,则下列说法中正确的是()A.有且仅有两个零点B.有一个或两个零点C.在区间上单调递减D.的取值范围是11.球面三角学是研究球面三角形的边、角关系的一门学科.如图,球的半径为,,,为球面上三点,劣弧的弧长记为,设表示以为圆心,且过,的圆,同理,圆,的劣弧,的弧长分别记为,,曲面(阴影部分)叫做曲面三角形,若,则称其为曲面等边三角形,线段,,与曲面围成的封闭几何体叫做球面三棱锥,记为球面.设,,,则下列结论正确的有()A.若平面是面积为的等边三角形,则B.若,则C.若,则球面的体积D.若平面为直角三角形,且,则三、填空题:本大题共3小题,每小题5分,共15分.12.设,是一个随机试验中的两个事件,若,,,则________.13.数学月考出了这样一道题:设,为椭圆上的两个动点,若直线上存在点,使得为直角,求实数的取值范围.小峰同学没有思路,于是求助数学老师,老师拍拍他的肩膀告诉他:从前,有个叫蒙日的数学家,发现椭圆的两条互相垂直的切线的交点所构成的轨迹是一个定圆.小峰顿悟,于是写出了答案:________.14.已知函数,若,且,恒有,则正实数的取值范围为________.四、解答题:本大题共5小题,共77分.15.(本小题满分13分)如图,一个质点在随即外力的作用下,从原点出发,随机移动次,每次等可能地向左或向右移动一个单位长度.次移动结束后,质点到达的位置的数字记为.(1)若,求质点又回到原点的概率;(2)若,求的分布列和的值.16.(本小题满分15分)如图,在中,,为外一点,,记,.(1)求的值;(2)若的面积为,的面积为,求的最大值.17.(本小题满分15分)如图,在四棱锥中,底面是直角梯形,,,,.(1)证明:平面;(2)已知,,,平面平面,若平面与平面的夹角的余弦值为,求.18.(本小题满分17分)已知椭圆:的上顶点为,离心率为.抛物线:截轴所得的线段长为的长半轴长.(1)求椭圆的方程;(2)过原点的直线与相较于,两点,直线,分别与交于,两点.①证明:直线与直线的斜率之积为定值;②记和的面积分别是,,求的最小值.19.(本小题满分17分)设函数的导函数为,若对任意恒成立,则称函数在区间上的“一阶有界函数”.(1)判断函数和是否为上的“一阶有界函数”,并说明理由;(2)若函数为上的“一阶有界函数”,且在上单调递增,设,为函数图像上相异的两点,直线的斜率为,试判断“”是否正确,并说明理由;(3)若函数为区间上的“一阶有界函数”,求的取值范围.参考答案1.【答案】B【解析】,则,,“”是“”的充分不必要条件,故选B.2.【答案】A【解析】由表格得出,,,为偶函数;,,,增长幅度变动较大,可知为指数型增长,故选A.3.【答案】C【解析】,,为奇数时,,,,,,,,…,故选C. 4.【答案】B【解析】由题意知,,,,故选B.5.【答案】C【解析】由双曲线光学性质得,反向延长线交于点,且点为右焦点,则,,,,故为等腰直角三角形,,,,,故选C.6.【答案】B【解析】若甲乙不值班,值班安排有种;若甲乙只有一人不值班,值班安排有种;若甲乙都值班,值班安排有种;共有252种,故选B.7.【答案】C【解析】若,,恒成立;若,,,即,,解得;综上,故选C.8.【答案】C【解析】已知,,,为正四面体,设最多可以有个点在平面内,其中在平面内,必然不在平面内,可在平面内,若在平面内,则必然不在平面内,可在平面内,故最多有11个点在平面内,故选C.9.【答案】AB【解析】由图知,月销售量最大值为40,最小值15,极差为15,故A正确;月销售量由小到大排:25,26,27,28,28,30,33,36,37,40,第65位百分位数为第7位33,故B正确;中位数为,故C错误;前5个月的月销售量比后5个月的月销售量波动更小,因此前5个月的月销售量的方差小于后5个月的月销售量的方差,故D错误;故选AB.10.【答案】ABD【解析】,,若有且仅有三个零点,则,则图像向上平移一个单位,有且仅有两个零点,故A正确;图像向下平移一个单位,有一个或两个零点,故B正确;,,故D正确;,,因为,则,,故C错误;故选ABD.11.【答案】BC【解析】对于A,若平面是面积为的等边三角形,则,则,则,故错误;对于B,若,则,,故正确;对于C,若,则,,点到平面的距离为,三棱锥的体积为,则球面的体积,故正确;对于D,若平面为直角三角形,且,则,由余弦定理得:取,,,,,故错误;故选BC.12.【答案】【解析】,,,,;故答案为.13.【答案】【解析】由题知,因为椭圆的两条互相垂直的切线的交点所构成的轨迹是一个定圆,所以,直线围成的矩形外接圆即为该定圆:.若直线上存在点使为直角,即,为椭圆切线时,该直线与该圆有交点,,解得,故答案为.14.【答案】【解析】若,且,恒有,令,则,,令,即在上单调递减,,,令,恒成立,在上单调递增,故,,令,,,,,,,即,故.15.【答案】(1);(2)见解析【解析】(1)由题知,2次移动后质点又回到原点,即其中有1次向左移动,有1次向右移动,故质点又回到原点的概率为;(2)由题知,可取,,,0,2,4,6,由对称性知,,,,即的分布列为0246.6.【答案】(1);(2)【解析】(1)在中,,在中,,因此;(2),,,当时,取到最大值. 17.【答案】(1)见解析;(2)【解析】(1)如图,连接交于点,连接;∵面是直角梯形∴,∵∴∵∴平面平面∴平面;(2)已知,,,在中,,∴∵平面平面平面平面∴平面如图,过点作面的垂线,垂线在平面内,以点为坐标原点,,,直线分别为,,轴建立空间直角坐标系,设,,∵,,∴,设平面法向量为,,取,;设平面法向量为,,取,,则平面与平面的夹角的余弦值为解得,,因为,故.18.【答案】(1);(2)①见解析;②【解析】(1)抛物线:截轴所得的线段长为的长半轴长,令,,,椭圆离心率为,,,故椭圆的方程;(2)①由题知,直线的斜率必然存在,设方程,,,与联立方程:,,,,故直线与直线的斜率之积为定值;②由①得,显然直线,斜率存在且不为0,设:,联立:,,联立:,,,同理:,,;则,故当且仅当时等号成立,即最小值为.19.【答案】(1)见解析;(2)见解析;(3)【解析】(1),在上恒成立,故是上的“一阶有界函数”;,,,,故不是上的“一阶有界函数”;(2)若函数为上的“一阶有界函数”,则,在上单调递增,,,令,,在上单调递减,设,,其中,故;在上单调递增,,,故;(3)函数,若为区间上的“一阶有界函数”,则,其中,,,,,,则.令,,其中,,在区间上单调递增,故在区间上单调递增,,,所以存在,使,,,,,在区间单调递增,在区间单调递减,即,对称轴为,在区间上单调递减,恒成立,,故.。
2021届江苏省南京市金陵中学高三上学期学情调研测试(一)数学试题含答案

金陵中学2021届高三年级学情调研测试(一)数学试卷命题人:审核:一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填写在答题卡相应位置上.1. 已知集合A ={x |x 2-3x -4>0},B ={x |ln x >0},则(∁R A )∩B = ( )A .B .(0,4]C .(1,4]D .(4,+∞)2. 设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件3. 下列命题中正确的是 ( )A .若a >b ,则ac >bcB .若a >b ,c >d ,则a -c >b -dC .若ab >0,a >b ,则1a <1bD .若a >b ,c >d ,则a c >bd4. 已知正项等比数列{a n }的前n 项和为S n ,若a 4=18,S 3-a 1=34,则S 5= ( )A .3132B .3116C .318D .3145. (x -1)(2x +1)10的展开式中x 10的系数为 ( )A .-512B .1024C .4096D .51206. 某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布N (105,σ2)(σ>0),试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的15,则此次数学考试成绩在90分到105分之间的人数约为( ) A .150B .200C .300D .4007. 如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=6,则此抛物线方程为 ( ) A .y 2=9x B .y 2=6x C .y 2=3x D .y 2=3x8. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为P ,直线l :4x -3y =0与椭圆C 相交于A ,B 两点.若|AF |+|BF |=6,点P 到直线l 的距离不小于65,则椭圆离心率的取值范围是 ( ) A .(0,59]B .(0,32]C .(0,53]D .(13,32]二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,部分选对的得3分,有选错的得0分.9. 若函数f (x )=sin(2x -π3)与g (x )=cos(x +π4)都在区间(a ,b )(0<a <b <π)上单调递减,则b -a 的可能取值为 ( ) A .π6B .π3C .π2D .5π1210. 下列说法中正确的是 ( )A .设随机变量X 服从二项分布B ⎝⎛⎭⎫6,12,则P (X =3)=516B .已知随机变量X 服从正态分布N (2,σ2)且P (X <4)=0.9,则P (0<X <2)=0.4C .E (2X +3)=2E (X )+3;D (2X +3)=2D (X )+3D .已知随机变量ξ满足P (ξ=0)=x ,P (ξ=1)=1-x ,若0<x <12,则E (ξ)随着x 的增大而减小,D (ξ)随着x 的增大而增大11. 下列四个命题中,是真命题的是 ( )A .∀x ∈R ,且x ≠0,x +1x ≥2 B .若x >0,y >0,则x 2+y 22≥2xy x +yC .函数f (x )=x +2-x 2值域为[-2,2]D .已知函数f (x )=⎪⎪⎪⎪x +9x +a -a 在区间[1,9]上的最大值是10,则实数a 的取值范围为[-8,+∞)12. 意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是 ( ) A .a 6=8B .S 7=33C .a 1+a 3+a 5+…+a 2019=a 2022D .a 21+a 22+…+a 22019a 2019=a 2020三、填空题:本题共4小题,每小题5分,共20分.13. 已知向量→a =(2,-6),→b =(3,m ),若|→a +→b |=|→a -→b |,则m =▲________.14. 三月份抗疫期间,我校团委安排高一学生2人、高二学生2人、高三学生1人参加A 、B 、C 三个社区志愿点的活动,要求每个活动点至少1人,最多2人参与,同一个年级的学生不去同一个志愿点,高三学生不去A 志愿点,则不同的安排方法有▲________种(用数字作答).15. 在直三棱柱ABC -A 1B 1C 1内有一个与各个面均相切的球.若AB ⊥BC ,AB =6,BC =8,则AA 1的长度为▲________.16. 已知函数f (x )=⎩⎪⎨⎪⎧k (1-2x),x <0,x 2-2k ,x ≥0,若函数g (x )=f (-x )+f (x )有且仅有四个不同的零点,则实数k的取值范围是▲________.四、解答题:本题共6小题,第17题10分,其余每小题12分,共70分.17. 现给出两个条件:①2c -3b =2a cos B ,②(2b -3c )cos A =3a cos C ,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,________. (1)求A ;(2)若a =3-1,求△ABC 周长的最大值.18. 已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S n 2=a n (S n -12).(1)求S n 的表达式;(2)设b n =S n2n +1,求数列{b n }的前n 项和T n .19. 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.20. 成都市现在已是拥有1 400多万人口的城市,机动车保有量已达450多万辆,成年人中约40%拥有机动车驾驶证.为了解本市成年人的交通安全意识情况,某中学的同学利用国庆假期进行了一次全市成年人安全知识抽样调查.先根据是否拥有驾驶证,用分层抽样的方法抽取了200名成年人,然后对这200人进行问卷调查.这200人所得的分数都分布在[30,100]范围内,规定分数在80以上(含80)的为“具有很强安全意识”,所得分数的频率分布直方图如图所示.拥有驾驶证 没有驾驶证 总计具有很强安全意识 不具有很强安全意识58 总计200驾驶证有关?(2)将上述调查所得的频率视为概率,现从全市成年人中随机抽取4人,记“具有很强安全意识”的人数为X ,求X 的分布列及数学期望.附表及公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .21. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),点(1,32)在椭圆C上,点A (-3c ,0)满足以AF 2为直径的圆过椭圆的上顶点B . (1)求椭圆C 的方程;(2)已知直线过右焦点F 2且与椭圆C 交于M ,N 两点,在x 轴上是否存在点P (t ,0)使得PM →·PN →为定值?如果存在,求出点P 的坐标;如果不存在,说明理由.22. 已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ). (1)求函数f (x )的极小值;(2)若g (x )=xf '(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数.金陵中学高三年级学情调研测试(一)数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填写在答题卡相应位置上.1. 已知集合A ={x |x 2-3x -4>0},B ={x |ln x >0},则(∁R A )∩B =( )A .B .(0,4]C .(1,4]D .(4,+∞)答案:C2. 设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案:C3. 下列命题中正确的是( )A .若a >b ,则ac >bcB .若a >b ,c >d ,则a -c >b -dC .若ab >0,a >b ,则1a <1bD .若a >b ,c >d ,则a c >bd答案:C4. 已知正项等比数列{a n }的前n 项和为S n ,若a 4=18,S 3-a 1=34,则S 5=( )A .3132B .3116C .318D .314答案:B5. (x -1)(2x +1)10的展开式中x 10的系数为( )A .-512B .1024C .4096D .5120答案:C6. 某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布N (105,σ2)(σ>0),试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的15,则此次数学考试成绩在90分到105分之间的人数约为( ) A .150B .200C .300D .400答案:C7. 如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=6,则此抛物线方程为( ) A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x答案:B8. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为P ,直线l :4x -3y =0与椭圆C 相交于A ,B 两点.若|AF |+|BF |=6,点P 到直线l 的距离不小于65,则椭圆离心率的取值范围是( ) A .(0,59]B .(0,32]C .(0,53]D .(13,32]答案:C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,部分选对的得3分,有选错的得0分.9. 若函数f (x )=sin(2x -π3)与g (x )=cos(x +π4)都在区间(a ,b )(0<a <b <π)上单调递减,则b -a 的可能取值为( ) A .π6B .π3C .π2D .5π12答案:AB10. 下列说法中正确的是( )A .设随机变量X 服从二项分布B ⎝⎛⎭⎫6,12,则P (X =3)=516B .已知随机变量X 服从正态分布N (2,σ2)且P (X <4)=0.9,则P (0<X <2)=0.4C .E (2X +3)=2E (X )+3;D (2X +3)=2D (X )+3D .已知随机变量ξ满足P (ξ=0)=x ,P (ξ=1)=1-x ,若0<x <12,则E (ξ)随着x 的增大而减小,D (ξ)随着x 的增大而增大 答案:ABD11. 下列四个命题中,是真命题的是( )A .∀x ∈R ,且x ≠0,x +1x ≥2 B .若x >0,y >0,则x 2+y 22≥2xy x +yC .函数f (x )=x +2-x 2值域为[-2,2]D .已知函数f (x )=⎪⎪⎪⎪x +9x +a -a 在区间[1,9]上的最大值是10,则实数a 的取值范围为[-8,+∞) 答案:BCD12. 意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 6=8B .S 7=33C .a 1+a 3+a 5+…+a 2019=a 2022D .a 21+a 22+…+a 22019a 2019=a 2020 答案:ABD三、填空题:本题共4小题,每小题5分,共20分.13. 已知向量→a =(2,-6),→b =(3,m ),若|→a +→b |=|→a -→b |,则m =▲________. 答案:114. 三月份抗疫期间,我校团委安排高一学生2人、高二学生2人、高三学生1人参加A 、B 、C 三个社区志愿点的活动,要求每个活动点至少1人,最多2人参与,同一个年级的学生不去同一个志愿点,高三学生不去A 志愿点,则不同的安排方法有▲________种(用数字作答). 答案:4015. 在直三棱柱ABC -A 1B 1C 1内有一个与各个面均相切的球.若AB ⊥BC ,AB =6,BC =8,则AA 1的长度为▲________. 答案:416. 已知函数f (x )=⎩⎪⎨⎪⎧k (1-2x),x <0,x 2-2k ,x ≥0,若函数g (x )=f (-x )+f (x )有且仅有四个不同的零点,则实数k的取值范围是▲________. 答案:(27,+∞)四、解答题:本题共6小题,第17题10分,其余每小题12分,共70分.17. 现给出两个条件:①2c -3b =2a cos B ,②(2b -3c )cos A =3a cos C ,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,________. (1)求A ;(2)若a =3-1,求△ABC 周长的最大值.解析:若选择条件①2c -3b =2a cos B .(1)由余弦定理可得2c -3b =2a cos B =2a ·a 2+c 2-b 22ac ,整理得c 2+b 2-a 2=3bc ,………2分可得cos A =b 2+c 2-a 22bc =3bc 2bc =32.…………………………………………………3分 因为A ∈(0,π),所以A =π6. …………………………………………………………5分 (2)由余弦定理a 2=b 2+c 2-2bc cos A ,得(3-1)2=b 2+c 2-2bc ·32,………6分 即4-23=b 2+c 2-3bc =(b +c )2-(2+3)bc ,亦即(2+3)bc =(b +c )2-(4-23), 因为bc ≤(b +c )24,当且仅当b =c 时取等号, 所以(b +c )2-(4-23)≤(2+3)×(b +c )24,解得b +c ≤22,…………………………………………………………8分 当且仅当b =c =2时取等号. 所以a +b +c ≤22+3-1,即△ABC 周长的最大值为22+3-1.…………………………………………………10分 若选择条件②(2b -3c )cos A =3a cos C . (1)由条件得2b cos A =3a cos C +3c cos A ,由正弦定理得2sin B cos A =3(sin A cos C +sin C cos A )=3sin(A +C )=3sin B .………2分 因为sin B ≠0,所以cos A =32,…………………………………………………3分 因为A ∈(0,π),所以A =π6. (2)同上18. 已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S n 2=a n (S n -12).(1)求S n 的表达式;(2)设b n =S n2n +1,求数列{b n }的前n 项和T n . 解析:(1)因为S n 2=a n (S n -12),当n ≥2时,S n 2=(S n -S n -1)(S n -12),即2S n -1S n =S n -1-S n .①…………2分 由题意得S n -1·S n ≠0,所以1S n -1S n -1=2, 即数列{1S n }是首项为1S 1=1a 1=1,公差为2的等差数列.…………5分所以1S n =1+2(n -1)=2n -1,得S n =12n -1. …………………………………………7分(2)易得b n =S n 2n +1=1(2n -1)(2n +1)……………………………8分 =12(12n -1-12n +1),……………………………10分所以T n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12(1-12n +1)=n2n +1. …………………………………12分19. 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.(1)证明:取BP 的中点T ,连接AT ,TN .由N 为PC 的中点,知TN ∥BC ,TN =12BC =2.又AD ∥BC ,AM =23AD =2,所以TN _∥AM ,因此四边形AMNT 为平行四边形,于是MN ∥AT . …………………………………3分因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB . …………………………………5分(2)取BC 的中点E ,连接AE .由AB =AC ,得AE ⊥BC ,因为AD ∥BC ,所以AE ⊥AD ,AE =AB 2-BE 2=AB 2-⎝⎛⎭⎫BC 22=5.以A 为原点,AE ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系A -xyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎫52,1,2,PM →=(0,2,-4),PN →=⎝⎛⎭⎫52,1,-2,AN →=⎝⎛⎭⎫52,1,2.…………………………………7分设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).……………………………………………………………………9分于是|cos <n ,AN →>|=|n ·AN →||n |·|AN →|=8525.…………………………………11分设AN 与平面PMN 所成角为θ,则sin θ=8525,即直线AN 与平面PMN 所成角的正弦值为8525. …………………………………12分20. 成都市现在已是拥有1 400多万人口的城市,机动车保有量已达450多万辆,成年人中约40%拥有机动车驾驶证.为了解本市成年人的交通安全意识情况,某中学的同学利用国庆假期进行了一次全市成年人安全知识抽样调查.先根据是否拥有驾驶证,用分层抽样的方法抽取了200名成年人,然后对这200人进行问卷调查.这200人所得的分数都分布在[30,100]范围内,规定分数在80以上(含80)的为“具有很强安全意识”,所得分数的频率分布直方图如图所示.拥有驾驶证 没有驾驶证 总计具有很强安全意识 不具有很强安全意识58 总计200(1)补全上面的驾驶证有关?(2)将上述调查所得的频率视为概率,现从全市成年人中随机抽取4人,记“具有很强安全意识”的人数为X ,求X 的分布列及数学期望.附表及公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解:(1)200人中拥有驾驶证的占40%,有80人,没有驾驶证的有120人;具有很强安全意识的占20%,有40人,不具有很强安全意识的有160人.补全的2×2列联表如表所示:计算得K 2=200×(22×102-18×58)240×80×160×120=7516=4.6875>3.841, 所以有超过95%的把握认为“具有很强安全意识”与拥有驾驶证有关. …………………………………5分(2)由频率分布直方图中数据可知,抽到的每个成年人“具有很强安全意识”的概率为15,所以X =0,1,2,3,4,且X ~B ⎝⎛⎭⎫4,15.于是P (X =k )=C k 4·⎝⎛⎭⎫15k ·⎝⎛⎭⎫454-k(k =0,1,2,3,4),X 的分布列为0分 所以E (X )=4×15=45.答:X 的数学期望为45. …………………………………12分 21. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),点(1,32)在椭圆C上,点A (-3c ,0)满足以AF 2为直径的圆过椭圆的上顶点B . (1)求椭圆C 的方程;(2)已知直线过右焦点F 2且与椭圆C 交于M ,N 两点,在x 轴上是否存在点P (t ,0)使得PM →·PN →为定值?如果存在,求出点P 的坐标;如果不存在,说明理由. 解析:(1)因为点(1,32)在椭圆C 上,所以1a 2+94b 2=1.又点A (-3c ,0)满足以AF 2为直径的圆过椭圆的上顶点B ,所以AB ⊥BF 2,即AB →·BF 2→=(3c ,b )·(c ,-b )=0,即b 2=3c 2.又a 2=b 2+c 2,解得a 2=4,b 2=3.所以椭圆的方程为x 24+y 23=1. …………………………………4分 (2)易得右焦点F 2(1,0),假设存在点P (t ,0)满足要求.①当直线MN 的斜率不为0时,设直线MM 的方程为x =my +1,设M (x 1,y 1),N (x 2,y 2).联立⎩⎨⎧x =my +1,3x 2+4y 2=1,整理可得(4+3m 2)y 2+6my -9=0,则y 1+y 2=-6m 4+3m 2,y 1·y 2=-94+3m 2,所以x 1+x 2=m (y 1+y 2)+2=84+3m 2,x 1x 2=m 2y 1y 2+m (y 1+y 2)+1=-9m 24+3m 2+-6m 24+3m 2+1=4-12m 24+3m 2.…………………………………6分因为PM →·PN →=(x 1-t ,y 1)·(x 2-t ,y 2)=x 1x 2-t (x 1+x 2)+t 2+y 1y 2=4-12m 24+3m 2-8t 4+3m 2+t 2-94+3m 2 =t 2(4+3m 2)-12m 2-8t -54+3m 2=3m 2(t 2-4)+4t 2-8t -54+3m 2.…………………………………9分 要使PM →·PN →为定值,则t 2-41=4t 2-8t -54,解得t =118,此时PM →·PN →=-13564为定值. …………………………………11分②当直线MM 的斜率为0时,则M (-2,0),N (2,0),P (118,0),此时PM →·PN →=(-2-118,0)·(2-118,0)=-13564. …………………………………12分综上,所以存在P (118,0),使PM →·PN →为定值.22. 已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ). (1)求函数f (x )的极小值;(2)若g (x )=xf'(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数.解析:(1)求导得f'(x )=3ax 2-6x =3x (ax -2),令f'(x )=0,得x 1=0或x 2=2a .…………………………………1分因为a >0,所以x 1<x 2,列表如下:所以f (x )的极小值为f ⎝⎛⎭⎫2a =8a 2-12a 2+1=1-4a 2.…………………………………3分(2)g (x )=xf'(x )=3ax 3-6x 2.因为存在x ∈[1,2]使h (x )=f (x ),所以f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解,即不等式2a ≤1x 3+3x 在x ∈[1,2]上有解.………………………5分设y =1x 3+3x =3x 2+1x 3,x ∈[1,2].因为y'=-3x 2-3x 4<0对x ∈[1,2]恒成立,所以y =1x 3+3x 在[1,2]上递减,故当x =1时,y max=4.所以2a ≤4,即a ≤2,故a 的取值范围为(-∞,2].…………………………………7分(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎝⎛⎭⎫2a =1-4a 2.①当1-4a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,所以h (x )=max{f (x ),g (x )}≥f (x )>0,因此h (x )在(0,+∞)上无零点.…………………………………8分②当1-4a 2=0,即a =2时,f (x )min =f (1)=0,又g (1)=0,所以h (x )=max{f (x ),g (x )}在(0,+∞)上有且仅有一个零点.…………………………………9分③当1-4a 2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x ,0<x <1. 因为φ'(x )=3ax 2-6x -1x <6x (x -1)-1x <0,所以φ(x )在(0,1)上单调递减.又φ(1)=a -2<0,φ⎝⎛⎭⎫1e =a e 3+2e 2-3e 2>0,所以存在唯一的x 0∈⎝⎛⎭⎫1e ,1,使得φ(x 0)=0. (i )当0<x ≤x 0时,因为φ(x )=f (x )-g (x )≥φ(x 0)=0,所以h (x )=f (x )且h (x )为减函数. 又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln1=0,f (0)=1>0,所以h (x )在(0,x 0)上有一个零点. (ii )当x 0<x <1时,因为φ(x )=f (x )-g (x )<φ(x 0)=0,所以h (x )=g (x )且h (x )为增函数.因为g(1)=0,又h(x)=max{f(x),g(x)}≥g(x)=ln x>0在x>1上恒成立,所以h(x)在(x0,+∞)上有且仅有一个零点.从而h(x)=max{f(x),g(x)}在(0,+∞)上有两个零点.综上,当0<a<2时,h(x)有两个零点;当a=2时,h(x)有一个零点;当a>2时,h(x)无零点.…………………………………12分。
2021届江苏省南京市金陵中学高三上学期8月学情调研测试数学试题(解析版)

2021届江苏省南京市金陵中学高三上学期8月学情调研测试数学试题一、单选题1.已知集合{}2340A x x x =-->,{}ln 0B x x =>,则()RA B =( )A .∅B .(]0,4C .(]1,4 D .()4,+∞【答案】C【解析】先解出集合A 、B ,再求解出集合A 的补集,根据集合交集的运算即可求解. 【详解】由题意得{1A x x =<-或}4x > ,{}1B x x =>,所以{}14RA x x =-≤≤,()(]1,4RA B =.故选:C 【点睛】本题主要考查了集合补集、交集的运算,属于简单题,计算中可以借助数轴法求解集合的补集和集合间的交集.2.设,R a b ∈,i 是虚数单位,则“0ab =”是“复数iba +为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【解析】0ab =即,a b 中至少有一个是零;复数ba a bi i+=-为纯虚数,故0,0a b =≠为小范围,故为必要不充分条件.3.下列命题中正确的是( ) A .若a b >,则ac bc > B .若a b >,c d >,则a c b d ->-C .若0ab >,a b >,则11a b< D .若a b >,c d >,则a b c d> 【答案】C【解析】分析:根据不等式性质逐一排除即可.详解:A. 若a b >,则ac bc >,当c 取负值时就不成立,故错误;B. 若a b >,c d >,则a c b d ->-,例如a=3,b=1,c=2,d=-2显然此时a c b d -<-,故错误;D ,若a b >,c d >,则a b c d >,例如a=3,c=-1,b=-1,d=-2,此时a bc d<,故错误,所以综合得选C.点睛:考查不等式的简单性质,此类题型举例子排除法比较适合,属于基础题. 4.已知正项等比数列{a n }的前n 项和为S n ,若43113,84a S a =-=,则S 5=( ) A .3132B .3116C .318D .314【答案】B【解析】利用正项等比数列{a n }的前n 项和公式,通项公式列出方程组,求出a 1=1,q =12,由此能求出S 5的值. 【详解】解:正项等比数列{a n }的前n 项和为S n ,43113,84a S a =-=, ∴()31311181314a q a q a q ⎧=⎪⎪⎨-⎪-=⎪-⎩,解得a 1=1,q =12, ∴S 5=()5111a q q --=1132112--=3116.故选:B . 【点评】本题考查等比数列的前n 项和的求法,考查等比数列的性质等基础知识,考查运算求解能力,属于基础题.5.()101(21)x x -+的展开式中10x 的系数为( )A .512-B .1024C .4096D .5120【答案】C【解析】先将二项式变形为1010(21)(21)x x x +-+,分别写出两个二项式展开式的通项,并分别令x 的指数为10,求出两个参数的值,代入展开式之后将两个系数相减可得出答案. 【详解】()1010101(21)(21)(21)x x x x x -+=+-+,二项展开式10(21)x x +的通项为1010111010(2)2rrrr r xC x C x ---⋅=⋅⋅,二项展开式10(21)x +的通项为1010101010(2)2k kk k k C x C x ---⋅=⋅⋅,则111011010r r k -=⎧=⎨-=⎩,解得,0k =,所以,展开式中10x 的系数为19010101022512010244096C C ⋅-⋅=-=.故选C . 【点睛】本题考查了利用二项式定理求指定项的系数,考查二项式定理的应用,同时也考查了计算能力,属于中等题.6.某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布2(105,)(0)N σσ>,试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的15,则此次数学考试成绩在90分到105分之间的人数约为( ) A .150 B .200C .300D .400【答案】C【解析】求出()39010510P X ≤≤=,即可求出此次数学考试成绩在90分到105分之间的人数. 【详解】∵()()1901205P X P X ≤=≥=,()2390120155P X ≤≤=-=, 所以()39010510P X ≤≤=, 所以此次数学考试成绩在90分到105分之间的人数约为3100030010⨯=. 故选C . 【点睛】本小题主要考查正态分布曲线的特点及曲线所表示的意义等基础知识,考查运算求解能力,考查数形结合思想.属于基础题.7.如图,过抛物线22y px =(0p >)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若2BC BF =,且6AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x =D .23y x =【答案】B【解析】分别过A ,B 作准线的垂线,交准线于E ,D ,设|BF |=a ,运用抛物线的定义和直角三角形的性质,求得p ,可得所求抛物线的方程. 【详解】如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设BF a =, 则由已知得2BC a =,由抛物线定义得BD a =,故30BCD ∠=︒.在Rt ACE 中,因为6AE AF ==,63AC a =+,2AE AC =, 所以6312a +=,得2a =,36FC a ==,所以132p FG FC ===, 因此抛物线方程为26y x =. 故选:B 【点睛】本题考查抛物线的定义和方程、性质,以及直角三角形的性质,考查方程思想和数形结合思想,属于中档题.8.已知椭圆C :22221x y a b+=(0a b >>)的右焦点为F ,短轴的一个端点为P ,直线l :430x y -=与椭圆C 相交于A ,B 两点.若6AF BF +=,点P 到直线l 的距离不小于65,则椭圆离心率的取值范围是( ) A .50,9⎛⎤⎥⎝⎦B .3⎛ ⎝⎦C .5⎛ ⎝⎦D .133⎛⎤ ⎥ ⎝⎦【答案】C【解析】设椭圆的左焦点为F ',根据双曲线的定义,求得3a =,再由点P 到直线l 的距离不小于65,求得2b ≥,得到213b a≤<,进而求得离心率的范围,得到答案. 【详解】设椭圆的左焦点为F ',根据椭圆的对称性可得AF BF '=,BF AF '=, 所以62AF AF BF AF a '+=+==,解得3a =,因为点P 到直线l 的距离不小于65,所以()226543≥+-,解得2b ≥, 又由b a <,所以23b ≤<,故213ba≤<, 所以离心率22510,c b e a a ⎛⎤==-∈ ⎥ ⎝⎦. 故选:C.【点睛】本题考查了椭圆的定义,以及椭圆的几何性质——离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程,即可得e 的值(范围).二、多选题9.若函数()sin 23πf x x ⎛⎫=-⎪⎝⎭与()cos 4g x x π⎛⎫=+ ⎪⎝⎭都在区间(),a b (0a b π<<<)上单调递减,则b a -的可能取值为( ) A .6πB .3π C .2π D .512π 【答案】AB【解析】先求()f x 在()0,π上的单调递减区间,再求()g x 在()0,π上的单调递减区间,再求交集即可得()f x 和()g x 两个函数的递减区间,可得b a -的最大值,进而可得b a -的可能取值.【详解】当()0,x π∈时,52,333x πππ⎛⎫-∈- ⎪⎝⎭,所以当32,322x πππ⎛⎫-∈ ⎪⎝⎭时,即511,1212x ππ⎛⎫∈ ⎪⎝⎭()f x 单调递减,即函数()sin 23πf x x ⎛⎫=- ⎪⎝⎭在511,1212ππ⎛⎫⎪⎝⎭上单调递减,当()0,x π∈时,,44x πππ⎛⎫+∈ ⎪⎝⎭,即30,4x π⎛⎫∈ ⎪⎝⎭时,()g x 单调递减, 因为30,451153,,1212124πππππ⎛⎫= ⎪⎝⎛⎭⎫⎛⎫⋂⎪⎪⎝⎭⎝⎭, 所以,53124a b ππ≤<≤ 所以354123b a πππ-≤-=,所以b a -可能为6π或3π, 故选:AB 【点睛】本题主要考查了三角函数的单调性,属于中档题. 10.下列说法中正确的是( ) A .设随机变量X 服从二项分布16,2B ⎛⎫ ⎪⎝⎭,则()5316P X == B .已知随机变量X 服从正态分布()22,N σ且()40.9P X <=,则()020.4P X <<= C .()()2323E X E X +=+;()()2323D X D X +=+ D .已知随机变量ξ满足()0P x ξ==,()11P x ξ==-,若102x <<,则()E ξ随着x 的增大而减小,()D ξ随着x 的增大而增大 【答案】ABD【解析】对于选项,,A B D 都可以通过计算证明它们是正确的;对于选项,C 根据方差的性质,即可判断选项C . 【详解】对于选项,A 设随机变量16,2XB ⎛⎫ ⎪⎝⎭,则()3336115312216P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以选项A 正确; 对于选项,B 因为随机变量()22,N ξσ,所以正态曲线的对称轴是2x =,因为()40.9P X <=,所以(0)0.1P X <=, 所以(02)0.4P X <<=,所以选项B 正确; 对于选项,C ()()2323E X E X +=+,()()234D X D X +=,故选项C 不正确;对于选项,D 由题意可知,()1E x ξ=-,()()21D x x x x ξ=-=-+,由一次函数和二次函数的性质知, 当102x <<时,()E ξ随着x 的增大而减小, ()D ξ随着x 的增大而增大,故选项D 正确.故选:ABD . 【点睛】本题主要考查二项分布和正态分布的应用,考查期望和方差的计算及其性质,意在考查学生对这些知识的理解掌握水平.11.下列四个命题中,是真命题的是( ) A .x ∀∈R ,且0x ≠,12x x+≥B .若0x >,0y >,则2xyx y≥+C .函数()f x x =值域为⎡⎤⎣⎦D .已知函数()9f x x a a x=++-在区间[]1,9上的最大值是10,则实数a 的取值范围为[)8,-+∞ 【答案】BCD【解析】结合基本不等式的条件及基本不等式可以判断A ,B ,结合三角换元及三角函数的性质可判断C ,结合含绝对值函数的图像变换可检验D ,即可判断. 【详解】对于A ,x ∀∈R ,且0x ≠,12x x+≥对0x <时不成立; 对于B ,若0x >,0y >,则()()22222248x yx y xy xy x y ++≥⋅=,化为2xyx y≥+,当且仅当0x y =>时取等号,故B 正确; 对于C,令x θ=,[]0,θπ∈,则()2sin 4f x x πθθθ⎛⎫=+=+=+ ⎪⎝⎭,由[]0,θπ∈,得5,444πππθ⎡⎤+∈⎢⎥⎣⎦,()2sin 24f x πθ⎛⎫⎡⎤=+∈ ⎪⎣⎦⎝⎭;对于D ,当[]1,9x ∈,[]96,10x x +∈,令[]96,10x t x+=∈,转化为y t a a =+-在[]6,10t ∈有最大值是10.①10a -≥,当6t =时,max 62610y a a a =+-=--=,得8a =-(舍去). ②6a -≤时,当10t =时,max 1010y a a =+-=恒成立.③610a <-<,{}max max 26,10y a =--,此时只需2610a --≤,得86a -≤<-. 综上,8a ≥-,故D 正确. 故选:BCD 【点睛】本题以判断命题真假为载体,主要考查了函数,不等式的综合应用,属于中档题. 12.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 【答案】ABCD【解析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =- 2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换.三、填空题13.已知向量()2,6a =-,()3,b m =,若a b a b +=-,则m =______. 【答案】1【解析】根据向量加法和减法的坐标运算,先分别求得a b +与a b -,再结合向量的模长公式即可求得m 的值. 【详解】向量()2,6a =-,()3,b m =则()5,6a b m +=-+,()1,6a b m -=---则25a b +=+=()1a b -=-=因为a b a b +=-=化简可得12611237m m -+=+ 解得1m = 故答案为: 1 【点睛】本题考查了向量坐标加法和减法的运算,向量模长的求法,属于基础题.14.某学校高一学生2人,高二学生2人,高三学生1人,参加A 、B 、C 三个志愿点的活动.每个活动点至少1人,最多2人参与,要求同年级学生不去同一活动点,高三学生不去A 活动点,则不同的安排方法有_____种.(用数字作答) 【答案】40【解析】以高三学生是否单独去志援点分为两类,每一类中先安排高三学生,再安排高一、高二学生,由乘法原理算出两类安排方法,相加即可. 【详解】若高三学生单独去志愿点,则有1222228C A A =种,若高三学生与其它年级学生合去志愿点,按先分组再分到志愿点的思路,有11214222C A C C =32种,则共有83240+=种安排方法. 故答案为:40. 【点睛】本题考查分类计数原理的运用,以高三学生是否单独去志愿点确定分类的方法,再逐级安排,考查乘法原理,属于中档题.15.在直三棱柱111ABC A B C -内有一个与各个面均相切的球.若AB BC ⊥,6AB =,8BC =,则1AA 的长度为______.【答案】4【解析】求出△ABC 内切圆的半径,根据球是三棱柱的内切球,求出其半径,从而求出AA 1的长度即可. 【详解】由AB BC ⊥,6AB =,8BC =,得10AC =. 设底面Rt ABC △的内切圆的半径为r ,则()1168681022r ⨯⨯=⨯++⋅,得2r .因为球与三个侧面相切,所以内切球的半径也为2.又该球也与直三棱柱的上、下底面相切,所以124AA r ==. 故答案为:4 【点睛】本题考查了三棱柱的内切球,考查三角形内切圆以及直三棱柱问题,是一道常规题.16.已知函数22(1),0()2,0k x f x x x k x ⎧-<⎪=⎨⎪-≥⎩,若函数()()()g x f x f x =-+有且仅有四个不同的零点,则实数k 的取值范围是_______. 【答案】()27,+∞【解析】根据题意可求得222,0()4,02,0kx k x x g x k x k x k x x ⎧+->⎪⎪=-=⎨⎪⎪--<⎩,再分0,0,0k k k =<>三种情况求函数的单调性,进而根据零点存在性定理求出函数的最小值求解不等式即可. 【详解】由题, ()22212,0()22,0221,0k x k x x g x k k x x k k x x ⎧⎛⎫++-> ⎪⎪⎝⎭⎪⎪=--=⎨⎪⎛⎫⎪--+-< ⎪⎪⎝⎭⎩,即222,0()4,02,0kx k x x g x k x k x k x x ⎧+->⎪⎪=-=⎨⎪⎪--<⎩,当k =0时,原函数有且只有一个零点,不符题意,故k ≠0, 观察解析式,可知函数()g x 有且仅有四个不同的零点, 可转化为22(),0kg x x k x x=+->有且仅有两个不同的零点, 当k <0,函数()g x 在(0,+∞)单调递增,最多一个零点,不符题意,舍;当k >0,322()(),0x k g x x x-'=>, 令()0g x '=有13x k =,故要使()g x 在(0,+∞)有且仅有两个不同的零点, 则1233min 132()()0k g x g k k k k==+-<,因为0k >,故213333k k k <⇒<,解得k >27,综上所述,实数k 的取值范围是(27,+∞).故答案为:(27,+∞) 【点睛】本题主要考查了根据分段函数的零点个数求解参数范围问题,需要根据函数的性质求出单调性以及最值,进而根据零点存在性定理列式求解.属于中档题.四、解答题17.现给出两个条件:①22cos c a B =,②()2cos cos b A C =,从中选出一个条件补充在下面的问题中,并以此为依据求解问题. 在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,______.(1)求A ;(2)若31a ,求ABC 周长的最大值.【答案】(1)6π;(2)1. 【解析】若选条件①,(1)由余弦定理对2c =2a cos B ,化简可得c 2+b 2﹣a2=,再利用余弦定理可求出A ;(2)由余弦定理可得1)2=b 2+c 2﹣2bc用基本不等式可得b c +≤△ABC周长的最大值;若选条件②,(1)由(2b)cos A =cos C ,结合正弦定理化简可得2sin B cos A=B,从而可求出A ;(2)由余弦定理可得1)2=b 2+c 2﹣2bc 用基本不等式可得b c +≤△ABC 周长的最大值; 【详解】若选择条件①22cos c a B =.(1)由余弦定理可得22222cos 22a c b c a B a ac +-==⋅,整理得222c b a +-=,可得222cos 222b c A bc bc a +===-. 因为()0,A π∈,所以6A π=.(2)由余弦定理2222cos a b c bc A =+-,得)222122b c bc =+-⋅,即()(22242b c b c bc -=+=+-+,亦即(()(224bc b c =+--,因为()24b c bc +≤,当且仅当b c =时取等号,所以()((()22424b c b c ++--≤⨯,解得b c +≤当且仅当b c ==.所以1a b c ++≤,即ABC 周长的最大值为1若选择条件②()2cos cos b A C =.(1)由条件得2cos cos cos b A C A =+, 由正弦定理得)()2sin cos sin cos sin cos B A A C C A A C B =+=+=.因为sin 0B ≠,所以cos A = 因为()0,A π∈,所以6A π=.(2)由余弦定理2222cos a b c bc A =+-,得)22212b c bc =+-,即()(22242b c b c bc -=+=+-+,亦即(()(224bc b c =+--,因为()24b c bc +≤,当且仅当b c =时取等号,所以()((()22424b c b c ++--≤⨯,解得b c +≤当且仅当b c ==.所以1a b c ++≤,即ABC周长的最大值为1 【点睛】此题考查正弦定理和余弦定理的应用,考查基本不等式的应用,考查计算能力,属于基础题18.已知数列{}n a 中,11a =,当2n ≥时,其前n 项和n S 满足212n n n S a S ⎛⎫=-⎪⎝⎭(1)求n S 的表达式; (2)设21nn S b n =+,求数列{}n b 的前n 项和n T . 【答案】(1)121n S n =-;(2)111221n T n ⎛⎫=- ⎪+⎝⎭.【解析】(1)运用()12n n n a S S n -=-≥,代入化简整理,再由等差数列的定义和通项公式即可得到所求;(2)求得21nn S b n =+=1(21)(21)n n -+=11122121n n ⎛⎫- ⎪-+⎝⎭,运用数列的求和方法:裂项相消求和,即可得到所求和. 【详解】解:(1)∵212n n n S a S ⎛⎫=-⎪⎝⎭,()12n n n a S S n -=-≥, ()2112n n n n S S S S -⎛⎫=-- ⎪⎝⎭,112n n n nS S S S --=-①,由题意10n n S S -≠,将①式两边同除以1n n S S -得,()11122n n n S S --=≥∴数列1nS⎧⎫⎨⎬⎩⎭是首项为11111S a==,公差为2的等差数列.可得()112121nn nS=+-=-,得121nSn=-;(2)21nnSbn=+=1(21)(21)n n-+=11122121n n⎛⎫-⎪-+⎝⎭,111111111++=123352121221nTn n n⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=----⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦【点睛】本题考查数列中()12n n na S S n-=-≥的运用,考查数列的求和方法:裂项相消求和,考查运算能力,属于中档题.19.如图,四棱锥P−ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求直线AN与平面PMN所成角的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)8525.【解析】【详解】(Ⅰ)由已知得.取的中点T,连接,由为中点知,. 又,故=TN AM∥,四边形AMNT为平行四边形,于是MN AT∥.因为平面,平面,所以平面.(Ⅱ)取的中点,连结.由得,从而,且.以A为坐标原点,AE的方向为轴正方向,建立如图所示的空间直角坐标系.由题意知,,,,,(0,2,4)PM=-,5(,1,2)PN=-,5(,1,2)AN=.设(,,)x y z=n为平面PMN的一个法向量,则0,{0,n PMn PN⋅=⋅=即240,{520,y zx y z-=+-=可取(0,2,1)n=.于是85cos,n ANn ANn AN⋅〈〉==.【考点】空间线面间的平行关系,空间向量法求线面角.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.20.成都市现在已是拥有1400多万人口的城市,机动车保有量已达450多万辆,成年人中约40%拥有机动车驾驶证.为了解本市成年人的交通安全意识情况,某中学的同学利用国庆假期进行了一次全市成年人安全知识抽样调查.先根据是否拥有驾驶证,用分层抽样的方法抽取了200名成年人,然后对这200人进行问卷调查.这200人所得的分数都分布在[]30,100范围内,规定分数在80以上(含80)的为“具有很强安全意识”,所得分数的频率分布直方图如图所示.拥有驾驶证 没有驾驶证 总计具有很强安全意识 不具有很强安全意识58 总计200(1)补全上面的22⨯列联表,并判断能否有超过95%的把握认为“具有很强安全意识”与拥有驾驶证有关?(2)将上述调查所得的频率视为概率,现从全市成年人中随机抽取4人,记“具有很强安全意识”的人数为X ,求X 的分布列及数学期望.附表及公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.P (20K k ≥) 0.150.10 0.05 0.025 0.010 0.005 0.0010k2.072 2.7063.841 5.024 6.635 7.879 10.828【答案】(1)表格见解析,有超过95%的把握;(2)分布列见解析,数学期望为45. 【解析】(1)拥有驾驶证的有80人,具有很强安全意识的有40人,由此可得列联表,再计算得2K 后与3.841比较大小即可得出结论; (2)由题意可知X 可以取0,1,2,3,4,且14,5X B ⎛⎫⎪⎝⎭,由此可求出分布列及数学期望.【详解】解:(1)200人中拥有驾驶证的占40%,有80人,没有驾驶证的有120人, 具有很强安全意识的占20%,有40人,不具有很强安全意识的有160人, 补全的22⨯列联表如表所示:计算得()2220022102185875 4.6875 3.841408016012016K ⨯⨯-⨯===>⨯⨯⨯,∴有超过95%的把握认为“具有很强安全意识”与拥有驾驶证有关;(2)由频率分布直方图中数据可知,抽到的每个成年人“具有很强安全意识”的概率为15, ∴X 可能取0,1,2,3,4,且14,5XB ⎛⎫ ⎪⎝⎭, 于是()4241455kkP X k C -⎛⎫⎛⎫==⋅⋅ ⎪⎪⎝⎭⎝⎭(0k =,1,2,3,4),X 的分布列为∴()14455E X =⨯=. 【点睛】本题主要考查独立性检验与二项分布的应用,属于基础题.21.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()1,0F c -,()2,0F c ,点31,2⎛⎫⎪⎝⎭在椭圆C 上,点()3,0A c -满足以2AF 为直径的圆过椭圆的上顶点B . (1)求椭圆C 的方程;(2)已知直线l 过右焦点2F 与椭圆C 交于,M N 两点,在x 轴上是否存在点(),0P t 使得PM PN ⋅为定值?如果存在,求出点P 的坐标;如果不存在,说明理由.【答案】(1)22143x y +=;(2)存在,11,08P ⎛⎫ ⎪⎝⎭ 【解析】(1)由点在椭圆上代入可得a ,b 的关系,再由点(3,0)A c -满足以2AF 为直径的圆过椭圆的上顶点B .可得20AB BF =可得b ,c 的关系,再由a ,b ,c 的关系求出椭圆的方程;(2)由(1)可得右焦点2F 的坐标,分坐标MN 的斜率为0和不为0两种情况讨论,假设存在P 满足条件,设直线MN 的方程,与椭圆联立求出两根之和及两根之积,进而求出数量积PM PN 的表达式,要使数量积为定值,则分子分母对应项的系数成比例,可得t 的值,且可求出定值. 【详解】解:(1)由题意可得上顶点(0,)B b ,2AB BF ⊥,所以:221914a b +=,20AB BF =,即(3c ,)(b c ,)0b -=即223b c =,222a b c =+, 解得:24a =,23b =,所以椭圆的方程为:22143x y +=;(2)由(1)可得右焦点2F 的坐标(1,0),假设存在(,0)P t)i 当直线MN 的斜率不为0时,设直线MN 的方程为:1x my =+,设1(M x ,1)y ,2(N x ,2)y ,联立直线与椭圆的方程22134120x my x y =+⎧⎨+-=⎩,整理可得:22(43)690m y my ++-=,122643my y m -∴+=+,122943y y m -=+, 121228()243x x m y y m ∴+=++=+,222212121222296412()11434343m m m x x m y y m y y m m m ---=+++=++=+++,因为()()1122,,PM PN x t y x t y =--2222222221212122222241289(43)12853(4)(48()4343434343m t t m m t m t t x x t x x t y y t m m m m m -+----+-=-+++=-+-==+++++,要使PM PN 为定值,则22448514t t t ---=,解得:118t =,这时13564PM PN =为定值,)ii 当直线MN 的斜率为0时,则(2,0)M -,(2,0)N ,P 为11(8,0),则11(28PM PN =--,110)(28-,2111350)()4864=-=,综上所述:所以存在11(8P ,0),使PM PN 为定值.【点睛】考查求椭圆的标准方程及直线与椭圆的综合,属于中档题. 22.已知()3231f x ax x =-+(0a >),定义()()(){}()()()()()(),,max ,,.f x f x g x h x f x g x g x f x g x ⎧≥⎪==⎨<⎪⎩(1)求函数()f x 的极小值;(2)若()()g x xf x '=,且存在[]1,2x ∈使()()h x f x =,求实数a 的取值范围; (3)若()ln g x x =,试讨论函数()h x (0x >)的零点个数. 【答案】(1)241a-;(2)(],2-∞;(3)答案见解析. 【解析】(1)求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的极值即可;(2)问题转化为不等式3132a x x≤+在x ∈[1,2]上有解,根据函数的单调性求出a 的范围即可;(3)通过讨论a 的范围结合函数的单调性判断函数的零点个数即可. 【详解】(1)求导得()()23632'=-=-f x ax x x ax ,令()0f x '=,得10x =或22x a=. 因为0a >,所以12x x <,列表如下:所以()f x 的极小值为2222812411f a a aa ⎛⎫=-+=- ⎪⎝⎭. (2)()()3236g x xf x ax x '==-. 因为存在[]1,2x ∈使()()h x f x =,所以()()f x g x ≥在[]1,2x ∈上有解,即32323136ax x ax x -+≥-在[]1,2x ∈上有解,即不等式3132a x x≤+在[]1,2x ∈上有解 设2331331x y x x x+=+=,[]1,2x ∈. 因为24330x y x--'=<对[]1,2x ∈恒成立,所以313y x x =+在[]1,2上递减,故当1x =时,max 4y =.所以24a ≤,即2a ≤,故a 的取值范围为(],2-∞.(3)由(1)知,()f x 在()0,∞+上的最小值为2241f a a ⎛⎫=- ⎪⎝⎭. ①当2410a->,即2a >时,()0f x >在()0,∞+上恒成立,所以()()(){}()max ,0h x f x g x f x =≥>,因此()h x 在()0,∞+上无零点. ②当2410a-=,即2a =时,()()min 10f x f ==,又()10g =,所以()()(){}max ,h x f x g x =在()0,∞+上有且仅有一个零点. ③当2410a-<,即02a <<时,设()()()3231ln x f x g x ax x x ϕ=-=-+-,01x <<.因为()()21136610x ax x x x x xϕ'=--<--<,所以()x ϕ在()0,1上单调递减. 又()120a ϕ=-<,2321230a e e ee ϕ-⎛⎫=+> ⎪⎝⎭,所以存在唯一的01,1x e ⎛⎫∈ ⎪⎝⎭,使得()00x ϕ=.(i )当00x x <≤时,因为()()()()00x f x g x x ϕϕ=-≥=,所以()()h x f x =且()h x 为减函数.又()()()0000ln ln10h x f x g x x ===<=,()010f =>,所以()h x 在()00,x 上有一个零点.(ii )当01x x <<时,因为()()()()00x f x g x x ϕϕ=-<=,所以()()h x g x =且()h x 为增函数.因为()10g =,又()()(){}()max ,ln 0h x f x g x g x x =≥=>在1x >上恒成立,所以()h x 在()0,x +∞上有且仅有一个零点.从而()()(){}max ,h x f x g x =在()0,∞+上有两个零点.综上,当02a <<时,()h x 有两个零点;当2a =时,()h x 有一个零点;当2a >时,()h x 无零点.【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.。
江苏省南京市金陵中学2021-2022学年高三上学期学情检测热身数学试卷(解析版)

攒尖.也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.辽宁省实验中学校园内的 明心亭,为一个八角攒尖,它的主要部分的轮廓可近似看作一个正八棱锥,设正八棱锥 的侧面等腰三角形的顶角为 2θ,它的侧棱与底面内切圆半径的长度之比为( )
A.
B.
C.
Байду номын сангаасD.
7.已知定义在 R 上的奇函数 f(x)满足 f(x)=f(2﹣x),当 x∈[﹣1,1]时,f(x)=3x,
辽宁省实验中学校园内的明心亭为一个八角攒尖它的主要部分的轮廓可近似看作一个正八棱锥设正八棱锥的侧面等腰三角形的顶角为2它的侧棱与底面内切圆半径的长度之比为为正八棱锥sabcdefgh底面内切圆的圆心连接oaob取ab的中点m连接smom则om是底面内切圆半径r如图所示
2021-2022 学年江苏省南京市金陵中学高三(上)学情检测热身
若函数 g(x)=f(x)﹣k(x﹣2)的所有零点为 xi(i=1,2,3,…,n),当
时,
=( )
A.6
B.8
C.10
D.12
8.已知实数 m,n 满足(m+5)2+n2=1,则对于任意实数 a,(a2﹣m)2+(a﹣n)2 的最小
值为( )
A.4
B.16
C.17
D.25
二、多项选择题(本大题共 4 小题,每题 5 分,共 20 分.每题全选对的得 5 分,部分选对的
21.已知点 B(﹣2,0),C(2,0),△ABC 的周长等于 4+4 ,点 M 满足 =2 . (1)求点 M 的轨迹 E 的方程; (2)是否存在过原点的直线 l 与曲线 E 交于 P,Q 两点,与圆 F:(x﹣ )2+y2= 交 于 R,S 两点(其中点 R 在线段 PQ 上),且|PR|=|QS|,若存在,求出直线 l 的方程;若 不存在,请说明理由.
数学卷评分标准

南京市2018届高三年级学情调研数学参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,计70分.)1.{0,2} 2.7 3.16 4.- 2 5.126.3 7. 6 8.18π 9.-1 10.6 11.(-∞,2] 12.13 13.-4314.[0,2]∪[3,8]二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内) 15.(本小题满分14分)证明:(1)在直三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC . 因为AE ⊂平面ABC ,所以CC 1⊥AE . ……………2分因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 因为BC ⊂平面B 1BCC 1,CC 1⊂平面B 1BCC 1,且BC ∩CC 1=C ,所以AE ⊥平面B 1BCC 1. ………………5分 因为AE ⊂平面AB 1E ,所以平面AB 1E ⊥平面B 1BCC 1. ……………………………7分 (2)连接A 1B ,设A 1B ∩AB 1=F ,连接EF .在直三棱柱ABC -A 1B 1C 1中,四边形AA 1B 1B 为平行四边形,所以F 为A 1B 的中点. ……………………………9分 又因为E 是BC 的中点,所以EF ∥A 1C . ……………………………11分 因为EF ⊂平面AB 1E ,A 1C ⊄平面AB 1E ,所以A 1C ∥平面AB 1E . ……………………………14分 16.(本小题满分14分) 解:(1)解法1在△ABC 中,因为cos B =45,所以a 2+c 2-b 22ac =45. ………………………2分A 1B 1C 1 A BCE(第15题) F因为c =2a ,所以(c2)2+c 2-b 22c ×c 2=45,即b 2c 2=920,所以b c =3510. ……………………………4分又由正弦定理得sin B sin C =bc,所以sin B sin C =3510. ……………………………6分解法2因为cos B =45,B ∈(0, ),所以sin B =1-cos 2B =35.………………………2分因为c =2a ,由正弦定理得sin C =2sin A , 所以sin C =2sin(B +C )=65cos C +85sin C ,即-sin C =2cos C . ………………………4分 又因为sin 2C +cos 2C =1,sin C >0,解得sin C =255,所以sin B sin C =3510. ………………………6分(2)因为cos B =45,所以cos2B =2cos 2B -1=725. …………………………8分又0<B <π,所以sin B =1-cos 2B =35,所以sin2B =2sin B cos B =2×35×45=2425. …………………………10分因为C -B =π4,即C =B +π4,所以A =π-(B +C )=3π4-2B ,所以sin A =sin(3π4-2B )=sin 3π4cos2B -cos 3π4sin2B ………………………………12分=22×725-(-22)×2425=31250. …………………………………14分17.(本小题满分14分)解:(1)因为t 1=9000x, ………………………2分t 2=30003(100-x )=1000100-x, ………………………4分所以f (x )=t 1+t 2=9000x +1000100-x, ………………………5分定义域为{x |1≤x ≤99,x ∈N *}. ………………………6分 (2)f (x )=1000(9x +1100-x )=10[x +(100-x )]( 9x +1100-x)=10[10+9(100-x )x + x100-x ]. ………………………10分因为1≤x ≤99,x ∈N *,所以9(100-x )x >0,x100-x>0, 所以9(100-x )x + x100-x≥29(100-x )x x100-x=6, …………………12分 当且仅当9(100-x )x =x100-x ,即当x =75时取等号. …………………13分答:当x =75时,f (x )取得最小值. ………………………14分18.(本小题满分16分) 解:(1)因为椭圆C 的离心率为32,所以a 2=4b 2. ………………………2分 又因为椭圆C 过点(1,32),所以1a 2+34b 2=1, ………………………3分解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1. ………………………5分(2)解法1设P (x 0,y 0),-2<x 0<2, x 0≠1,则x 024+y 02=1.因为MB 是PN 的垂直平分线,所以P 关于B 的对称点N (2-x 0,-y 0), 所以2-x 0=m . ………………………7分 由A (-2,0),P (x 0,y 0),可得直线AP 的方程为y =y 0x 0+2(x +2),令x =m ,得y =y 0(m +2) x 0+2,即M (m ,y 0(m +2)x 0+2).因为PB ⊥MB ,所以k PB ·k MB =-1,所以k PB ·k MB =y0x 0-1·y 0(m +2)x 0+2 m -1=-1, ………………………10分即y 02(m +2)(x 0-1)( x 0+2)( m -1)=-1. 因为x 024+y 02=1.所以( x 0-2)(m +2)4(x 0-1) ( m -1)=1. ………………………12分因为x 0=2-m ,所以化简得3m 2-10m +4=0,解得m =5±133. ………………………15分因为m >2,所以m =5+133. ………………………16分解法2①当AP 的斜率不存在或为0时,不满足条件. ………………………6分 ②设AP 斜率为k ,则AP :y =k (x +2),联立⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x +2),消去y 得(4k 2+1)x 2+16k 2x +16k 2-4=0.因为x A =-2,所以x P =-8k 2+24k 2+1,所以y P =4k 4k 2+1,所以P (-8k 2+24k 2+1,4k4k 2+1). ………………………8分因为PN 的中点为B ,所以m =2--8k 2+24k 2+1=16k 24k 2+1.(*) ……………………10分因为AP 交直线l 于点M ,所以M (m ,k (m +2)),因为直线PB 与x 轴不垂直,所以-8k 2+24k 2+1≠1,即k 2≠112,所以k PB =4k4k 2+1-8k 2+24k 2+1-1=-4k 12k 2-1,k MB =k (m +2)m -1. 因为PB ⊥MB ,所以k PB ·k MB =-1,所以-4k 12k 2-1·k (m +2)m -1=-1.(**) ………………………12分将(*)代入(**),化简得48k 4-32k 2+1=0,解得k 2=4±1312,所以m =16k 24k 2+1=5±133. ………………………15分又因为m >2,所以m =5+133. ………………………16分19.(本小题满分16分)解:(1)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a ,所以曲线y =f (x )在x =0处的切线斜率k =f ′(0)=6a ,所以6a =3,所以a =12. ………………………2分(2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立,所以-(a +1)≥2ln xx 2. ………………………4分令g (x )=2ln xx 2,x >0,则g '(x )=2(1-2ln x )x 3.令g '(x )=0,解得x =e .当x ∈(0,e)时,g '(x )>0,所以g (x )在(0,e)上单调递增;当x ∈(e ,+∞)时,g '(x )<0,所以g (x )在(e ,+∞)上单调递减. 所以g (x )max =g (e)=1e , ………………………6分所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值范围为(-∞,-1-1e ]. ………………………8分(3)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4.令f ′(x )=0,则x =1或a . ………………………10分 f (1)=3a -1,f (2)=4.①当1<a ≤53时,当x ∈(1,a )时,f '(x )<0,所以f (x )在(1,a )上单调递减; 当x ∈(a ,2)时,f '(x )>0,所以f (x )在(a ,2)上单调递增.又因为f (1)≤f (2),所以M (a )=f (2)=4,m (a )=f (a )=-a 3+3a 2, 所以h (a )=M (a )-m (a )=4-(-a 3+3a 2)=a 3-3a 2+4. 因为h ' (a )=3a 2-6a =3a (a -2)<0, 所以h (a )在(1,53]上单调递减,所以当a ∈(1,53]时,h (a )最小值为h (53)=827.………………………12分②当53<a <2时,当x ∈(1,a )时,f '(x )<0,所以f (x )在(1,a )上单调递减; 当x ∈(a ,2)时,f '(x )>0,所以f (x )在(a ,2)上单调递增.又因为f (1)>f (2),所以M (a )=f (1)=3a -1,m (a )=f (a )=-a 3+3a 2, 所以h (a )=M (a )-m (a )=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1. 因为h ' (a )=3a 2-6a +3=3(a -1)2≥0. 所以h (a )在(53,2)上单调递增,所以当a ∈(53,2)时,h (a )>h (53)=827. ………………………14分③当a ≥2时,当x ∈(1,2)时,f '(x )<0,所以f (x )在(1,2)上单调递减, 所以M (a )=f (1)=3a -1,m (a )=f (2)=4, 所以h (a )=M (a )-m (a )=3a -1-4=3a -5, 所以h (a )在[2,+∞)上的最小值为h (2)=1.综上,h (a )的最小值为827. ………………………16分20.(本小题满分16分)解:(1)由3T 1=S 12+2S 1,得3a 12=a 12+2a 1,即a 12-a 1=0.因为a 1>0,所以a 1=1. ………………………2分 (2)因为3T n =S n 2+2S n , ①所以3T n +1=S n +12+2S n +1,②②-①,得3a n +12=S n +12-S n 2+2a n +1. 因为a n +1>0,所以3a n +1=S n +1+S n +2, ③ ………………………5分 所以3a n +2=S n +2+S n +1+2,④④-③,得3a n +2-3a n +1=a n +2+a n +1,即a n +2=2a n +1,所以当n ≥2时,a n +1a n =2. ………………………8分又由3T 2=S 22+2S 2,得3(1+a 22)=(1+a 2)2+2(1+a 2), 即a 22-2a 2=0.因为a 2>0,所以a 2=2,所以a 2a 1=2,所以对n ∈N *,都有a n +1a n=2成立,所以数列{a n }的通项公式为a n =2n -1,n ∈N *. ………………………10分(3)由(2)可知S n =2n -1.因为S 1,S k -S 1,S t -S k 成等比数列,所以(S k -S 1)2=S 1(S t -S k ),即(2k -2)2=2t -2k , ………………………12分所以2t =(2k )2-3⋅2k +4,即2t -2=(2k -1)2-3⋅2k -2+1(*). 由于S k -S 1≠0,所以k ≠1,即k ≥2.当k =2时,2t =8,得t =3. ………………………14分当k ≥3时,由(*),得(2k -1)2-3⋅2k -2+1为奇数,所以t -2=0,即t =2,代入(*)得22k -2-3⋅2k -2=0,即2k =3,此时k 无正整数解. 综上,k =2,t =3. ………………………16分南京市2018届高三年级学情调研数学附加题参考答案及评分标准21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲 证明:连接OD ,因为DA =DC ,所以∠DAO =∠C .………………………2分在圆O 中,AO =DO ,所以∠DAO =∠ADO ,所以∠DOC =2∠DAO =2∠C .………………………5分因为CD 为圆O 的切线,所以∠ODC =90°,从而∠DOC +∠C =90°,即2∠C +∠C =90°,故∠C =30°, ………………………7分 所以OC =2OD =2OB ,所以CB =OB ,所以CA =3CB . ………………………10分B .选修4—2:矩阵与变换解:(1)根据逆矩阵公式,可得A -1=⎣⎢⎢⎡⎦⎥⎥⎤-2132-12. ………………………4分 (2)设曲线C 上任意一点P (x ,y )在矩阵A 对应的变换作用下得到点P '(x ',y '),则⎣⎢⎡⎦⎥⎤x 'y '=⎣⎡⎦⎤1234 ⎣⎢⎡⎦⎥⎤xy =⎣⎢⎡⎦⎥⎤x +2y 3x +4y,所以⎩⎨⎧x '=x +2y ,y '=3x +4y .……………………8分 因为(x ',y ')在曲线C '上,所以6x '2-y '2=1,代入6(x +2y )2-(3x +4y )2=1, 化简得8y 2-3x 2=1,所以曲线C 的方程为8y 2-3x 2=1. ………………………10分C .选修4—4:坐标系与参数方程解:由直线l 的参数方程为⎩⎨⎧x =-1+t ,y =t,得直线l 的普通方程为x -y +1=0.………………………2分由圆C 的参数方程为⎩⎨⎧x =a +cos θ,y =2a +sin θ,得圆C 的普通方程为(x -a )2+(y -2a )2=1.………………………4分(第21A 题)因为直线l 与圆C 相切,所以∣a -2a +1∣2=1, ………………………8分解得a =1±2.所以实数a 的值为1±2. ………………………10分 D .选修4—5:不等式选讲解:(1)当x <-1时,不等式可化为-x +2-x -1≥5,解得x ≤-2;……………………2分(2)当-1≤x ≤2时,不等式可化为-x +2+x +1≥5,此时不等式无解;……………4分 (3)当x >2时,不等式可化为x -2+x +1≥5,解得x ≥3; ……………………6分 所以原不等式的解集为(-∞,-2]∪[3,+∞). …………………………10分 【必做题】第22题、第23题,每题10分,共计20分. 22.(本小题满分10分)解:(1)以{→AB ,→AD ,→AP }为单位正交基底,建立如图所示的空间直角坐标系A -xyz . 因为AP =AB =AD =1,所以A (0,0,0),B (1,0,0),D (0,1,0),P (0,0,1). 设C (1,y ,0),则→PB =(1,0,-1),→CD =(-1,1-y ,0).…………………………2分因为直线PB 与CD 所成角大小为π3,所以|cos <→PB ,→CD >|=|→PB ⋅→CD ∣→PB ∣⋅∣→CD ∣|=12, 即12×1+(1-y )2=12,解得y =2或y =0(舍),所以C (1,2,0),所以BC 的长为2. ………………………5分 (2)设平面PBD 的一个法向量为n 1=(x ,y ,z ).因为→PB =(1,0,-1),→PD =(0,1,-1), 则⎩⎪⎨⎪⎧→PB ⋅n 1=0,→PD ⋅n 1=0,即⎩⎨⎧x -z =0,y -z =0.令x =1,则y =1,z =1,所以n 1=(1,1,1). ………………………7分 因为平面P AD 的一个法向量为n 2=(1,0,0),所以cos <n 1,n 2>=n 1⋅n 2∣n 1∣⋅|n 2∣=33,所以,由图可知二面角B -PD -A 的余弦值为33. ………………………10分 23.(本小题满分10分)解:(1)两个球颜色不同的情况共有C 24⋅42=96(种). ………………………3分(2)随机变量X 所有可能的值为0,1,2,3.P (X =0)=4⋅ C 2496=14, ………………………5分P (X =1)=3⋅C 14⋅C 1396=38,P (X =2)=2⋅C 14⋅C 1396=14,P (X =3)=C 14⋅C 1396=18.所以随机变量X 的概率分布列为:………………………8分所以E (X )=0⨯14+1⨯38+2⨯14+3⨯18=54. ………………………10分。
2021学年高三上学期8月联考数学(答案)

3 cos A 3 3 3 3 + =11 2021 学年高三上学期 8 月执信、广雅、六中三校联考试卷答案说明数学一、选择题(本大题 12 小题,每小题 5 分,共 60 分. 其中第 1 题~第 10 题为单项选择题,在给出 的四个选项中,只有一项符合要求;第 11 题和第 12 题为多项选择题,在给出的四个选项中,有多 项符合要求,全部选对得 5 分,选对但不全的得 3 分,有选错的得 0 分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABCDCBCCBAACDBD二、填空题(本大题 4 小题,每小题 5 分,共 20 分)13. 2 14. -115. -9016. (-1- 1 , -1) [1- 1 , +∞)ee三、解答题(本大题 6 小题,共 70 分)17.解:(Ⅰ)由tan B + tan C =得 sin B sin C…………1 分 cos B cos C cos B cos C cos B cos C∴ sin B cos C + cos B s in C = 3 cos A ,∴sin(B + C ) = 3 c os A …………2 分∵ A + B + C = π ∴ sin A = 3 c os A …………3 分又cos A 显然不等于 0,∴ tan A = …………4 分∵A ∈(0,π ) ∴ A = π 3…………5 分(Ⅱ)由(Ⅰ)知 A = π,又a = 4 , b + c = 5 ,根据余弦定理得3a 2 =b 2 +c 2 - 2bc cos A = (b + c )2- 3bc∴16 = 25 - 3bc ,∴ bc = 3 …………8 分∴ S = bc sin A = ⨯ 3⨯= . …………10 分 2 2 2 418.解:(Ⅰ)由题意,数列{a n }满足a 1 + 3a 2 +⋯+ (2n -1)a n = 2n + 2S n ,当 n ≥ 2 时, a 1 + 3a 2 +⋯+ (2n - 3)a n -1 = 2(n -1) + 2S n -1 …………1 分两式相减,可得(2n -1)a n = 2 + 2(S n - S n -1) ,即(2n -1)a n = 2 + 2a n …………3 分整理得a n= 2(n ≥ 2) 2n - 3…………4 分 103 cos Azx= - 2 (1 2 ) 又由当n = 1时, a 1 = 2 + 2S 1 ,可得a 1 = 2 + 2a 1 ,即a 1 = -2 (适合上式)…………5 分 所以数列{a }的通项公式为a =2, n ∈ N + . …………6 分 n(Ⅱ)由b n =2n +1 a nn= (2n - 3) ⋅ 2n2n - 3…………7 分2 3 n -1 n则T n = -1⋅ 2 +1⋅ 2 + 3⋅ 2 + + (2n - 5) ⋅ 2 + (2n - 3) ⋅ 2 ,所以2T n = -1⋅ 22 +1⋅ 23 + 3⋅ 24++ (2n - 5) ⋅ 2n + (2n - 3) ⋅ 2n +1 …………8 分两式相减,可得-T n = -2 + 2(22+ 23++ 2n ) - (2n - 3) ⋅ 2n +1 …………9 分所以T n 2 - n -12 + 2⨯- (2n - 3) ⋅ 2 1- 2= (2n - 5) ⋅ 2n +1+10 . …………12 分n +1= -10 + (5 - 2n ) ⋅ 2n +1 …………11 分19.证明:(Ⅰ)在梯形 ABCD 中, AB //CD , AD = CD = CB = 2 , ∠ABC = 60︒ ,∴四边形 ABCD 是等腰梯形, ∠ADC =120︒ ,∴ ∠DCA = ∠DAC = 30︒ , ∠DCB =120︒, ∴ ∠ACB = ∠DCB - ∠DCA = 90︒ ,∴ AC ⊥ BC (也可以利用余弦定理求出 AC , BC 再证明)…………2 分又∵矩形 ACFE 中, CF = AE = 2 ,又有 BF = 2 2 , CB = 2 ,∴ CB ⊥ CF 又∵ AC CF = C ,∴ BC ⊥ 平面 ACFE . …………5 分…………4 分(Ⅱ)以点C 为坐标原点,以CA 所在直线为 x 轴,以CB 所在直线为 y 轴,以CF 所在直线为 z 轴, 建立空间直角坐标系.y可得C (0, 0, 0) , B (0, 2, 0) , F (0, 0, 2) , D (3, -1, 0),E (2 3, 0, 2).∴ EF = (-2 3, 0, 0) , BF = (0, -2, 2) , BD = ( 3, -3, 0) …………7 分⎧n ⋅ EF = 0 ⎧⎪n ⋅ EF = -2 3x = 0 设平面 BEF 的法向量为n = (x , y , z ) ,所以⎨n ⋅ BF = 0 ,∴ ⎨n ⋅ BF = -2 y + 2z = 0 ,⎩⎪⎩令 y = 1,则 x = 0 , z = 1,∴ n = (0,1,1) …………9 分∴| cos < …………11 分∴直线 BD 与平面 BEF 所成角的正弦值是.…………12 分 420.解:(Ⅰ)由题意可知 120 件样本零件中长度大于 1.60 分米的共有 18 件, 18则这批零件的长度大于 1.60 分米的频率为120= 0.15…………1 分记Y 为零件的长度,则 P (1.2 ≤ Y ≤ 1.3) = P (1.7 < Y ≤ 1.8) =3120= 0.025 , P (1.3 < Y ≤ 1.4) = P (1.6 < Y ≤ 1.7) =15120 = 0.125 , P (1.4 < Y ≤ 1.5) = P (1.5 < Y ≤ 1.6) = 1⨯ (1- 2⨯ 0.025 - 2⨯ 0.125) = 0.35 ,2故 m = 0.025 = 0.25 , n = 0.125 = 1.25 , t = 0.35= 3.5 . …………4 分 0.1 0.1 0.1 (Ⅱ)由(Ⅰ)可知从这批零件中随机选取 1 件,长度在(1.4,1.6]的概率 P = 2⨯0.35 = 0.7 .则随机变量 X 服从二项分布, X ~ B (3, 0.7)…………5 分则 P ( X = 0) = C 0 ⨯(1- 0.7)3 = 0.027 , P ( X = 1) = C 1 ⨯(1- 0.7)2⨯ 0.7 = 0.189 ,33P ( X = 2) = C 2 ⨯(1- 0.7)⨯ 0.72 = 0.441, P (X = 3) = C 3 ⨯ 0.73 = 0.343 ,33故随机变量 X 的分布列为X0 1 2 3 P0.0270.1890.4410.343…………7 分EX = 0⨯0.027 +1⨯0.189 + 2⨯0.441+ 3⨯0.343 = 2.1(或 EX = 3⨯0.7 = 2.1). …………8 分 (或由随机变量 X 服从二项分布,X ~ B (3, 7) ,得P ( X = k ) = C k⋅ ( 7)k⋅ ( 3)3-k(k = 0,1, 2,3) ,EX = 3⨯ 7= 21 ) 10310 1010 10BD , n >|=| BD ⋅ n | BD | ⋅ | n ||= 64 631+c2+3m 3 6km(Ⅲ)由题意可知μ= 1.5 ,σ= 0.1,则P (μ-σ<Y ≤μ+σ)=P (1.4 <Y ≤ 1.6)= 0.7 ,P (μ- 2σ<Y ≤μ+ 2σ)=P (1.3 <Y ≤1.7)= 0.125 + 0.35 + 0.35 + 0.125 = 0.95…………10 分因为 0.7 -0.6826 = 0.0174 ≤ 0.05 ,0.95 -0.9544 = 0.0044 ≤ 0.05所以这批零件的长度满足近似于正态分布N (1.5, 0.01)的概率分布.…………11 分故认为这批零件是合格的,将顺利被该公司签收. …………12 分21.解:(Ⅰ)由题可知,A(0,1), F (c, 0),则直线AF的方程为x +y =1,即x+cy-c=0c因为直线 AF 与圆 M : x2 +y2 - 6x - 2y + 7 = 0 相切,该圆的圆心为 M (3,1), r ==32 2x22则,∴c = 2 ,∴a= 3 ,故椭圆的标准方程为+y3= 1. …………3 分(Ⅱ)解法一:依题得直线l 的斜率必存在,设l : y =kx +m ,设点P(x1, y1 ),Q(x2 , y2 ) ,⎧y =kx +m⎪联立⎨x2+y2 = 1 ,消去 y 并整理得(3k 2 +1)x2 +6kmx +3m2 -3 = 0…………5 分⎪⎩ 3∆=36k2m2 - 4⋅ (3k2 +1) ⋅ (3m2 - 3) > 0 ,即m2 < 3k 2 +1…………6 分且 x +x =-6km, x x =1 2 3k 2 +1 1 23m2 - 33k 2 +1…………7 分∴AP ⋅AQ = (x y ) ⋅ (x , y ) =x x +y y = (k 2 +1)x x +k(m -1)(x +x ) + (m -1)21, 1 2 2 1 2 1 2 1 2 1 2= (k 2 2 -1) ⋅+k(m -1) ⋅(- ) +(m -1)2=4m2 - 2m - 2 …………9 分AP ⊥AQ 3k 2 +1 3k 2 +14m2 - 2m - 23k 2 +1m =-1∵,∴AP ⋅AQ = 0 ,即3k 2 +1 =0 ,∴m =1或…………10 分2当m = 1时,直线l : y =kx +1,恒过点(0,1) ,不满足题意,舍去;当 m =-1时,直线l : y =kx -1,恒过点(0, -1) 2 2 2故直线l 恒过定点(0, -1) . …………12 分23( ) 6k 2x 2 解法二:因为不过点 A 的动直线l 与椭圆C 相交于 P ,Q 两点,且 AP ⊥ AQ ,即直线 AP 与坐标轴不垂直也不平行,由 A (0,1) ,可设直线 AP 的方程为 y = kx +1,则直线 AQ 的方程为 y = - 1x +1 k…………4 分⎧ x 2⎪ 联立⎨ 3 y = 1 ,消去 y 并整理得 1+ 3k 2 x 2 + 6kx = 0 ,解得 x = 0 或- 6k , 1+ 3k 2 ⎪⎩y = kx +1因此点 P 的坐标为(-6k 1+ 3k 22 , - +1) ,即 P (- 1+ 3k 26k 1+ 3k 21- 3k 2 , 1+ 3k 2)…………7 分- 16kk 2 - 3将上式中的k 换成k,得点Q (3 + k 2, 3 + k2 ) k 2 -3 - 1- 3k 2…………8 分 3 + k 2 1+ 3k 2 =k 2-1k 2 -16kk 2 - 3所以直线l 的斜率为6k 3 + k 2+ 6k 1+ 3k 2,即直线l 的方程为 y =4k(x - 4k3 + k 2 ) + , 3 + k 2化简并整理得 y = k 2 -1 1x - …………11 分4k 2故直线l 恒过定点(0, - 1) . …………12 分222.解:(Ⅰ)函数 f (x ) 的定义域为: (0, +∞ ), f '(x ) = a + = a + 2x2 x x①当a ≥ 0 时, f '(x ) > 0 ,所以 f (x ) 在(0, +∞ )上单调递增 …………2 分②当 a < 0 时,令 f '(x ) = 0 ,解得 x…………1 分当0 <x , a + 2x 2 < 0 ,所以 f '(x ) < 0, 所以 f (x ) 在(0,上单调递减;当 x 时, a + 2x 2 > 0 ,所以f '(x ) > 0 ,所以 f (x ) 在+∞) 上单调递增…………3 分综上,当a ≥ 0 时,函数 f (x ) 在(0, +∞ )上单调递增;当 a < 0 时,函数 f (x ) 在上单调递减,在+∞) 上单调递增. …………4 分 +(Ⅱ)当a = 1时, f (x ) = ln x + x 2 ,要证明 f (x ) ≤ x2+ x -1,即证ln x ≤ x -1,即证ln x - x +1≤ 0 …………5 分 设g(x ) = ln x - x +1,则g'(x ) =1 - x ,令 g '(x ) = 0 得, x = 1.x当 x ∈(0,1)时, g '(x ) > 0 ,当 x ∈(1, +∞)时, g '(x ) < 0 .所以 x = 1为极大值点,且 g (x ) 在 x = 1处取得最大值.所以 g (x ) ≤ g (1) = 0 ,即ln x - x +1≤ 0 ,故 f (x ) ≤ x 2+ x -1. …………7 分(Ⅲ)证明:由(Ⅱ)知ln x ≤ x -1(当且仅当 x = 1时等号成立),即lnx≤ 1 - 1x x…………8 分ln 22 ln 32 lnn 2 1 1 1 1 1 1则有 + +⋯+ < 1- +1- +⋯+1- = n -1- ( + +⋯+ ) ……9 分 2232 n 2 22 32 n 2 22 32 n 2< n -1-[1+1+⋯+1] …………10 分2⨯ 3 3⨯ 4n (n +1)= n -1- (1 - 1 + 1 - 1 +⋯+ 1 - 1 ) = n -1- (1 - 1 ) = (n -1)(2n +1)…………11 分2 3 3 4n n +1 2 n +12 (n +1)ln 22 ln 32 + ⋯+ lnn 2< (n -1)(2n + 1)故22+32n 22 (n + 1). …………12 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021届江苏省南京市金陵中学高三第一学期8月学情调研测试数学试题一、单选题1.已知集合{}2340A x x x =-->,{}ln 0B x x =>,则()RA B =( )A .∅B .(]0,4C .(]1,4D .()4,+∞【参考答案】C【试题解析】先解出集合A 、B ,再求解出集合A 的补集,根据集合交集的运算即可求解.由题意得{1A x x =<-或}4x > ,{}1B x x =>,所以{}14RA x x =-≤≤,()(]1,4R AB =.故选:C本题主要考查了集合补集、交集的运算,属于简单题,计算中可以借助数轴法求解集合的补集和集合间的交集.2.设,R a b ∈,i 是虚数单位,则“0ab =”是“复数iba +为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【参考答案】B【试题解析】0ab =即,a b 中至少有一个是零;复数ba a bi i+=-为纯虚数,故0,0a b =≠为小范围,故为必要不充分条件.3.下列命题中正确的是( ) A .若a b >,则ac bc > B .若a b >,c d >,则a c b d ->- C .若0ab >,a b >,则11a b < D .若a b >,c d >,则a b c d> 【参考答案】C【试题解析】分析:根据不等式性质逐一排除即可.A. 若a b >,则ac bc >,当c 取负值时就不成立,故错误;B. 若a b >,c d >,则a cb d ->-,例如a=3,b=1,c=2,d=-2显然此时ac bd -<-,故错误;D,若a b >,c d >,则a b c d >,例如a=3,c=-1,b=-1,d=-2,此时a bc d<,故错误,所以综合得选C.点睛:考查不等式的简单性质,此类题型举例子排除法比较适合,属于基础题. 4.已知正项等比数列{a n }的前n 项和为S n ,若43113,84a S a =-=,则S 5=( ) A .3132B .3116C .318D .314【参考答案】B【试题解析】利用正项等比数列{a n }的前n 项和公式,通项公式列出方程组,求出a 1=1,q =12,由此能求出S 5的值.解:正项等比数列{a n }的前n 项和为S n ,43113,84a S a =-=, ∴()31311181314a q a q a q ⎧=⎪⎪⎨-⎪-=⎪-⎩,解得a 1=1,q =12, ∴S 5=()5111a q q --=1132112--=3116.故选:B . 【点评】本题考查等比数列的前n 项和的求法,考查等比数列的性质等基础知识,考查运算求解能力,属于基础题.5.()101(21)x x -+的展开式中10x 的系数为( )A .512-B .1024C .4096D .5120【参考答案】C【试题解析】先将二项式变形为1010(21)(21)x x x +-+,分别写出两个二项式展开式的通项,并分别令x 的指数为10,求出两个参数的值,代入展开式之后将两个系数相减可得出答案.()1010101(21)(21)(21)x x x x x -+=+-+,二项展开式10(21)x x +的通项为1010111010(2)2r rr r r xC x C x ---⋅=⋅⋅,二项展开式10(21)x +的通项为1010101010(2)2kkk k k C x C x ---⋅=⋅⋅,则111011010r r k -=⎧=⎨-=⎩,解得,0k =, 所以,展开式中10x 的系数为19010101022512010244096C C ⋅-⋅=-=.故选C .本题考查了利用二项式定理求指定项的系数,考查二项式定理的应用,同时也考查了计算能力,属于中等题.6.某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布2(105,)(0)N σσ>,试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的15,则此次数学考试成绩在90分到105分之间的人数约为( ) A .150 B .200C .300D .400【参考答案】C【试题解析】求出()39010510P X ≤≤=,即可求出此次数学考试成绩在90分到105分之间的人数.∵()()1901205P X P X ≤=≥=,()2390120155P X ≤≤=-=, 所以()39010510P X ≤≤=, 所以此次数学考试成绩在90分到105分之间的人数约为3100030010⨯=. 故选C .本小题主要考查正态分布曲线的特点及曲线所表示的意义等基础知识,考查运算求解能力,考查数形结合思想.属于基础题.7.如图,过抛物线22y px =(0p >)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若2BC BF =,且6AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x =D .23y x =【参考答案】B【试题解析】分别过A ,B 作准线的垂线,交准线于E ,D ,设|BF |=a ,运用抛物线的定义和直角三角形的性质,求得p ,可得所求抛物线的方程.如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设BF a =, 则由已知得2BC a =,由抛物线定义得BD a =,故30BCD ∠=︒.在Rt ACE 中,因为6AE AF ==,63AC a =+,2AE AC =, 所以6312a +=,得2a =,36FC a ==,所以132p FG FC ===, 因此抛物线方程为26y x =. 故选:B本题考查抛物线的定义和方程、性质,以及直角三角形的性质,考查方程思想和数形结合思想,属于中档题.8.已知椭圆C :22221x y a b+=(0a b >>)的右焦点为F ,短轴的一个端点为P ,直线l :430x y -=与椭圆C 相交于A ,B 两点.若6AF BF +=,点P 到直线l 的距离不小于65,则椭圆离心率的取值范围是( )A .50,9⎛⎤ ⎥⎝⎦B .30,2⎛ ⎝⎦C .50,3⎛ ⎝⎦D .13,32⎛⎤⎥ ⎝⎦【参考答案】C【试题解析】设椭圆的左焦点为F ',根据双曲线的定义,求得3a =,再由点P 到直线l 的距离不小于65,求得2b ≥,得到213b a≤<,进而求得离心率的范围,得到答案.设椭圆的左焦点为F',根据椭圆的对称性可得AF BF '=,BF AF '=, 所以62AF AF BF AF a '+=+==,解得3a =,因为点P 到直线l 的距离不小于65,所以()226543≥+-,解得2b ≥, 又由b a <,所以23b ≤<,故213ba≤<, 所以离心率22510,c b e a a ⎛⎤==-∈ ⎥ ⎝⎦. 故选:C.本题考查了椭圆的定义,以及椭圆的几何性质——离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程,即可得e 的值(范围).二、多选题9.若函数()sin 23πf x x ⎛⎫=- ⎪⎝⎭与()cos 4g x x π⎛⎫=+ ⎪⎝⎭都在区间(),a b (0a b π<<<)上单调递减,则b a -的可能取值为( ) A .6π B .3π C .2π D .512π 【参考答案】AB【试题解析】先求()f x 在()0,π上的单调递减区间,再求()g x 在()0,π上的单调递减区间,再求交集即可得()f x 和()g x 两个函数的递减区间,可得b a -的最大值,进而可得b a -的可能取值.当()0,x π∈时,52,333x πππ⎛⎫-∈- ⎪⎝⎭,所以当32,322x πππ⎛⎫-∈ ⎪⎝⎭时,即511,1212x ππ⎛⎫∈ ⎪⎝⎭()f x 单调递减,即函数()sin 23πf x x ⎛⎫=- ⎪⎝⎭在511,1212ππ⎛⎫⎪⎝⎭上单调递减,当()0,x π∈时,,44x πππ⎛⎫+∈ ⎪⎝⎭,即30,4x π⎛⎫∈ ⎪⎝⎭时,()g x 单调递减, 因为30,451153,,1212124πππππ⎛⎫= ⎪⎝⎛⎭⎫⎛⎫⋂⎪ ⎪⎝⎭⎝⎭, 所以,53124a b ππ≤<≤ 所以354123b a πππ-≤-=,所以b a -可能为6π或3π, 故选:AB本题主要考查了三角函数的单调性,属于中档题. 10.下列说法中正确的是( ) A .设随机变量X 服从二项分布16,2B ⎛⎫ ⎪⎝⎭,则()5316P X == B .已知随机变量X 服从正态分布()22,N σ且()40.9P X <=,则()020.4P X <<=C .()()2323E X E X +=+;()()2323D X D X +=+ D .已知随机变量ξ满足()0P x ξ==,()11P x ξ==-,若102x <<,则()E ξ随着x 的增大而减小,()D ξ随着x 的增大而增大 【参考答案】ABD【试题解析】对于选项,,A B D 都可以通过计算证明它们是正确的;对于选项,C 根据方差的性质,即可判断选项C .对于选项,A 设随机变量16,2XB ⎛⎫ ⎪⎝⎭, 则()3336115312216P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭,所以选项A 正确; 对于选项,B 因为随机变量()22,N ξσ,所以正态曲线的对称轴是2x =,因为()40.9P X <=,所以(0)0.1P X <=, 所以(02)0.4P X <<=,所以选项B 正确; 对于选项,C ()()2323E X E X +=+,()()234D X D X +=,故选项C 不正确;对于选项,D 由题意可知,()1E x ξ=-,()()21D x x x x ξ=-=-+,由一次函数和二次函数的性质知, 当102x <<时,()E ξ随着x 的增大而减小, ()D ξ随着x 的增大而增大,故选项D 正确.故选:ABD .本题主要考查二项分布和正态分布的应用,考查期望和方差的计算及其性质,意在考查学生对这些知识的理解掌握水平.11.下列四个命题中,是真命题的是( ) A .x ∀∈R ,且0x ≠,12x x+≥B .若0x >,0y >,2xyx y≥+C .函数()f x x =值域为⎡⎤⎣⎦D .已知函数()9f x x a a x=++-在区间[]1,9上的最大值是10,则实数a 的取值范围为[)8,-+∞ 【参考答案】BCD【试题解析】结合基本不等式的条件及基本不等式可以判断A ,B ,结合三角换元及三角函数的性质可判断C ,结合含绝对值函数的图像变换可检验D ,即可判断.对于A ,x ∀∈R ,且0x ≠,12x x+≥对0x <时不成立; 对于B ,若0x >,0y >,则()()22222248x yx y xy xy x y ++≥⋅=,化为2xyx y≥+,当且仅当0x y =>时取等号,故B 正确;对于C ,令x θ=,[]0,θπ∈,则()2sin 4f x x πθθθ⎛⎫=+=+=+ ⎪⎝⎭,由[]0,θπ∈,得5,444πππθ⎡⎤+∈⎢⎥⎣⎦,()2sin 24f x πθ⎛⎫⎡⎤=+∈ ⎪⎣⎦⎝⎭;对于D ,当[]1,9x ∈,[]96,10x x +∈,令[]96,10x t x+=∈,转化为y t a a =+-在[]6,10t ∈有最大值是10.①10a -≥,当6t =时,max 62610y a a a =+-=--=,得8a =-(舍去). ②6a -≤时,当10t =时,max 1010y a a =+-=恒成立.③610a <-<,{}max max 26,10y a =--,此时只需2610a --≤,得86a -≤<-. 综上,8a ≥-,故D 正确. 故选:BCD本题以判断命题真假为载体,主要考查了函数,不等式的综合应用,属于中档题. 12.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 【参考答案】ABCD【试题解析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案.对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =- 2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD.本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换.三、填空题13.已知向量()2,6a =-,()3,b m =,若a b a b +=-,则m =______. 【参考答案】1【试题解析】根据向量加法和减法的坐标运算,先分别求得a b +与a b -,再结合向量的模长公式即可求得m 的值.向量()2,6a =-,()3,b m =则()5,6a b m +=-+,()1,6a b m -=---则25a b +=+=()()16a b m -=-+--=因为a b a b +=-=化简可得12611237m m -+=+ 解得1m = 故答案为: 1本题考查了向量坐标加法和减法的运算,向量模长的求法,属于基础题.14.某学校高一学生2人,高二学生2人,高三学生1人,参加A 、B 、C 三个志愿点的活动.每个活动点至少1人,最多2人参与,要求同年级学生不去同一活动点,高三学生不去A 活动点,则不同的安排方法有_____种.(用数字作答) 【参考答案】40【试题解析】以高三学生是否单独去志援点分为两类,每一类中先安排高三学生,再安排高一、高二学生,由乘法原理算出两类安排方法,相加即可.若高三学生单独去志愿点,则有1222228C A A =种,若高三学生与其它年级学生合去志愿点,按先分组再分到志愿点的思路,有11214222C A C C =32种,则共有83240+=种安排方法. 故答案为:40.本题考查分类计数原理的运用,以高三学生是否单独去志愿点确定分类的方法,再逐级安排,考查乘法原理,属于中档题.15.在直三棱柱111ABC A B C -内有一个与各个面均相切的球.若AB BC ⊥,6AB =,8BC =,则1AA 的长度为______.【参考答案】4【试题解析】求出△ABC 内切圆的半径,根据球是三棱柱的内切球,求出其半径,从而求出AA 1的长度即可.由AB BC ⊥,6AB =,8BC =,得10AC =.设底面Rt ABC △的内切圆的半径为r ,则()1168681022r ⨯⨯=⨯++⋅,得2r .因为球与三个侧面相切,所以内切球的半径也为2.又该球也与直三棱柱的上、下底面相切,所以124AA r ==. 故答案为:4本题考查了三棱柱的内切球,考查三角形内切圆以及直三棱柱问题,是一道常规题.16.已知函数22(1),0()2,0k x f x xx k x ⎧-<⎪=⎨⎪-≥⎩,若函数()()()g x f x f x =-+有且仅有四个不同的零点,则实数k 的取值范围是_______. 【参考答案】()27,+∞【试题解析】根据题意可求得222,0()4,02,0kx k x x g x k x k x k x x ⎧+->⎪⎪=-=⎨⎪⎪--<⎩,再分0,0,0k k k =<>三种情况求函数的单调性,进而根据零点存在性定理求出函数的最小值求解不等式即可.由题, ()22212,0()22,0221,0k x k x x g x k k x x k k x x ⎧⎛⎫++-> ⎪⎪⎝⎭⎪⎪=--=⎨⎪⎛⎫⎪--+-< ⎪⎪⎝⎭⎩,即222,0()4,02,0kx k x x g x k x k x k x x ⎧+->⎪⎪=-=⎨⎪⎪--<⎩,当k =0时,原函数有且只有一个零点,不符题意,故k ≠0, 观察解析式,可知函数()g x 有且仅有四个不同的零点, 可转化为22(),0kg x x k x x=+->有且仅有两个不同的零点, 当k <0,函数()g x 在(0,+∞)单调递增,最多一个零点,不符题意,舍;当k >0,322()(),0x k g x x x-'=>, 令()0g x '=有13x k =,故要使()g x在(0,+∞)有且仅有两个不同的零点, 则1233min 132()()0k g x g k k k k==+-<,因为0k >,故213333k k k <⇒<,解得k >27,综上所述,实数k 的取值范围是(27,+∞). 故答案为:(27,+∞)本题主要考查了根据分段函数的零点个数求解参数范围问题,需要根据函数的性质求出单调性以及最值,进而根据零点存在性定理列式求解.属于中档题.四、解答题17.现给出两个条件:①22cosc a B=,②()2cos cos bA C =,从中选出一个条件补充在下面的问题中,并以此为依据求解问题. 在ABC 中,a ,b,c 分别为内角A ,B ,C 所对的边,______. (1)求A ;(2)若31a,求ABC 周长的最大值.【参考答案】(1)6π;(2)1. 【试题解析】若选条件①,(1)由余弦定理对2cb =2a cos B ,化简可得c 2+b 2﹣a2=,再利用余弦定理可求出A ;(2)由余弦定理可得1)2=b 2+c 2﹣2bc化简再利用基本不等式可得b c +≤可求出△ABC 周长的最大值;若选条件②,(1)由(2b )cos A =cos C ,结合正弦定理化简可得2sin B cos A =B ,从而可求出A ;(2)由余弦定理可得1)2=b 2+c 2﹣2bc 化简再利用基本不等式可得b c +≤可求出△ABC 周长的最大值;若选择条件①22cos c a B =.(1)由余弦定理可得22222cos 22a c b c a B a ac +-==⋅,整理得222c b a +-=,可得222cos 222b c A bc bc a +===-. 因为()0,A π∈,所以6A π=.(2)由余弦定理2222cos a b c bc A =+-,得)222122b c bc =+-⋅,即()(22242b c b c bc -=+=+-+,亦即(()(224bc b c =+--,因为()24b c bc +≤,当且仅当b c =时取等号,所以()((()22424b c b c ++--≤⨯,解得b c +≤当且仅当b c ==.所以1a b c ++≤,即ABC 周长的最大值为1若选择条件②()2cos cos b A C =.(1)由条件得2cos cos cos b A C A =+, 由正弦定理得)()2sin cos sin cos sin cos B A A C C A A C B =+=+=.因为sin 0B ≠,所以cos A =因为()0,A π∈,所以6A π=.(2)由余弦定理2222cos a b c bc A =+-,得)222122b c bc =+-⋅,即()(22242b c b c bc -=+=+-+,亦即(()(224bc b c =+--,因为()24b c bc +≤,当且仅当b c =时取等号,所以()((()22424b c b c ++--≤⨯,解得b c +≤当且仅当b c ==.所以1a b c ++≤,即ABC 周长的最大值为1此题考查正弦定理和余弦定理的应用,考查基本不等式的应用,考查计算能力,属于基础题18.已知数列{}n a 中,11a =,当2n ≥时,其前n 项和n S 满足212n n n S a S ⎛⎫=-⎪⎝⎭(1)求n S 的表达式; (2)设21nn S b n =+,求数列{}n b 的前n 项和n T . 【参考答案】(1)121n S n =-;(2)111221n T n ⎛⎫=- ⎪+⎝⎭.【试题解析】(1)运用()12n n n a S S n -=-≥,代入化简整理,再由等差数列的定义和通项公式即可得到所求; (2)求得21nn S b n =+=1(21)(21)n n -+=11122121n n ⎛⎫- ⎪-+⎝⎭,运用数列的求和方法:裂项相消求和,即可得到所求和.解:(1)∵212n n n S a S ⎛⎫=-⎪⎝⎭,()12n n n a S S n -=-≥, ()2112n n n n S S S S -⎛⎫=-- ⎪⎝⎭,112n n n nS S S S --=-①,由题意10n n S S -≠,将①式两边同除以1n n S S -得,()11122n n n S S --=≥ ∴数列1n S ⎧⎫⎨⎬⎩⎭是首项为11111S a ==,公差为2的等差数列. 可得()112121nn n S =+-=-, 得121n S n =-; (2)21nn S b n =+=1(21)(21)n n -+=11122121n n ⎛⎫- ⎪-+⎝⎭,111111111++=123352121221n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=---- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦本题考查数列中()12n n n a S S n -=-≥的运用,考查数列的求和方法:裂项相消求和,考查运算能力,属于中档题.19.如图,四棱锥P−ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(Ⅰ)证明MN ∥平面PAB;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值. 【参考答案】(Ⅰ)详见解析;(Ⅱ)85. 【试题解析】 (Ⅰ)由已知得. 取的中点T ,连接,由为中点知,.又,故=TN AM ∥,四边形AMNT 为平行四边形,于是MN AT ∥.因为平面,平面,所以平面.(Ⅱ)取的中点,连结.由得,从而,且.以A为坐标原点,AE的方向为轴正方向,建立如图所示的空间直角坐标系.由题意知,,,,,(0,2,4) PM=-,5(,1,2) PN=-,5(,1,2)AN=.设(,,)x y z=n为平面PMN的一个法向量,则0,{0,n PMn PN⋅=⋅=即240,{520,y zx y z-=+-=可取(0,2,1)n=.于是85cos,n ANn ANn AN⋅〈〉==.【考点】空间线面间的平行关系,空间向量法求线面角.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.20.成都市现在已是拥有1400多万人口的城市,机动车保有量已达450多万辆,成年人中约40%拥有机动车驾驶证.为了解本市成年人的交通安全意识情况,某中学的同学利用国庆假期进行了一次全市成年人安全知识抽样调查.先根据是否拥有驾驶证,用分层抽样的方法抽取了200名成年人,然后对这200人进行问卷调查.这200人所得的分数都分布在[]30,100范围内,规定分数在80以上(含80)的为“具有很强安全意识”,所得分数的频率分布直方图如图所示.拥有驾驶证 没有驾驶证 总计具有很强安全意识 不具有很强安全意识58 总计200(1)补全上面的22⨯列联表,并判断能否有超过95%的把握认为“具有很强安全意识”与拥有驾驶证有关?(2)将上述调查所得的频率视为概率,现从全市成年人中随机抽取4人,记“具有很强安全意识”的人数为X ,求X 的分布列及数学期望.附表及公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.P (20K k ≥) 0.150.10 0.05 0.025 0.010 0.005 0.0010k2.072 2.7063.841 5.024 6.635 7.879 10.828【参考答案】(1)表格见解析,有超过95%的把握;(2)分布列见解析,数学期望为45. 【试题解析】(1)拥有驾驶证的有80人,具有很强安全意识的有40人,由此可得列联表,再计算得2K 后与3.841比较大小即可得出结论;(2)由题意可知X 可以取0,1,2,3,4,且14,5X B ⎛⎫⎪⎝⎭,由此可求出分布列及数学期望.解:(1)200人中拥有驾驶证的占40%,有80人,没有驾驶证的有120人, 具有很强安全意识的占20%,有40人,不具有很强安全意识的有160人, 补全的22⨯列联表如表所示:计算得()2220022102185875 4.6875 3.841408016012016K ⨯⨯-⨯===>⨯⨯⨯,∴有超过95%的把握认为“具有很强安全意识”与拥有驾驶证有关;(2)由频率分布直方图中数据可知,抽到的每个成年人“具有很强安全意识”的概率为15, ∴X 可能取0,1,2,3,4,且14,5XB ⎛⎫ ⎪⎝⎭, 于是()4241455kkP X k C -⎛⎫⎛⎫==⋅⋅ ⎪ ⎪⎝⎭⎝⎭(0k =,1,2,3,4),X 的分布列为∴()14455E X =⨯=.本题主要考查独立性检验与二项分布的应用,属于基础题.21.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()1,0F c -,()2,0F c ,点31,2⎛⎫⎪⎝⎭在椭圆C 上,点()3,0A c -满足以2AF 为直径的圆过椭圆的上顶点B . (1)求椭圆C 的方程;(2)已知直线l 过右焦点2F 与椭圆C 交于,M N 两点,在x 轴上是否存在点(),0P t 使得PM PN ⋅为定值?如果存在,求出点P 的坐标;如果不存在,说明理由.【参考答案】(1)22143x y +=;(2)存在,11,08P ⎛⎫ ⎪⎝⎭ 【试题解析】(1)由点在椭圆上代入可得a ,b 的关系,再由点(3,0)A c -满足以2AF 为直径的圆过椭圆的上顶点B .可得20AB BF =可得b ,c 的关系,再由a ,b ,c 的关系求出椭圆的方程;(2)由(1)可得右焦点2F 的坐标,分坐标MN 的斜率为0和不为0两种情况讨论,假设存在P 满足条件,设直线MN 的方程,与椭圆联立求出两根之和及两根之积,进而求出数量积PM PN 的表达式,要使数量积为定值,则分子分母对应项的系数成比例,可得t 的值,且可求出定值.解:(1)由题意可得上顶点(0,)B b ,2AB BF ⊥,所以:221914a b +=,20AB BF =,即(3c ,)(b c ,)0b -=即223b c =,222a b c =+,解得:24a =,23b =,所以椭圆的方程为:22143x y +=;(2)由(1)可得右焦点2F 的坐标(1,0),假设存在(,0)P t)i 当直线MN 的斜率不为0时,设直线MN 的方程为:1x my =+,设1(M x ,1)y ,2(N x ,2)y ,联立直线与椭圆的方程22134120x my x y =+⎧⎨+-=⎩,整理可得:22(43)690m y my ++-=,122643my y m -∴+=+,122943y y m-=+, 121228()243x x m y y m ∴+=++=+,222212121222296412()11434343m m m x x m y y m y y m m m ---=+++=++=+++,因为()()1122,,PM PN x t y x t y =--2222222221212122222241289(43)12853(4)(48()4343434343m t t m m t m t t x x t x x t y y t m m m m m -+----+-=-+++=-+-==+++++,要使PM PN 为定值,则22448514t t t ---=,解得:118t =,这时13564PM PN =为定值,)ii 当直线MN 的斜率为0时,则(2,0)M -,(2,0)N ,P 为11(8,0),则11(28PM PN =--,110)(28-,2111350)()4864=-=,综上所述:所以存在11(8P ,0),使PM PN 为定值.考查求椭圆的标准方程及直线与椭圆的综合,属于中档题. 22.已知()3231f x ax x =-+(0a >),定义()()(){}()()()()()(),,max ,,.f x f x g x h x f x g x g x f x g x ⎧≥⎪==⎨<⎪⎩(1)求函数()f x 的极小值;(2)若()()g x xf x '=,且存在[]1,2x ∈使()()h x f x =,求实数a 的取值范围; (3)若()ln g x x =,试讨论函数()h x (0x >)的零点个数. 【参考答案】(1)241a-;(2)(],2-∞;(3)答案见解析. 【试题解析】(1)求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的极值即可;(2)问题转化为不等式3132a x x≤+在x ∈[1,2]上有解,根据函数的单调性求出a 的范围即可;(3)通过讨论a 的范围结合函数的单调性判断函数的零点个数即可.(1)求导得()()23632'=-=-f x ax x x ax ,令()0f x '=,得10x =或22x a=. 因为0a >,所以12x x <,列表如下:所以()f x 的极小值为2222812411f a a aa ⎛⎫=-+=- ⎪⎝⎭. (2)()()3236g x xf x ax x '==-.因为存在[]1,2x ∈使()()h x f x =,所以()()f x g x ≥在[]1,2x ∈上有解,即32323136ax x ax x -+≥-在[]1,2x ∈上有解,即不等式3132a x x≤+在[]1,2x ∈上有解 设2331331x y x x x+=+=,[]1,2x ∈. 因为24330x y x--'=<对[]1,2x ∈恒成立,所以313y x x =+在[]1,2上递减,故当1x =时,max 4y =.所以24a ≤,即2a ≤,故a 的取值范围为(],2-∞.(3)由(1)知,()f x 在()0,∞+上的最小值为2241f a a ⎛⎫=- ⎪⎝⎭. ①当2410a ->,即2a >时,()0f x >在()0,∞+上恒成立,所以()()(){}()max ,0h x f x g x f x =≥>,因此()h x 在()0,∞+上无零点.②当2410a-=,即2a =时,()()min 10f x f ==,又()10g =,所以()()(){}max ,h x f x g x =在()0,∞+上有且仅有一个零点.③当2410a-<,即02a <<时,设()()()3231ln x f x g x ax x x ϕ=-=-+-,01x <<.因为()()21136610x ax x x x x xϕ'=--<--<,所以()x ϕ在()0,1上单调递减.又()120a ϕ=-<,2321230a e e ee ϕ-⎛⎫=+> ⎪⎝⎭,所以存在唯一的01,1x e ⎛⎫∈ ⎪⎝⎭,使得()00x ϕ=.(i )当00x x <≤时,因为()()()()00x f x g x x ϕϕ=-≥=,所以()()h x f x =且()h x 为减函数.又()()()0000ln ln10h x f x g x x ===<=,()010f =>,所以()h x 在()00,x 上有一个零点.(ii )当01x x <<时,因为()()()()00x f x g x x ϕϕ=-<=,所以()()h x g x =且()h x 为增函数.因为()10g =,又()()(){}()max ,ln 0h x f x g x g x x =≥=>在1x >上恒成立,所以()h x 在()0,x +∞上有且仅有一个零点.从而()()(){}max ,h x f x g x =在()0,∞+上有两个零点.综上,当02a <<时,()h x 有两个零点;当2a =时,()h x 有一个零点;当2a >时,()h x 无零点.本题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.。